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Abstract: Fourier transforms are a powerful tool in the prediction of DNA sequence
properties, such as the presence/absence of codons. We have previously compiled a
database of the structural propertieathf32,896 unique DNA octamers. In this work we
apply Fourier techniques to the analysis of the structural properties of human chromosomes
21 and 22 and also to three sets of trapson factor binding sites within these
chromosomes. We find that, for a given stmual property, the structural property power
spectra of chromosomes 21 and 22 are strikisghilar. We find common peaks in their
power spectra for both Spl and p53 transaipfactor binding sites. We use the power
spectra as a structural fingerprint and perf similarity searching in order to find
transcription factor binding site region$his approach provides a new strategy for
searching the genome data for inforroati Although it is difficult to understand the
relationship between specific functional propextsnd the set of structural parameters in

our database, our structural fingerprints néhaddss provide a useful tool for searching for
function information in sequence data. The powpectrum fingerprints provide a simple,

fast method for comparing a set of functiosafuences, in this case transcription factor
binding site regions, with the sequencesmbible chromosomes. On its own, the power
spectrum fingerprint does not find all transcription factor binding sites in a chromosome,
but the results presented here show thatombination with other approaches, this
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technique will improve the chances of ideyitiy functional sequences hidden in genomic
data.

Keywords. DNA structure; sequence-dependent dtite; transcription factor binding
site; Fourier transform; structural fingerprint.

1. Introduction

The recent complete sequencing of genomes [1-3] has led to an urgent need for new methods fo
genomic data analysis. At most 5% of the humganome codes for proteirtste function of most of
the remaining ‘junk’ DNA is unknown [4 Fourier transform methods have frequently been used in
the analysis of DNA sequences, particularly tire identification of coding regions [5-7]. The
degeneracy of the genetic code results in the liteghgat of T nucleotides in every third position: this
gives a peak at 3 in the powspectrum of an exonic sequence. Several workers have used Fourier
techniques to detect a sequence periodicitpeifveen 10 and 11 bp [8,9] in genomic sequences,
related to the DNA helical repeat. The resulte aufficiently sensitive to distinguish between
periodicities of 10 bp in archebacteria and 11 bpubacteria [8]. Widom has observed a periodicity
of 10.2 bp in the occurrence of AA dinucleotides ulkaryotic but not prokaryotic genomes [10]. This
is probably related to the related to the prefeaépositioning of nucleosomes in eukaryotes. Fourier
techniques have also been used in the alighmaemucleosomal DNA sequences [11] and in the
prediction of nucleosome array formation [12]. Veegently, Fourier methods have been used in two
new contexts. D’Avenicet al have reported a Fourier transform method, SWIFT, for identifying
protein sequences of a given classrirthe raw DNA sequence [13]. Sharetal have developed the
Spectral Repeat Finder to look for the locationboth tandem and dispersed repeats [14]. Their
method is somewhat similar to the method we pregos DNA structural properties. Spectral Repeat
Finder uses the power spectrum of a DNA sequeoacknd the length of any repetitive element,
followed by a windowing technique to locate the precise DNA repeat.

Recently we have applied Fourier transform techniques analysis of the structural properties of
sets of Ultra Conserved Elements (UCEs) [Hsld Conserved Non-Genic sequences (CNGs) [16,17].
Each of these sets contain sequences whiehhmhly conserved between mouse and human over
hundreds of bases. We showed that the power spefirartain structural properties were able to
distinguish coding from non-coding elements and Hiab a subset of the UCEs contained a repeating
6.2 bp 3-step roll motif [18]. In previous work ve®nstructed the potential energy surfaces for all
octamers in double helical DNA, as a function oftthe principal degrees of freedom, slide and shift
at the central step [19-24]. Analysifthese potential energy maps allowed us to compile a database of
the structural properties @il 32, 896 unique DNA octamers, inding information on stability, the
minimum energy conformation and flexibility [25,26]. &nvery recent analysis of methylated versus
non-methylated CpG islands, certain of these strucfuogderties, in particular high rise and low twist
were found to be highly correlated with CpG islandhyiation and were used in the very successful
prediction of further methylation patterns [27].
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The structural properties considered here aummarised in Table 1. One concept may be
unfamiliar. The ability of a DNA sequence to adappecific overall shape depends on the ability of
dinucleotide steps to adapt theiructure to fit the conformatioh@areferences of their neighbours.
Structural variation at the dinucleotide level nimycompensated for by conformation changes in the
neighbouring dinucleotides. This has the effect of smoothing variation along the sequence.

Table 1. Octamer Structural Properties.

Property Description
twist3, roll3, slide3, shift3 | the values die four 3-step parameters, 3-step twist,
roll, slide, shift at the octamer central step

groove the minor groove width, measured as the minipnum
phosphate-phosphate distance

RMSD RMSD from a notional stight path through the centrgs
of the base-pair triads

Bistability possessing 2 distinct energy minima

flexibility force constants| for twist, roll, the force enstant required to move the
Kroll, K "Roll, K Twist, K "Twist parameter from its minimum energy value. Low valpes
are flexible.
3-step flexibility force| for 3-step twist, 3-step roll, the force constant requjred
constants, Broi, 3K "Roll, to move the parameter from its minimum energy value.
3K Twists 3K Twist Low values are flexible.
flexibility partition | flexibility force constants, converted to partitipn
coefficients, Qror, Q'ron, | coefficients using Boltzmann’s equation

Q-Twist, Q+Twist

Q=057 dx.

Low values are inflexible.
3-step flexibility partition| decreasing 3-step force constants, converted to parfition
coefficients, 3Qon, 3Qran, | coefficients using Boltzmann’s equation. Low valjies

3Q Twist, 3QJrTwist are inflexible.

We therefore defined a new set of 3-step patarsehat allow for the smoothing effect of two
neighbouring steps on the properties of the central $tepbtain these parameters for an octamer, we
consider the outer base pairs of the central three si@ps (four base pairs) and calculate the overall
values of roll, twist, slide and ghas if this was one giant base step [26]. The properties may be
considered as belonging to one of two classes. fifht class (the 3-step parameters, RMSD, minor
groove width, bistablility) describes charactees of the DNA double helix in its ground-state
(usually B-DNA or A-DNA). The second class (thederconstants and partition coefficients) describe
the ability of the DNA sequence toarge its conformation. For the two most important deformations,
roll and twist, we also calculated decreasing amaeasing 3-step-flexibility force constants and
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partition coefficients. We refer the reader to refiess [25,26] for detailed definitions and graphical
illustrations of these properties. We now atluce an analysis afouble-stranded DNA based upon
the power spectrum of its structural properties.

2. Methods

The basis of this work is the observation tiiad length of DNA contains a repetitive structural
property motif this will be observed as a peakha power spectrum obtained by taking the Fourier
transform of that length of structural propertyues. The peaks correspond to the periodicity of the
repeat. They give no information as to the locatibthe peak within the sequence. Our strategy when
dealing with long sequences, such as an entire clsomes, is therefore to consider the chromosome
as a set of shorter sequence blocks and to otitaipower spectrum of each block separately. When
dealing with sets of sequencelBe power spectrum of a single sequence for a particular structural
property can be regarded as a structural fingerpimt¢h characterises the structural patterns observed
within the sequence and can be used to search atreisgs$ of other fingerprints in order to retrieve
similar structures.

2.1. Fourier Transform Methods

If a length of DNA contains a repetitive structurabperty motif this will be observed as a peak in
the power spectrum obtained by taking the Fouriangiorm of that length of structural property
values. The procedure we have followed is therefore:

1) Take a long DNA sequence S, such as ameenohromosome, of length N bases and also a
structural parameter, p, (for example roll 3).

2) First pre-process the DNA sequence. For sintpliany bases represented by N's are deleted.
(There are relatively very few of these withO N’'s in the euchromatic portion of chromosome
21 and 333 in the euchromatic portion of chrommes@®2. ) All lower case entries are replaced
by their upper case equivalent.

3) Consider S as a set of N-7 overlapping octani@wsde the sequence of octamers into blocks of
size M. (M is 1024 in all the work deadeed here. N.B. 1024 octamer comprise 1031
nucleotides. In preliminary work values of M = 512 and M = 2048 gave very similar results.)

4) For each block,

a. Replace the sequence of letters by a numedtok, consisting of the value of p determined
by the minimum energy structure of each octamer.

b. Take the M-step Fourier transform of the structural property vector.

c. Obtain the power spectrum. (NB Althougte thower spectra are of length 1024, they are
symmetric about the centre and so only the first 512 elements need be considered).

5) Sum the power spectra.

6) Optionally, normalise by dividing each elementrdd total spectrum by the number of blocks, to
obtain a mean structural power spectrum representing the entire DNA length.
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When dealing with lengths of DNA comprising fewer than 1024 octamers, the process is similar,
except that the structural parameter vector is phadi zeroes to give 1024 values, prior to taking its
Fourier transform.

Since the persistence length (the distance overhathie direction of a polymer segment persists,
owing to limited flexibility of the polymer) of DNA isbout 150 bp, the structural parameters within
each block are independent of those in the remgiblocks. We therefore sum the power spectra
(Step 5), which has the effect amplifying peaks which are found in multiple blocks. Using this
method it is possible to miss patterns which overlaplitecks. However, if such a pattern occurs only
once or twice within a veryohg sequence it will certainly be lost amongst the noise since, for
example, there are 33,369 such blocks in humamubsome 21, the smallest chromosome, whilst if it
occurs multiple times, most occunes will miss an overlap. We implemented an overlapping scheme
(data not shown) and found no notickeablifference in the patterns of peaks obtained to those shown
here. We thus proceeded without overlap sincertiethod facilitates the matching of a peak to the
subsequences which caused it.

It is common to estimate the noise in sgplectra by randomising the DNA sequence and obtaining
the power spectrum of the shuffled sequence [10]h#ve followed this procedure, with an important
modification. Rather than randomise a singleussice, we have preserved the proportion of
nucleotides at a local level by randomising eachllofcM octamers separately. This ensures that
local peaks are not solely due to the local basgposition of the sequencense such peaks will also
be present in the spectrum of the randomised DNAtWe obtain a difference spectrum for the set of
blocks by subtracting the summed shuffled spectra from the summed genomic spectra.

Bistable octamers have two low energy structutes. previous studies have shown that bistability
is an important structural feature. In ordercedculate a power spectrum representing bistability we
generate a numeric sequence by replacing each octarte iyt is bistable ad 0.0 otherwise in step
4a above.

In order to compare the structural parametexcsp with sequence we have followed the methods
adopted by several previous workers [10,14,2&]dt@min the power spectrum of a DNA sequence. In a
long DNA sequence, each occurrence of a particuldeatide is replaced by 1.0 and that of all other
nucleotides by 0.0. We again treat a long sequeneesas$ of blocks of length M, obtain the power
spectra for each block and sum over all blocks. pnecess is repeated for each of A,C,G,T, the
resulting spectra are all summed and the resulbishalised by dividing each element of the total
spectrum by the number of blocks. To avoid confuswa,refer to this as an occurrence spectrum,
since it reflects the periodic occurrence of nutten types. The occurrence spectra represent the
single-base properties of the individual nucleotideena&s the structural property spectra take care of
dinucleotide and longer-distance cooperativity. Toerker transforms were performed using Matlab
(www.mathworks.com).

2.2. Transcription Factor Binding Ste Regions
Sets of Transcription Factor (TF) binding sitentaining regions for three transcription factors,

Spl, p53 and cMyc, have been reliably mappedhimomosomes 21 and 22 by Affymetrix [29-31]
using high-density, tiled arrays in combination with chromatin immunoprecipitation (ChIP)
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technology. (NB we refer to the short transcriptiactor binding sire motif as a TFBS and the longer
mapped region around the TFBS as ths)tfWe wish to investigate the power spectra of these sets of
sequences, and in particular to see if any featuees@nmon to all sets, or more probably, if there is
any similarity between the spectra of tfbs containing a particular type of TF.

Most of the tfbs were given as sequences @d1 pp. All the longer tfbs were longer than 1,031 bp
and would therefore require a different Fouriemngsform length and/or consequent scaling of the
peaks. Since this is an exploratory investigatiowgais therefore decided to discard all tfbs longer than
this 1,001 bp for the initial experiments. We atliscarded overlapping tfbs, since any structural
periodicity present in overlapping DNA would bgresented twice although really only present once.
This gave sets of 89 Spl, 34 p53 and 221 cMyc tfbs in chromosome 21 and 209 Sp1, 63 p53 and 43
cMyc tfbs in chromosome 22.

We also shuffled the DNA sequences of each (Hss described previously) to obtain a set of
sequences each of which contained the same propatidg C, G, T as one of the original tfbs
sequences. This was done initially, and then whengawvandomised set of spectra was required, the
appropriate set of randomized sequences was used to generate the spectra.

2.3. Ttbs Retrieval Experiments

In these experiments we regard the power speftthe tfbs as fingerprints and the set of power
spectra of an entire chromosome as a databafiagefrprints to be searched. We have mapped the
spectra of a set of tfbs to their position in thérerchromosome spectra in the following manner. The
sequence of the entire chromosome, from BURD of the human genome [2] was obtained from
UCSF [32]. The spectrum of each consecutive 1031-paseblock of the chromosome was obtained
as described above, giving 33,369 power spefitrachromosome 21 and 33,949 spectra for
chromosome 22.

The sequences of the transcription tfbs obtafinech Affymetrix were actually from BUILD 32.
This was a problem, since BUILD 32 is no longerilade, and the addition of new sequence data in
later builds means that a position in the chromosome from BUIILD 32 no longer corresponds to the
tfbs in BUILD 35. The spectrunof a tfbs was therefore mapped to the equivalent chromosomal
spectrum using a similarity search, where the shitylad, between two spectra was measured using
the complement of the cosine coefficientv&i two spectra (we used roll3 spectra), §4s.., $),
C=(cy, ¢,.., @), the cosine distance d between them is:

n
2,56
|

We calculated the cosine distances between gth&r spectrum and eachtbe power spectra of
the entire chromosome, sorted the distances, amdost cases the most similar spectrum by some
distance was that of the ‘correctolok of the chromosome. NB this is not always the case since a tfbs
will almost certainly overlap two consecutive 1,031 chromosome sequences, and then, if whatever
structural pattern it contains is similarly divideder two blocks, it may ndie found by the similarity
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search. However this occurred in only 10% of cateshese cases, BLAT [33] sequence searches
were carried out to determine which block contained the larger portion of the tfbs sequence.

Given a set of transcription tfbs, S, and a paricstructural property, ghe fingerprint for each
member of S was used to search the entire séhgérprints of its chromosome using a similarity
search as described above, and the number of membgrin the top fraain was recorded. We used
two different methods in order to get an estinatéhe likelihood of the retrieval being achieved by
chance. Firstly, we chose blocks at random froemdhromosome and used these as fingerprints to
search the chromosomal spectra.ddelty, the set of fingerprints, R, of the randomised versions of the
sequences in S, was also used to search thenokomal spectra and the count of members of S again
recorded. Since a member of S hasdwantage if it is allowed to find itself, this was disallowed. This
actually gives members of S an inbuilt disadvantagee their maximum possible retrieval is one less
than for the randomised sequences.

Initial experiments used Spl tfbs in chromosde Spl tfbs retrieval was measured at the 1%
level. Thus if the search results were completely random, the expected value would be 0.88, since ther:
are 89 Spl tfbs, but a tfbs is redbowed to recall itself. The significance of any difference in retrieval
rates was measured by a one-sided Mann-Whitrety Aez-score of 1.96 isignificant at the 95%
level.

Data fusion is a technique used in searchintalieses of small molecules, with the aim of
increasing the number of active molecules retrieved target molecule[34,35] and also in consensus
scoring for protein-ligand docking [36]. Our aim, irnngsdata fusion, is to increase the number of true
positives in the top fraction of the database. Ginha found that a sum fusion method, based on the
ranking produced by the similarity searches, was th&t eftective of those studied [34], and we have
thus adopted this approach. Our method to fusesimilarity searches is to score each block by its
rank in each of the two lists of similarities. We thadd the scores to give a new ranksum score, re-
rank by the ranksums and take the top fraction ofribig list. For example, if we wish to fuse the
results of searching for Sp1l tfbs using minor groawdth and roll3, we take a target tfbs, rank the
chromosome blocks in order of decreasing sintylao its minor groove width spectrum giving list 1
and in order of decreasing similarity to its radBectrum giving list 2. Then a block which is ranked
20th in list 1 and 35th in list 2 has a ranksum sintylaio the target tfbs of 55. Combining three or
more searches is done similarly. We have pnesly successfully implemented this technique in a
promoter finding experiment [25].

3. Results and Discussion
3.1 Whole Genome Transforms

Figure 1 illustrates the process of comparing deffiee spectra for chromosomes 21 and 22, for two
properties, roll3 and sequence. Chromosomear2il22 were each divided into 1031 bp blocks and
their mean power spectra obtained (panels (c),&adl, (h), (i) respectively). Their shuffled power
spectra (as described in the Approach section) alseobtained (panels (a), (b), and (f), (g)). Their
difference spectra are shown in Figure 1(e) andr¢).example, panel(e) shows the difference spectra
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of chromosome 21 (obtained by subtracting panel e fpanel (c)) in blue with that of chromosome
22 (obtained by subtracting panel (b) from panel (d)) in red.

Figure 1. Comparing Spectra. Left-hand panelsraii3, right-hand are sequence. (a) roll3
spectra of shuffled chromosome 21; (b) rad{#ctra of shuffled chromosome 22; (c) roll3
spectra of chromosome 21; (d) roll3 spectralobmosome 22; (e) roll3 difference spectra

of chromosome 21 (blue line) and chromosome 22 (red line). (f) sequence spectra of
shuffled chromosome 21; (g) sequence speaaftrshuffled chromosome 22; (h) sequence
spectra of chromosome 21; (i) sequence spetttAromosome 22; (j) sequence difference
spectra of chromosome 21 (blue line) amlomosome 22 (red line). In each case the y-
axis is the spectral value divided by 10,000. All figures were drawn in Matlab
(www.mathworks.com).

roll3 sequence
26 {
13 6
(b) R - . . (g)
26 1 8
13 - 8

(h)

(d)

(e)

12

4020 121087 6 5 4 3 4020 121087 6 5 4 3
Base Pair Base Pair

Notice that the roll3 spectra of both the randomialed shuffled sequences have the same overall
sine wave shape. This is due to the structuppsad on the spectra by considering the sequences as a
series of overlapping octamers. Since an octaiféers in only one nucleotide from its neighbour
octamer, this imposes a relationship on the neighbgyrarameter values which are generally similar
from octamer to octamer. Although the particidape of the spectra is parameter-dependent, the
same effect is seen in all structural parameter sp@bvts. This is in sharp contrast to the sequence
plot [Figures 1(f) — (i)], where, since therenie relationship between the neighbouring bases in the
shuffled sequence, the shuffled plots are straight.
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Although the shape of the shuffled and genomic roll3 plots are similar, the genomic plots have
many sharp peaks, indicating the non-random orgaaizat structural features, clearly absent from
the shuffled sequences.

In Figure 2 we plot the difference spectralnfiman chromosomes 21 and 22 (in blue and red
respectively), as per Figure 1(e), for each of the stracparameters of Table 1 and also for sequence.

All the spectra increase in intensity as the pecibgidecreases. This tends to obscure meaningful
peaks — thus we have plotted only the region between 55 bp and 2.5 bp.

The spectra of chromosomes 21 and 22 are mglikisimilar. The only differences are in the
relative intensity of the peaks rather than inttipeisitions. The sequence plot has many peaks, clearly
present in both chromosomes, representing the non-random organization of genomic sequence. Bot
chromosomes show a clear peak at 3 bp whichgraviously been noted by many other workers
[5,10,13] and is indicative of the presence of coding sequences. The peaks at 6.1 and 12 bp ar
overtones of this primary peak.

Some parameters are related - for exampleedsang roll flexibility, decreasing roll3 flexibility, Q
Rroll, @and 3 ko all describe in some measure the ability of DNA to move to a lower value of roll. Such
sets of parameters commonly exhibit at least soihtke same peaks. Peak® found at 6.4 bp for all
decreasing roll flexibility parameters, and at 23 bp for all increasing roll flexibility parameters. Neither
of these peaks are present in the sequence spectra.

Figure 2. Whole Chromosome Difference Spectra. Mean power spectra of chromosome 21
less mean power spectra of randomised chsome 21 (blue line), Mean power spectra of
chromosome 22 less mean power spectraanflomised chromosome 22 (red line), for
selected structural properties. In each case the y-axis is the difference divided by 10000.
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We note that some parameters, most eviderityi kQroi, Qrwist 3-step shift, show a peak every
three base pairs, as does twist (not showajresponding to the presence of codons, which has
previously been noted in the sequence plots. CddMg represents less than 28bthe content of the
human genome and yet can be found as a peak ia stretural DNA spectra. This is very pleasing,
since it demonstrates that the structural posypactra are capable of finding known features, which
gives a degree of confidence in the relevance of other findings.

Some parameters, such as roll3, closely mirror dfidequence, whilst others have clear peaks in
common with sequence whilst also possessing distinct and interesting peaks. For example minor
groove width has clear peaks at 6.1, 7.9 and 9.8%dpes sequence, but in addition has a major peak
at 10.3 bp , very close to the double helical pitchictviis completely absent from the sequence plot.
This is very close to the peak at 10.2 bp for Afeis 10] which is thought to be important in the
bending of nucleosome-wrapping sequences.

The peaks shown in Figure 2 clearly indicate the-raoxlom organisation of structural features in
the genome, which is different to the non-randomganization of sequence, and which could have
significant implication for understanding the role of non-coding DNA elements.

3.2. Transcription Factor Binding Ste Transforms

We plotted the summed difference spectra of the Spl, p53 and cMyc tfbs from chromosome 21
(Figures 3-5) and chromosome 22 (Figures @8ninst the summed difference spectra of the
randomised subsequences for each of the strugtarameters of Table 1. Each summed difference
spectrum is normalised by dividing by its range; the spext then offset. This means that the heights
of the peaks are not directly comparable — the perpbghe plots is to see the relative positions of
peaks for each transcription factor type. The ke grouped as follows: flexibility force constants
(Figures 3, 6), partition coefficients (Figures/¥and the remaining non-flexibility properties (Figures
5, 8). The original Sp1l difference spectrumchromosome 21 was dominated by the spectrum of a
particular tfbs, number 76 (see the discussion beblovd) so, in the comparison plots of Figures 3-5
this tfbs is omitted from each of the Spl diffiece spectra. Similarly, the Spl spectrum in
chromosome 22 was also dominated byréiqaar tfbs, number 209 (position 49476821 — 49477821),
and the p53 spectrum in chromosome 22 was dominated by spectra 62 (position 49408559 - 4940955¢
and 63 (position 49410481 — 49411481) and so thdmsewikere omitted from the Spl and p53
difference spectra respectively of chromosome 22 (Figures 6, 7, 8).
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Figures 3-5. Comparison between Flexibility For@onstant Difference Spectra, Partition
Coefficient Difference Spectra and Non-flektly Property Difference Spectra of Tfbs in
Chromosome 21.
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Difference spectra of Spl tfbs (red line), p53 fthlack line), cMyc tfbs (green line). In each case
the difference spectrum was calculated fthrnan-overlapping 1,024 bp subsequences, and the
mean obtained. In each case the y-axis is therdifte spectra normalised by its range; Spl tfbs
offset by 2, p53 tfbs offset by 1.

Figure 6-8. Comparison between Flexibility For€onstant Difference Spectra, Partition
Coefficient Difference Spectra and Non-flexibility Property Difference Spectra of Tfbs in
Chromosome 22.
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These six figures provide an overview of the speofréhese set of tfbs. Peaks occur in several
properties for the same set of tfbs, giving someidente that they represent genuine features, rather
than random fluctuations. In order to see commeaks more clearly we have added boxes coloured
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according to peak position for selected positiondptisws: — black — 3 bp; yellow — 5 bp; brown —

11.5 bp; blue — 16.5 bp; grey — 20 bp, purple — 30 bp and magenta — 40 bp. We notice that both
chromosome 21 and 22 show peaks in the sequspesra at 3bp (black boxes) for all three TFs,
indicating the presence of codons in at least sontleeo$equences [Figures 5@md 8(h)]. This is not
surprising since the sequences are all 1001 bp,thatlactual TFBS somewhere within the sequence—

it is very likely that the coding sequence will dep the 1001 bp for some of the tfbs. The coding
peaks also show up in some of the structural progediech as 3-step shift [Figures 5(d) and 8(d)].

In chromosome 21, Spl spectra have peaks &tlB(blue boxes) for most structural properties,
although not for sequence. The same peaks are prfesgrb3 spectra in most cases, but are absent
from the cMyc spectra. Spl and p53 tfbs show softlee same peaks in chromosome 22. Sp1 spectra
in chromosome 21 also have peaks at 20 bp (goxgs) which are not present in the p53 or cMyc
spectra, but which do occur for Spl in chromosome 22 for some spectra (Figures 7, 8).

Several p53 spectra, including sequence and deegebsist flexibility, have a particularly sharp
peak at 5 bp (yellow boxes) which is not apparentany of the other tfbs spectra in either
chromosome. Interestingly, however, the wholeonfosome 21 sequence spectra of Figure 2 has a
similar very sharp peak. p53 spectra have sewghal clear common peaks—we have indicated those
at 11.5 bp with a brown box. These 11.5 bp peatenafo-occur with other sharp peaks (not boxed),
suggesting that they may be related [Figures 3(d) %(c), (e), (f)]. The cMyc spectra seem to have
fewer common peaks. However, many properties l@apeak at about 30 bp (purple box) which are
shared with p53 properties, for example, most of the partition coefficients (Figure 4).

In chromosome 22, Spl spectra have a peak bp4fthagenta boxes). In a few cases this is shared
by the cMyc spectra (Figures 6(g) and 7(b),(Hdwever, in general, there are fewer common peaks
amongst the spectra in chromosome 22, which makes the identification of peaks more difficult.

The fact that some peaks for a particular tfbs are different in the two chromosomes considered
suggests that the structural periodicity represebyeal peak may be due to an interaction between the
structural requirements of the particular tfbs ahgb its chromosomal location. However, the same
structural properties do seem to be importantr{dated by the number and relative intensity of their
peaks), for Spl and p53 tfbs in both chromosomes 21 and 22.

In some cases the power spectra may be domibgtadoarticular tfbs. This is the case for the Spl
3k "roi Spectra in chromosome 21. Figure 9 shows the sumkigg,Bp1l spectra for chromosome 21,
the single spectrum for Spl tfbs 76 @mosome 21 position 43850478 — 43851470) and the summed
Sp1l spectra omitting tfbs 76 (panels (a)-(c), respectivEgarly most of the intensity of the total Spl
spectra [Figure 9(a)] arises from the single specwiitfbs 76 [Figure 9(b)]Without this spectrum,
the summed spectrum [Figure 9(c)] is unremarkdhieestigation of this DNA sequence reveals that it
is highly repetitive and that the downstream seqeeis also repetitive. Thus in this case the
periodicity detected is due to the sequence, rather than any particulanratréesature. Figure 9(d)
shows the occurrence spectrum of the Sp1 Hhswhich is strikingly similar to thek3ro spectrum
although its intensity relative to the occurrence speatthe remaining tfbss less. Thus the summed
occurrence spectra, omitting tfbs 76, still retainticeable peaks, for example the peak at 20 bp
[Figure 9(e)].



Algorithms 2009, 2 462

Figure 9. Comparison of Spl tfbs 7& 3z Spectra with its occurrence spectra. PSD —
power spectral density. (a) Summed'@, spectra for all Sp1 tfbs in chromosome 21; (b)
Spl1 tfbs 76 B*roi spectrum alone; (c) summed SiKL' @, spectra omitting tfbs 76 (d) Sp1
tfbs 76 occurrence spectrum alone; (e) summed Spl occurrence spectra omitting tfbs 76.
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3.3. Finding tfbs Using Power Spectra as Fingerprints

The results of searching for Sp1l tfbs using Spgdrprints in chromosome 21 are given in Table 2.
The best performing structural parameter usingctigne distance is minor groove width which finds
2.4 Spl tfbs on average in the top 1% ofrdmeked list of spectra. Decreasing twist flexibilikyswis,
is clearly next with 1.6, and then two partitioneticcients and roll3 all retrieved approximately 1.4
tfbs. By chance we would expect a retrieval rate).88 tfbs in 1% ofthe chromosomal blocks.
Sequence performs well, retrieving 1.7 tfbs, but is clearly outperformed by minor groove width.
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Table 2. Sp1 tfbs retrieval in chromosome 21.

paramete | Spl | Random | Shuffled | Zscore
r

K Twist 1.60 | 1.16 1.01 2.8

K *rwist 0.85 | 0.61 1.02 -1.2
K Roll 0.90 | 0.71 0.78 0.64
K Rol 0.67 | 0.81 0.83 -1.1
3K “Twist 1.15 | 0.94 0.97 1.1
3K "rwist 1.10 | 0.86 0.67 1.1
3K Roll 1.13 | 0.94 0.94 15
3K’ Roll 1.14 | 0.86 1.09 0.48
Q Twist 1.18 | 0.84 0.66 3.0
Q "wist 0.90 | 0.62 0.87 0.40
Qrol 0.88 | 0.69 0.74 1.1
Q'rol 0.92 | 0.74 0.71 1.0
3Q Twist 0.92 | 0.78 0.99 -0.85
3Q " wist 1.45 | 0.93 0.82 3.6
3Q ol 1.41 | 0.95 0.65 4.8
3Q'rai 1.07 | 0.82 0.61 2.5
twist3 1.25 | 0.86 0.67 2.4
roll3 1.35 | 0.83 0.82 2.6
slide3 1.12 | 0.82 0.80 2.1
shift3 0.79 | 0.68 0.67 1.2
RMSD 0.97 | 0.78 0.79 1.7
groove 240 | 1.16 0.88 5.2
bistability 0.38 | 0.11 0.00 2.1
Sequence 1.67] 1.05 0.67 4.4

All retrieval rates are the mean number of Spl tfbs found amongst the top 1% of the chromosome
blocks. Spl is the retrieval tea obtained using the Spl tfbs spectra. Random is the mean 1%
retrieval rate over 100 runs by 89 chromosome 21 blocks chosen at random. Shuffled is the
retrieval rate obtained using the spectra of théeffled sequences. Zscore is the results of a one-
sided MannWhitney test comparing the Spl and Shuffled retrieval rates.

The next obvious step is to penin data fusion using some combination of parameters, the results
being given in Table 3. As gt be expected, fusing minor groove width and decreasing twist
flexibility gives an improved retrieval rate, to tfs. In contrast, fusing minor groove with and
sequence gives 2.5 tfbs, little improvement over groove width alone, suggesting that minor groove
width is capturing most of the information provided by sequence.

Adding in more parameters gives more improvemerth the best performance being given by the
fusion of groovek s, roll3, sequence and 3Q,s. The performance tails off when further parameters
are fused. Thus using all structural parameters witvidual retrieval rates better than 0.88 gives a an
overall retrieval rate of 1.3 Spl tfbs, which is an improvement upon some individual parameters, but
clearly is not as good as the best single parameté&igure 10 we give the retrieval plots for minor
groove width, decreasing twist flexibility and seqoen(cyan, red and magenta lines respectively),
together with some of the fusion results (blue, blae# green lines). It is clear that fusing parameters
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together both decreases the number of timesféhatfbs are retrieved and increases the maximum
number of tfbs retrieved (to 12 whereas the maximum retrieval for a single parameter is 7).

Table 3. Data fusion retrieval rate. 1% retrievate is the mean nuwar of Sp1l tfbs found
amongst the top 1% of the chromosome blocks.

Parameter combination

1% retrieval rate

groove +K Tyist 3.0

groove +K 1yt + roll3 3.2

groove +K ryist+ roll3 + 3Q" 1yist 3.2

groove +k—Twist+ roll3 + 3Q+Twist +3QR0II 2.9

groove +k—TWiSt+3QRO|| 3.2

groove + sequence 25

K Twist+ Sequence 2.4
groove +K Tyt + Sequence 3.3

groove +K st + rolI3+sequence 3.4

groove +Kk it + roll3+sequence + 3Q3.4

+
Twist

All parameters better then random 1.3

Figure 10. Data fusion retrieval. Single parameters : groove (cyam)is:(red); sequence,

(magenta). Fused parameters: groovk +ist (green); groove K ryist + roll3 (black);
groove +K Tuist + roll3 + 3QTvwist + sequence (blue).

35

30 .. 1

Frequency

10 12

14
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4. Conclusions

In this work we have applied Fourier analysighe structural properties of human chromosomes 21
and 22. By considering a chromosome as a set of units, each 1031 bp (1024 octamers) long, an
summing the power spectra obtained from each weitpbtain an overview of the power spectrum of
an entire chromosome. We showed that, for argisguctural parameter, the structural property
spectra of chromosomes 21 and 22 are strikingly sirgiigure 2). A comparison of structural spectra
with the occurrence spectra (obtained from the sezp)erevealed many common peaks, in particular
that at 3 bp, indicative of the presence of coddigs peak was expected in the occurrence spectra,
and it is pleasing that it is also present in mamycstiral property spectra demonstrating that such
spectra can reveal known DNA characteristics. Hment peaks found at 10.3 bp in all increasing
twist flexibility spectra and also in minogroove width may indicate nucleosome wrapping
propensities. Other peaks at, for example those fauBd4 bp in all decreasing roll flexibility spectra,
need further investigation in order to elucidate potential function(s).

We have also examined the structural power spetttfaree sets of transcription factor binding site
regions in searches for common peaks, both foséime tfbs within different chromosomes and for
different tfbs within the same chromosome (Fegu8 — 8). We found peaks$ 16.5 bp for Spl and p53
tfbs in both chromosomes 21 and 22 for several structural properties, and also some (although fewer
common peaks at 20 bp for the same tfbs. Howdwenre are also clear differences, both between
transcription factors and between chromosomesekample p53 tfbs have a very sharp peak at 5 bp
in chromosome 21 spectra for properties relatethéoability to decrease roll and also in the p53
occurrence spectrum. Although this peak is not presteait in the p53 spectra of chromosome 22, it is
prominent in the entire chromosome 21 occurrence spectrum (Figure 2).

If tfbs have common peaks, which are not preserthe majority of a chromosome, it should be
possible to use them in a similarity search. We tested this premise using Spl tfbs spectra from
chromosome 21. In a similarity search using ttosine distance, mingroove width retrieved on
average three times as many tfbs as would beateg by chance. Fusing several properties, including
minor groove width and occurrence, increased the velriate to four timeshat of chance. Clearly
this retrieval rate would not be acceptable asams of finding tfbs. However there are already very
many TFBS prediction methods, which have vérgh rates of false positive predictions. We
anticipate that structural methods could be used @®pa consensus score, in an attempt to increase
the hit rate for genuine TFBS.

This approach provides a new strategy for seardh@genome data for information. There is clear
experimental evidence that DNA structure plays gooirtant role in determining functional properties
such as protein binding and that DNA structuomtains information that is different from DNA
sequence. Although it is difficult to understand tHatrenship between specific functional properties
and the set of structural parameters in our dawbaur structural fingerpris nevertheless provide a
useful tool for searching for function infortm@n in sequence data. The Fourier power spectrum
fingerprints provide a simple, fastethod for comparing a set of functional sequences, in this case
transcription factor binding site regions, with teguences of whole chromosomes. On its own, the
power spectrum fingerprint does not find all tthbsaichromosome, but the results presented here show
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that in combination with other approaches, tt@shnique will improve the chances of identifying
functional sequences hidden in genomic data.
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