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Abstract 

Under-expanded particle-laden flows resulting in velocities greater than the local speed of sound are a feature of a 
wide number of applications in aviatic, astronautical, and process engineering scenarios including those relating to 
the accidental release of high-pressure fluids from reservoirs or pipelines. Such pipelines are considered to be the 
most likely method for transportation of captured carbon dioxide (CO2) from power plants and other industries prior 
to subsequent storage in carbon capture and storage (CCS) applications. Their safe operation is of paramount 
importance as their contents are likely to be in the region of several thousand tonnes. CO2 poses a number of dangers 
upon release due to its physical properties. It is a colourless and odourless asphyxiant which has a tendency to 
sublimation and solid formation, and is directly toxic if inhaled in air at concentrations around 5%, and likely to be 
fatal at concentrations around 10%. The developments presented in this paper concern the formulation of a multi-
phase homogeneous discharge and dispersion model capable of predicting the near-field fluid dynamic, phase and 
particle behaviour of such CO2 releases, with validation against measurements of laboratory-scale jet releases of CO2 
recently obtained by our group. 
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1. Introduction 

Predicting the correct fluid phase and solid particle behaviour during the discharge process in the near-field of 
sonic carbon dioxide (CO2) jets is of particular importance in assessing the behaviour associated with the hgh 
pressure pipeline transport aspects of carbon capture and storage (CCS) schemes, given the very different physical 
hazard profiles of CO2 in the gaseous and solid states. Recent work [1] has shown high pressure releases of 
supercritical CO2 result in an initial condensation-formed particle diameter distribution centred around 0.1 
micrometers. Agglomeration also occurs along the sonic jet. Recent work by our group [2] has investigated high 
pressure liquid phase releases of CO2, measuring liquid break-up particle size distributions along the jet, in order to 
quantify particle evolution. In the work presented here, we take the measured initial particle size distribution and 
numerically model the particle behaviour with appropriate evolutionary models in order to reproduce the observed 
behaviour. 

Model validations using a composite three-phase equation of state have been undertaken using available 
experimental data described herein. Characteristics of the particle distribution, evolution and movement in the sonic 
jet release have been investigated. Numerical simulations that reproduce the experimentally observed particle 
behaviour downstream of the Mach shock, including turbulence characteristics and level of agglomeration, have 
been performed. We have employed a Reynolds-averaged Navier-Stokes scheme solved in conjunction with an 
adaptive numerical grid, combined with a Lagrangian particle tracker and particle distribution function. A second-
moment Reynolds-stress turbulence closure has been validated for such releases and employed here. The model is 
seeded at the nozzle with the experimentally measured particle distribution and exploited to reproduce the observed 
characteristics of the jet. These simulations and experiments are designed to be representative of a sonic release into 
the atmosphere from a CO2 pipeline and so shed light on how accidental or operational releases from the transport 
aspects of a CCS chain might behave. Suggestions for further developments, refinements for far-field modelling and 
implications for consequence analysis are presented. 

 
Nomenclature 

Roman letters      Greek letters 
D nozzle diameter     α condensed phase mass fraction of β 
E total energy     β total mass fraction of CO2 
f particle distribution function   γ ratio of specific heats 
g acceleration due to gravity    ε dissipation rate of k 
k turbulence kinetic energy    μ fluid viscosity 
m mass      ρ density 
p pressure      τ turbulence stress tensor 
R universal gas constant    ω acentric factor of the species 
r radius 
Re Reynolds number     Subscripts 
S entropy      f fluid 
s source term     i index of dimension 
t  time      p particle 
T temperature     v vapour 
u velocity 
v molar volume 
w molecular weight 
x caretsian dimension 
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2. Equations of fluid flow  

The calculations employed an adaptive finite-volume grid algorithm, the major advantage of which being a great 
reduction in execution times. The model to describe the fluid flow field was cast in an axisymmetric geometry and 
transport equations representing continuity, momentum, mixture fraction, and the total energy per unit volume 
(internal energy plus kinetic energy) were solved. In Cartesian tensor notation, these equations take the form: 

 0i
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t x
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Above, an overbar represents conventional averaging, a tilde Favre averaging, a double prime a fluctuating 
component, and the summation convention is used. These equations were implemented with the inclusion of a 
Reynolds stress model for turbulence [3] with modifications for sonic flows [4]. 

The equation set was also supplemented with an equation of state for CO2, capable of describing equilibria 
between the three states observed in a typical release scenario. The Peng-Robinson equation of state [5] is 
satisfactory for predicting the gas phase properties of CO2, but when compared to that of Span and Wagner [6], it is 
not so for the condensed phase. Furthermore, it is not accurate for gas pressures below the triple point and, in 
common with any single equation, it does not account for the discontinuity in properties at the triple point. In 
particular, there is no latent heat of fusion. Span and Wagner give a formula for the Helmholtz free energy that is 
valid for both the gas and liquid phases above the triple point, but it does not take account of experimental data 
below the triple point, nor does it give the properties of the solid. In addition, the formula is too complicated to be 
used efficiently in a computational fluid dynamics code. A composite equation of state has therefore been 
constructed to determine the phase equilibrium and transport properties for CO2. The inviscid version of this model 
is presented in detail elsewhere [7] and the method reviewed here is now extended for the turbulent closure of the 
fluid equations discussed in the previous section. In this, the gas phase is computed from the Peng-Robinson 
equation of state, and the liquid phase and saturation pressure are calculated from tabulated data generated with the 
Span and Wagner equation of state and the best available source of thermodynamic data for CO2, the Design 
Institute for Physical Properties (DIPPRR) 801 database (http://www.aiche.org/dippr/ or available from the Knovel 
library http://why.knovel.com/). 

Since any computational model of CO2 releases must be able to represent mixtures of air and CO2 in liquid, solid, 
and gas phase, an appropriate methodology is required. An initial step was the implementation of a homogenous 
equilibrium model (HEM), in which all phases are considered to be in dynamic and thermal equilibrium. This can be 
considered accurate in the case of a well mixed system in which any dense-phase particles are sufficiently small. 
The HEM has also been extended to account for the relaxation to dynamic equilibrium by the introduction of a 
source term to the transport equation for the condensed phase fraction. 

3. Numerical method 

Solutions are obtained of the time-dependent, axisymmetric forms of the descriptive equations and the integration 
of the equations performed by a shock-capturing conservative, upwind second-order accurate Godunov numerical 
scheme [8]. The fully-explicit, time-accurate, cell-centred finite-volume Godunov method [9] is a predictor-
corrector procedure, where the predictor stage is spatially first-order, and used to provide an intermediate solution at 
the half time-step. This solution is then subsequently used at the corrector stage for the calculation of second-order 
accurate fluxes that lead to a second-order accurate cell-centred solution. A Harten, Lax, van Leer Riemann solver 
[10] is employed to calculate fluxes at cell boundaries. The numerical scheme employs an unstructured adaptive 
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mesh refinement technique [11] which automatically allows for finer resolution in the regions of strong gradients 
and lower resolutions elsewhere.  

There are many problems in which it is necessary to deal with the interaction of either solid or liquid particles 
with a fluid flow. If the particles are large enough for their velocity to be significantly different from that of the fluid, 
then it is most efficient to integrate the equation of motion for each particle. On the other hand, very small particles 
are likely to move at their terminal velocity, which depends upon the fluid acceleration. In that case the particles are 
best described by a distribution function f(m, r, t) such that fdm is the number density of particles with masses in the 
range m to m + dm. These two descriptions are complementary since, if the particles are large, their number density 
must be small so that a Lagrangian calculation is not too expensive. Furthermore, their inertia is significant, which 
means that the equation for the particle motion is not stiff. Small particles are likely to be very numerous if there is a 
significant mass of particles and the particle equation of motion is stiff due to the small particle mass. A distribution 
function that depends on particle velocity would cover both cases, but would be prohibitively expensive to compute 
in a numerical model. 

3.1. Particle equation of motion 

The physics we use in this model is similar to that discussed by Boyson and Swithenbank [12]. Assuming 
uniform particle density, the particle equation of motion we use is: 
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where the drag coefficient CD is: 
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Here the Reynolds number based on particle diameter is: 
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Unless the particles are very small, we do not expect them to move significantly faster than the fastest fluid, 

which means that is impossible for them to move through more than one grid cell in a time-step. However, for very 
small particles, it is possible for the acceleration timescale to become very short compared with the fluid time-step, 
which means that the particles move at their terminal velocity. An explicit integration of the particle equation of 
motion would then require a very small time-step, which is clearly inefficient. In such cases it is better to assume 
that the particles move at their terminal velocity i.e. to neglect their inertia. One can then obtain an equation that 
relates the particle velocity to the fluid acceleration.  

If we define a relaxation time by: 
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then we can write the equation of motion, Equation (4), in the form: 
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It is convenient to rewrite this in the form: 
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For sufficiently small τd (small particles), we can neglect the inertia term on the left hand side of this equation. We 
also have: 
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and Equation (9) becomes: 
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Since we know the fluid velocity and acceleration and it is possible to define m , this is a linear equation for the 

particle velocity, up. This can not only be used to compute the velocity of individual particles for which the inertia 
can be neglected, but it also makes it possible to write an evolution equation for the particle distribution function. 

3.2. Particle distribution function 

We let f(r,m,t) be the number density of particles with masses in the range m to m + dm at radius r at time t. Then 
f satisfies the equation: 

 

 ( )p f
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  (12) 

 
where sf accounts for particle splitting or coagulation and the change in particle mass is governed by 

 

 ( , , , , )m p f f v
dmm s T m T p
dt
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accounting for evaporation or condensation. Apart from the source term, the above equation is a linear conservation 
term for f in which m  and up are known functions of the fluid state and particle mass. A conservative numerical 
scheme has therefore been constructed in precisely the same way as for the continuity equation for the fluid. 

Evaporation and condensation lead to a transfer of mass and momentum between the particles and the fluid. The 
mass source for the fluid is: 
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where m1 and m2 are the lower and upper mass limits. 
From the equation of motion, Equation (4), the force on the fluid per unit volume is: 
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A turbulent shear agglomeration model dependent on the square root of ε [13]: 
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is used in order to model particle agglomeration along the jet, where ηs is the dimensionless particle to particle 
sticking efficiency, ηe = ηe(r1,r2) is the dimensionless collision efficiency factor and χc is the dimensionless 
collisional shape factor. 

4. Experimental method 

First reported in [2], the experimental work was conducted in a laboratory setting in a large container with a 
separate vent system fitted to ensure safe handling of the CO2. A 20 millilitre (ml) capacity canister of liquid CO2 
was pressurised to 68.9 bar and allowed to equilibrate to ambient temperature for one hour. The canister was then 
clamped into a frame with the nozzle protruding into a custom-made Perspex box (dimensions 50 mm  50 mm  
500 mm), flush with the internal surface of the box. Two custom-made nozzles were used with diameters of 0.5 mm 
and 1.0 mm - the largest usable for the experimental rig. The instrument used for measurement was a Dantec 
fiberflow laser Doppler anemometer (LDA), with a Dantec classic phase Doppler anemometer (PDA) module. The 
data were processed using a Dantec burst spectrum analyser and Dantec BSA flow software. The illumination was 
provided by a Spectra-Physics Stabilite 2017 multi-spectral argon-ion continuous wave laser. The LDA was initiated 
and the measurement volume was located on the centreline of the jet, at a range of distances from the nozzle. Data 
collection was commenced and 10 seconds later a 1/4 turn gas valve was opened to release the CO2 from the canister 
into the Perspex box. Each experiment was released into the atmosphere in the container, mimicking a discharge 
from saturated conditions into a regular atmosphere, although the Perspex box is rapidly filled with CO2.  
Measurements were obtained at 3 (1.0 mm only), 5 (0.5 mm only), 6 (1.0mm only), 10, 20, 30, 50, 100 and 150 
nozzle diameters (D) downstream. 

5. Experimental results 

Previous experimental work [2] has shown that the initial particle distribution post Mach shock in a sonic CO2 
release from high pressure into air is nozzle size-independent and centred on a diameter of 1 to 2 micrometres, in 
agreement with Weber number predictions. Agglomeration has been detected in the sonic CO2 jet release with a 1.0 
mm diameter nozzle, as shown in Figure 1 in greater detail than previously [2], but not with a 0.5 mm diameter 
nozzle. To understand the lack of agglomeration in the 0.5 mm diameter case, our previous work considered the 
velocity measurements for each particle, recorded as part of the Doppler particle size measurements. In Figure 2, we 
show in greater detail the average magnitude of velocity for both the 0.5 mm diameter case (squares) and the 1.0 
mm diameter case (circles). The centreline prediction of the fluid mean velocity is also shown (line). The 
experimentally measured velocities are consistently similar at all distances, but not in agreement with the numerical 
prediction until 50 diameters from the nozzle, indicating the particles are out of equilibrium until 50D from the 
nozzle, at least on the centreline where the measurements were taken. 

Theoretical calculations [2] indicated that for particles with a radius around 10-6 m, the dynamical relaxation time 
in these releases is 3 10-5 s at 200 K and 1.4 10-5 s at 280 K. At the nozzle exit, T ~ 280 K and the velocity is 
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approximately 100 m s-1, so the stopping distance due to viscous drag is 1.4 mm.  For the same particles, thermal 
relaxation times of 2.7 10-3 s at 200 K and 5.7 10-5 s at 280 K were presented. At the nozzle exit with the same 
conditions, the relaxation distance to achieve thermal equilibrium was calculated to be 6.0 mm. 

 

 

Fig. 1. Cumulative particle distributions along the sonic jets for (a) the 0.5 mm diameter nozzle and (b) the 1.0 mm diameter nozzle . 

 

Fig. 2. Measurements of velocity (circles and squares) and predicted velocity along the jet centreline: (a) average magnitude of particle velocities; 
(b) average angle of particle velocity vector as measured from the jet centreline. Error bars indicate the standard deviation of each distribution. 

The Mach shock in these sonic releases is at a distance of around 7 nozzle diameters along the centreline from the 
nozzle. In the case of a full scale CCS transport pipe (where D ~ 0.6 m), the Mach shock is approximately 4.2 m 
from the nozzle and the particles are likely to be reasonably close to equilibrium throughout the expansion and 
follow the flow. The flow accelerates from 100 m s-1 at the nozzle to around 450 m s-1 at the Mach shock over this 
7D distance and it is likely that in full-scale releases, the particles will undergo the full effects of this acceleration. 
However, for these small scale releases, the Mach shock is only 3.5 mm from the 0.5 mm diameter nozzle and 7 mm 
from the 1.0 mm diameter nozzle. In this case the inertial distances stated above are not comparatively negligible 
and the particles therefore neither reach dynamical nor thermal equilibrium. The particles obtain their initial velocity 
through the explosive force of the release and this is what we measure close to the release point. By 50D, the 
experiments indicate they have approached equilibrium with the fluid and have a similar velocity. 

In Figure 2, we show the spread of the angle of the velocity vector as measured away from the jet centreline. The 
average spread angle does not change considerably in the 0.5 mm diameter nozzle case, whilst clearly increases with 
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distance along the jet in the 1.0 mm diameter nozzle case, along with a wider distribution of angles. This indicates 
the particles are moving in a greater range of directions in the flow, influenced by higher levels of turbulence in the 
1.0 mm diameter nozzle jet. 

 

Fig. 3. Numerical predictions. (a) A snapshot of axisymmetric fluid temperature predictions around the release point (z = 0, r ≤ 0.5D), showing 
the near-field Mach shock, streamlines through the shock and particles (squares) flowing through the simulation domain; (b) another snapshot of 
fluid temperature with streamlines and particles (squares), this time showing the jet structure on the larger domain to 100D along the jet axis; (c) 
simulated agglomeration along the jet at 10D and 100D using the turbulent shear agglomeration model [13]; and (d) experimentally measured 
distributions of particle sizes at 10D and 100D in the 1.0 mm diameter nozzle case, showing agglomeration along the jet. 

6. Numerical results 

In Figure 3, we show numerical predictions of the particle behaviour in these small-scale jets obtained using a 
Reynolds stress second-moment closure turbulence model. Panel (a) shows the axisymmetric prediction of the 
temperature in the region from the release point (at z = 0, r <= 0.5D) through the near-field Mach shock. Streamlines 
are indicated by black lines. Particles tracked through the fluid with the Lagrangian particle tracker, move subject to 
appropriate temperature-dependent drag factors. Note that the particles do not exactly follow the streamlines. Panel 
(b) shows the larger domain up to 100D from the nozzle. Beyond 50D, the particles are in accord with the 
streamlines, which would agree with the observations in Figure 2a, where particles reach (velocity) equilibrium with 
the fluid after ~50D. In panel (c) we test whether a turbulent shear agglomeration described earlier [13] is able to 
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represent the agglomeration experimentally observed along the jet (panel (d)). The same distribution characteristics 
are obtained on the same time-scale as it would take for the particles to travel from 10D to 100D along the jet, 
meaning that the turbulent shear agglomeration model is able to reproduce the observed agglomeration along the jet. 

7. Conclusions and future work 

The behaviour of CO2 particles from a high pressure liquid release through small nozzle diameters is predicted 
here with a CFD numerical model, combined with a Reynolds stress turbulence model, Lagrangian particle tracker, 
particle distribution function and turbulent shear agglomeration model for the particle evolution. The understanding 
gained can be directly applied to releases of high pressure liquid CO2 in carbon capture and storage scenarios. 
Comparisons of model predictions with experimental data obtained for small nozzle diameter releases confirm the 
accuracy of the overall numerical modelling approach. We plan to extend the model to supercritical releases 
incorporating further particle evolution models, modelling experimental data [1] and further applying the model to 
cleaning processes involving the rapid expansion of supercritical solutions. 
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