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The movement of Indian monsoon depressions by interaction

with image vortices near the Himalayan wall

Kieran M. R. Hunta* and Douglas J. Parkerb

aDepartment of Meteorology, University of Reading, UK
bSchool of Earth and Environment, University of Leeds, UK

*Correspondence to: K. M. R. Hunt, Department of Meteorology, University of Reading, PO Box 243 Reading, RG6 6BB, UK.
E-mail: k.hunt@pgr.reading.ac.uk

It is argued that a simple explanation for the westward propagation of Indian monsoon
depressions (IMDs) is the interaction of the depression vortex with the Himalayan ‘wall’.
This interaction can be modelled by simulating an IMD as a point vortex in a horizontal
plane (at 850 hPa) and invoking image vortices behind the barrier. Solenoidal flows
associated with the image vortices allow the boundary conditions at the Himalayas to be
met, and cause the IMD vortex to propagate parallel to the barrier, toward the west. This
simple model is tested against propagation speeds for observed IMDs. The histogram of
observed propagation speed, normalised by the point-vortex model prediction, has a mean
of 1.08 and standard deviation of 0.68. The model also explains the observed intensification
of flow on the Himalayan side of the IMD which is a key process in enhancing rainfall to
the Indo-Gangetic Plain in the monsoon season.
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1. Introduction

Indian monsoon depressions (IMDs) are the most important
synoptic-scale features of the summer rainy season over the Indian
subcontinent. Typically they have their genesis over the northern
Bay of Bengal, before propagating towards the west, parallel to the
Himalayan massif, and against the direction of the climatological
mean flow (Figure 1). Although the forecasting of these systems
is of profound importance, due to the enhanced rainfall which
they bring during the monsoon season, their dynamics remain
relatively poorly understood. In particular, their basic mode
of propagation, against the mean flow, has not until recently
been adequately explained. Boos et al. (2015) have presented the
movement of IMDs in terms of the advection of the potential
vorticity maximum at 450–500 hPa, above the IMD core. At
these levels the mean flow is more clearly easterly and the PV
structure of the IMD can be seen to be advected by the local flow,
which includes an additional northwestward component from
adiabatic potential vorticity beta drift, rather than the previously
established theory of quasi-geostrophic lifting and downshear
vortex stretching (Sanders, 1984; Chen et al., 2005).

Here we propose another, probably complementary first-order
explanation for the direction and speed of propagation of IMDs,
in terms of the interaction of their vorticity structure at low levels
with the neighbouring ‘wall’, represented by the Himalayas. We
approximate the Indian Monsoon Depression (IMD) as a point

vortex in two-dimensional flow. Whilst baroclinic processes play
a significant rôle in monsoon depressions (Krishnamurti, 1985),
a barotropic model remains a good approximation, if we assume
the depression winds do not vary much with height in the
lower troposphere and that temperature is not advected. This
is justifiable because most of the relative vorticity of an IMD is
confined to a small region at its centre (Godbole, 1977; Hunt
et al., 2016). Two-dimensional flow is only strictly accurate for
systems in which horizontal divergence is small and vorticity
generation by stretching is weak relative to advection. Monsoon
depressions are typically tall and narrow, with high Burger number
(Bu = NH/fL, where H and L are vertical and horizontal length-
scales, and f is the Brunt–Väisälä frequency), meaning that the
influence of their potential vorticity structure on the ambient
flow should be dominated by horizontal circulation rather than
vertical stratification (e.g. Hoskins and James, 2014, p. 339).
However, vorticity tendencies due to stretching remain significant
(Boos et al., 2015). Previous authors (Krishnamurti, 1985) have
shown that baroclinic effects in monsoon depressions are in
fact strong, and undoubtedly the effects of deep convection in
the monsoon system introduce significant vorticity tendencies in
the environment of a monsoon depression. Therefore we must
see the 2D model as a highly idealised system, which neglects
some important tendencies related to vorticity generation by
stretching, but from which we can nevertheless hope to build
dynamical insight into certain physical processes.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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Invoking this approximation, we define the point-vortex
vorticity field:

ω = κ · δ(x − xv) δ(y − yv) , (1)

where κ is the circulation, δ is the Dirac delta-function, and
(xv,yv) is the location of the vortex. The circulation, κ , around a
point vortex, vorticity ω, is given by:

κ =
∮

∂S
v · dl =

∫∫
S
ω · dS , (2)

where v is the flow velocity vector field, dl is an element of
the closed line boundary ∂S to the surface S through which the
vorticity vectors pass, and dS = ndS, where n is the unit vector
normal to S. In the case of a point vortex in two-dimensional flow
(the approximation to which we will consider), S is chosen to be
coplanar with the fluid.

To represent interaction with the orography, we make an
approximation of the Himalayas as a vertical plane (normal to
the surface) and impose the resulting boundary condition of
no-normal flux. We can make use of the standard result (e.g.
Batchelor, 2000) that such a boundary condition is satisfied by
replacing the plane with an equal and opposite image vortex (of
strength −κ), whose location is the point of reflection of the
original vortex in that plane. If the projection of the vertical plane
onto the surface is given by ax + by + c = 0, then the location
of the required image vortex is −{(byv + c)/a, (axv + c)/b}. The
resulting flow around each vortex causes the other vortex to be
advected parallel to the wall, as indicated in Figure 2. We also note
the intensification of winds on the ‘Himalayan’ side of the vortex.
This appears to be at variance with the findings of Godbole (1977),
who found that winds to the south of the depression centre were
stronger than to the north; however, this discrepancy is reconciled
immediately when we subtract the background monsoonal flow,
as shown in Figure 3. This flow exhibits a strong meridional shear
which significantly amplifies westerlies south of the IMD centre.

The velocity field due to each point vortex is[
u

v

]
= κ

2πr2

[
−(y − yj)

(x − xj)

]
, (3)

where r = √
(x − xj)2 + (y − yj)2 is the distance from vortex

j. Thus, in the absence of background flow, our point-vortex
representation of an IMD will propagate westwards, parallel to
the Himalayas, at a speed

vl = κ/4πR, (4)

where R is the distance between the vortex and boundary
representing the mountains. Incorporating the existence of a
background flow (Figure 1), vflow, gives the following expression:

|v − vflow|
vl

= 1 , (5)

where we have introduced the notation v for the propagation
vector of the vortex. Therefore, if an IMD behaves like a point
vortex adjacent to the Himalayan ‘wall’, the expression on the left
of Eq. (5) should evaluate to 1.

By examining the rôle played by the Himalayas in the general
presence of depressions (Figure 4), it could be argued that the
shape of the Himalayan wall shows significant curvature and may
be better approximated by a cylinder than by a simple plane
intersecting the horizontal level. The motion of a point vortex
adjacent to a cylindrical barrier can also be computed using image
vortices, using the method of Milne-Thomson (1940) (described
in Batchelor, 2000), and in this case two image vortices are needed;
one of strength κ at the centre of the cylinder, and one of strength
−κ at an image point of the real vortex, inside the cylinder. From

Figure 1. Mean boreal summer (JJAS) 850 hPa wind vectors with Indian monsoon
depression tracks 1979–2013 overlaid in white.

Figure 2. Flow around a pair of counter-rotating ideal point vortices, identical
to an ideal point vortex, V, and its corresponding image vortex, I, in the image
plane (grey).

Figure 3. Composite 850 hPa IMD winds with the boreal summer climatology
subtracted (from Hunt et al., 2016). In this composite, the data for individual
time steps are rotated such that the direction of propagation is due north (up the
page) and translated such that the centre is at 0◦N, 0◦W on a regular lat/lon grid.
Therefore, here the Himalayas lie to the right.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 4. Modified from Hunt et al. (2016), 850 hPa relative vorticity (intervals
of 10−5 s−1, dashed contours are negative) on June-September depression days
as an anomaly to the boreal summer mean; greyed out where the orography is
higher than the 850 hPa level. The thick black line represents the average path of
tracked depressions.

these we obtain the following relationship for the motion of the
point vortex:

|v − vflow|
vcyl

= 1 , (6)

and

vcyl = vl ·
{(

1 + r

a

)(
1 + r

2a

)}−1
, (7)

where a is the radius of curvature of the cylinder. A full derivation
is given in the Appendix. Therefore, this correction factor for
curvature of the Himalayan wall acts to reduce the resulting speed
of the point vortex.

2. Data and methods

Hunt et al. (2016) devised an objective feature-based tracking
algorithm to collect and analyse data on Indian monsoon
depressions. They used ERA-Interim reanalysis data (Dee et al.,
2011) to locate local 850 hPa relative vorticity maxima and
removed those not associated with nearby surface pressure lows.
They subsequently imposed the India Meteorological Department
(Saha et al., 1981; Krishnamurthy and Ajayamohan, 2010)
criterion that monsoon depressions must have surface wind
speeds above 8.5 m s−1 and not exceding 16.5 m s−1, and linked
events occurring in adjacent timesteps using a nearest-neighbour
approach. Finally they filtered out those events not present
within the India Meteorological Department’s own IMD eAtlas
(http://www.imdchennai.gov.in/cyclone eatlas.htm; accessed 25
April 2016). This results in the rejection of some candidates, and
a slightly different database of IMDs compared to those of other
studies (e.g. Hurley and Boos, 2015). Whilst it is beyond the scope
of this study to intercompare such datasets, a broad majority of
events are shared between them and a superficial investigation
into the composite structures of IMDs suggests that there is no
significant difference between datasets. Indeed, in the subsequent
analysis, the results differ by no more than a few percent between
the IMDs in Hurley and Boos (2015) and Hunt et al. (2016).
For the purposes of calculating circulation, relative vorticity
data were collected from the 850 hPa level, as that is where
the vorticity and wind speed maxima tend to occur (Hunt
et al., 2016). We have used 1-arcminute resolution data from
ETOPO1 (https://www.ngdc.noaa.gov/mgg/global/global.html;
accessed 25 April 2016) to find the regions within the southern

Himalayan foothills where the orography rises above 850 hPa
(1.5 km). For the sake of the linear model, a least-squares linear
regression of these points suggests that the linear Himalayan wall
has a direction parallel with 282◦; for the cylindrical model, a least-
squares circle fit gives the wall a radius of curvature of 2570 km
centred at 89.1◦N, 44.7◦E. Note that here, and throughout this
study, we measure direction as a bearing clockwise from due
north (i.e. due west is 270◦).

For each six-hourly timestep of reanalysis data that contained
an IMD, we define the propagation vector as the mean velocity
vector connecting the present IMD location with its location in
the previous timestep (i.e. if the depression has travelled 3.6 km
due west during the previous 6 h, its propagation vector will
have magnitude 1 m s−1∗ and direction 270◦). We also define the
climatological 850 hPa wind vector co-located with the depression
centre by taking the value of 21-day running mean wind fields
(analogous to the method of Hurley and Boos, 2015) at the
location of the IMD centre. Resolving the climatological wind
vector onto the direction of the propagation vector (i.e. computing
|vflow| · cos(α), where vflow is the climatological wind vector and
α is the difference in angle between vflow and v, the propagation
vector) for each timestep gives a mean value of −3.15 m s−1;
this indicates that IMDs generally travel in a direction opposing
the ambient flow. This indicates the importance of including
|v − vflow| in our calculations.

For comparison with our model, we present three simple
alternative models: a climatological model and a pair of beta-drift
models. For the climatological model, which is intended as a basic
benchmark for variability, we simply make the assumption that
all IMDs at all times travel at the average IMD velocity (that is
to say, we take the mean propagation vector, 1.66 m s−1 on 332◦,
and assert that all IMDs should have this velocity at all timesteps).

For the beta-drift models, we assume that IMDs propagate
as cyclones advecting higher-latitude planetary vorticity from
the north to west of the centre. We therefore expect that, if
IMDs propagated using this mechanism, they should also travel
northwestward. There are then two options, both of which are
carried out here, when considering the background wind: we
either include it directly in the calculation (referred to hereafter
as ‘beta drift + flow’) or we subtract it from the result (referred
to hereafter as ‘beta drift’)†. For these, we shall use a modified
Rankine vortex of the form:

vθ (r) =
{

C1r if r < rm,

C2r−σ if r ≥ rm,
(8)

vr(r) = −λvθ , (9)

where C1 and C2 are arbitrary constants related to intensity,
r is the distance from the centre, σ is a structure parameter,
λ is a horizontal convergence parameter, rm is the radius of
maximum wind speed, and vθ and vr are the azimuthal (clockwise
positive) and radial (outward positive) components of wind
speed respectively. For the IMDs in our dataset (1526 six-hourly
timesteps over 106 depressions), the value of the convergence
parameter is typically positive (as expected) but close to zero,
averaging 0.06 with a standard deviation of 0.18; the structure
parameter has an average of 0.83 and a standard deviation of 1.59,
compared with 0.5 to 0.6 for tropical cyclones (Leslie and Holland,
1995), and exactly 1 for the point vortex. Both parameters were
calculated for each timestep by using logarithmic and linear
regressions respectively for the reanalysis gridpoints in the region
rm < r < 2rm. Then, following Holland (1982), the direction of
propagation θm due to beta drift in the absence of background

∗The propagation speed for each IMD timestep is actually calculated by dividing
the great circle distance between its start and end points by its duration (6 h).
†To clarify, this is different from the mechanism proposed by Boos et al. (2015),
which is horizontal nonlinear advection of the mid-level (500 hPa) potential
vorticity maximum.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 5. Histogram showing the ratio of observed to predicted IMD propagation velocities for each of the five models discussed in the text calculated for all timesteps
present in the dataset. Thick lines represent our linear and cylindrical models respectively; thin black represents a simple model based on the climatology; dashed lines
represent a simple beta drift model (not) including background monsoonal flow.

Figure 6. As Figure 5, but showing the difference between the predicted heading and the observed heading.

flow (as measured clockwise from due north), is given by

θm = arctan

{
1

λ(2 − σ )

}
, (10)

and the subsequent drift velocity, vm, by

vm = βr2

1 − σ 2
{sin θm + λ(2 − σ ) cos θm}, (11)

where β = ∂f /∂y is the standard notation for rate of change
of the Coriolis parameter with increasing meridional distance.
Again, following Holland (1982), this can be adapted to include
the effect of a local background flow with velocity vb and direction
(defined, like θm, as the angle measured counterclockwise from
due north) θb:

θd = arctan

{
1−σ 2

r2 vb sin θb + β

1−σ 2

r2 vb cos θb + λ(2 − σ )β

}
, (12)

and

vd = vb cos(θd−θb)+ βr2

1−σ 2
{sin θd+λ(2−σ ) cos θd}. (13)

An important caveat here is that, if IMDs really were exact point
vortices, they would not propagate using this mechanism because
vb → ∞ as σ → 1.

3. Results

We start by considering the distribution of velocities for IMDs
in the period considered. The average IMD speed is 4.24 m s−1

with standard deviation 3.1 m s−1, and the average heading is
332◦. When the velocities are normalised (Figure 5), both point-
vortex models perform well. The cylindrical model, with a mean
normalised speed of 1.08 and standard deviation of 0.68, slightly
outperforms the linear model, with a mean of 0.90 and standard
deviation of 0.61, in that it predicts the propagation speed with
marginally better accuracy, but higher variance.

Figures 5 and 6 show, respectively, distributions of the speed
and angle predictions from each model compared to reality.

Table 1. Means and standard deviations of the normalised predicted velocity,
|v − vflow|/vmodel, and the error in predicted heading, θactual − θmodel, for each of

the five models.

Model
( |v−vflow |

vmodel

)
St. Dev. θactual−θmodel St. Dev.

Linear 0.90 0.61 −37.8◦ 84.8◦

Cylin. 1.08 0.68 −23.3◦ 88.3◦

Clim. 1.00 0.56 0.0◦ 80.7◦

BD 1.35 1.28 10.6◦ 82.2◦

BDF 1.14 1.25 14.1◦ 81.6◦

Cylin. = Cylindrical, Clim. = Climatology, BD = Beta drift, BDF = Beta
drift + flow.

Table 1 tabulates the means and standard deviations of each. We
see that, in predicting velocity, our linear and cylindrical models
perform well – both have markedly lower variance than either
of the beta drift models and predict the propagation velocity
very accurately. Both beta drift models and the linear model
struggle to predict the lowest observed velocities (not shown), but
the cylindrical model and climatology predict these somewhat
more accurately. Further, both beta drift models suffer badly
with underprediction (i.e. high values of (|v − vflow|)/vmodel,
beyond the right edge of the frequency distribution in Figure 5)
of IMD speed in quite a number of cases. As a comparison
metric, we propose computing the fraction of the 1526 pairs of
data from the two distributions in Figures 5 and 6 that, when
used to predict the location of an IMD (by extrapolating the
diagnosed velocity), travelling at 3 m s−1, 24 h in advance, are
correct to within 100 km – the approximate radius of the area of
heavy surface rainfall (Hunt et al., 2016). The calculated success
rates were, in descending order: cylindrical −0.296, climatological
−0.280, linear −0.274, beta drift −0.215, beta drift + flow −0.195.
If we expand this to bootstrapping 10 000 random unmatched
pairs, the performance of the linear and cylindrical models drop
(the other three do not), resulting in the climatological model
scoring most highly. This strongly implies that these two models
at least partially describe the propagation mechanism, and that
the cylindrical model performs best overall.

A two-tailed Student’s t-test confirmed that the means for the
linear and cylindrical model results were significantly different at

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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the 99% confidence level. However, both of our models have some
small systematic error in predicting the propagation direction,
giving it a northward bias. To reiterate, the values given for
standard deviation are dimensionless, as are those for the mean.

It is known that monsoon depressions exist in other areas,
notably Australia and Central Africa (Hurley and Boos, 2015).
In these locations, the depressions also exist over land, but do
not have significant orography with which to interact; therefore
we might assume that they would propagate poleward and
westward less frequently if the mechanism proposed in this study
were correct. Using the global database of depressions outlined
in Hurley and Boos (2015), we found that Indian monsoon
depressions propagate westward and poleward significantly more
frequently than those in either the Australian or African basins,
and more rapidly than those in the Australian basin. African
monsoon depressions propagated westward most rapidly of
all, likely owing to the strong environmental easterlies at
around 650 hPa in the African Easterly Jet. This dominates the
organisation of African Easterly Waves in that region, and closed
depressions are not particularly common there – systems exist
mostly as open waves with a maximum amplitude at the jet level.

4. Conclusions

From these results it seems that a simple, first-order explanation
for the propagation of IMD vortices is that of the model of a point
vortex interacting with the ‘cylindrical wall’ of the Himalayas.
Figure 5 shows that the mean speed of vortices is very close
to the value predicted by this model, with standard deviation
∼1.0 m s−1 (cf. ∼1.1 m s−1 for actual IMDs).

Departures from this model (|v − vflow|/vcyl) have standard
deviation 0.68 (Figure 5). This could be partly due to errors
in our calculations (finite size of vortex, vortex maximised at
another level etc.), but also we can assume that other physical and
dynamical processes will influence the movement of real IMDs
from case to case. Such processes include upper-level interactions
and diabatic effects. There may be more boundary-layer friction
for vortices close to the mountains. The image vortex causes an
irrotational deformation flow acting on the real vortex. In reality,
this deformation flow exists to satisfy the correct boundary
condition imposed by the mountains. We should expect forecast
models to capture this very well.

Boos et al. (2015) showed how IMD movement can be inferred
through the advection of the 450 hPa PV maximum in the IMD
by the local flow at that level, which is enhanced by beta drift, in
which the PV anomalies induced by the meridional flow around
the vortex generate a meridional northwestward advection of the
vortex. Our arguments relating to the advection of the 850 hPa
vortex maximum are probably complementary to the results of
Boos et al. (2015), in that we invoke the advection of the IMD
structure, rather than wave-propagation mechanisms presented
by earlier authors. Boos et al. (2015) also show how the alignment
of the 500 hPa PV structure with that at 700 hPa can explain the
upwind advection of the MD PV at the lower level. On average,
the 500 hPa PV lies to the southwest of the 700 hPa potential
vortex, and is consistent with shifting the 700 hPa circulation
field to the southwest of the PV at that level. In consequence, the
circulation induced at 700 hPa by the 500 hPa PV acts to advect
the 700 hPa PV toward the northwest, as observed. Boos et al.
(2015) note that a Rossby scale height for these systems is typically
2.3 km, meaning that this vertical influence of the 500 hPa PV
will be significantly weaker at 850 hPa, but it remains likely that
some influence will be felt. Quite likely, the topographic effects
of the Himalayas described in this article, which will be strongest
in the lower levels, combine constructively in the vertical to
produce systematic advection to the northwest throughout the
lower troposphere, and to maintain the vertical alignment of
the monsoon depressions as described by Boos et al. (2015) and
Hunt et al. (2016). It would be reasonable now to state that the

PV maximum of an IMD is advected westwards by the local
wind in the mid-troposphere (modified by beta drift) while its
low-level structure also moves westward, against the mean wind
at this level, due to interaction with image vortices behind the
Himalayan barrier. For these reasons, the dynamics of MDs are
probably unique worldwide.

The intensification of the flow on the Himalayan side of the
vortex, as observed in real IMDs, is generated by the sum of
flows from the IMD and its image, and will act to enhance the
southeasterly recurvature of the monsoonal winds from the Bay of
Bengal. The presence of the mountains, or equivalently the image
vortex, increases the moisture advection in the Indo-Gangetic
Plain and is an important factor in the amplification of rainfall
by IMDs within the monsoon season.
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Appendix

Derivation of cylindrical model propagation velocity

This derivation loosely follows the method outlined in Milne-
Thomson (1960). We start by invoking the definition of a
meromorphic complex velocity potential function, w:

w ≡ w(z) = φ(z) + iψ(z) , (A1)

where φ is the velocity potential that describes irrotational
flow in the fluid, ψ is the stream function that describes its
solenoidal flow, and z = x + iy = reiθ is the complex coordinate.
A rectilinear vortex filament centred at zω then has the complex
potential

w = iω ln(z − zω) = iκ

2π
ln(z − zω) , (A2)

where ω and κ are, respectively, the vorticity and circulation of
the vortex.

Now consider a two-dimensional inviscid fluid on an infinite
plane. This fluid satisifies the generic form

w = f (z) . (A3)

If we impinge upon this flow a cylinder whose cross-section is
described by the boundary |z| = a, the resulting complex potential
becomes

w = f (z) + f̄

(
a2

z

)
, (A4)

as long as there are no singularities in f (z < a); for a proof, the
reader is encouraged to study Milne-Thomson (1940).

Thus, combining Eqs (A2) and (A4), we deduce that the
complex potential for a fluid containing a point vortex at zω and
a cylinder, radius |a|, centred at the origin is

w = iω ln(z − zω) − iω ln

(
a2

z
− z̄ω

)
, (A5)
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or, to within a constant,

w = iω ln(z − zω) − iω ln

(
z − a2

z̄ω

)
+ iω ln(z) , (A6)

and in polar coordinates:

w = iω

{
ln(reiθ −rωeiθω )−ln

(
reiθ − a2

rω
eiθω

)
+ln(reiθ )

}
. (A7)

From this, it is clear that the combination of the vortex and
the cylinder induces two image vortices of equal magnitude
to the original: one at the origin, and one with opposing
sign at the point z = a2/z̄ω. Now, we are interested in
how this flow advects the original vortex, i.e. the form of
vflow = [vr , vθ ] = [vS

r , vR
θ ] + [vR

r , vS
θ ] at z = zω, where superscripts

R and S represent the irrotational and solenoidal contributions
respectively. These can be calculated directly from the complex
potential since

vR
r = ∂φ

∂r
; vS

r =−1

r

∂ψ

∂θ
; vR

θ = 1

r

∂φ

∂θ
; vS

θ = ∂ψ

∂r
. (A8)

Since we want to know how this flow advects the vortex, we
are interested in the values of these derivatives at r = rω and
θ = θω, and we ignore the singularity at (rω, θω) because the
vortex cannot self-advect. We find that the only non-zero velocity
component is

vS
θ = Im

{
∂w

∂r

}
ω

= ω

(
1

rω
− 1

rω−a2/rω

)
= ωa2

rω(r2
ω−a2)

, (A9)

and using distance from the boundary, R = rω − a, and
circulation for a point vortex, κ = 2πω, we obtain the desired
relationship:

vcyl = κ

4πR

{(
1 + r

a

)(
1 + r

2a

)}−1
. (A10)
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