

This is a repository copy of On the role of bile salts in the digestion of emulsified lipids.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/97752/

Version: Accepted Version

Article:

Sarkar, A orcid.org/0000-0003-1742-2122, Ye, A and Singh, H (2016) On the role of bile salts in the digestion of emulsified lipids. Food Hydrocolloids, 60. pp. 77-84. ISSN 0268-005X

https://doi.org/10.1016/j.foodhyd.2016.03.018

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	On the role of bile salts in the digestion of emulsified lipids
2	
3	
4	Anwesha Sarkar ^a , Aiqian Ye ^b , Harjinder Singh ^{b, *}
5	
6	^a Food Colloids and Processing Group, School of Food Science and Nutrition, University of
7	Leeds, Leeds LS2 9JT, UK
8	^b Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442,
9	New Zealand
10	
11	
12	
13	
14	
15	
16 17	*Corresponding author. Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
18	Tel.: +64 6 356 4401; Fax: +64 6 350 5655.
19	E-mail address: H.Singh@massey.ac.nz (H. Singh).

Abstract 20

21 The objective of this study was to understand quantitatively the role that bile salts play in the digestion of emulsified lipids. The behaviours of digestion by pancreatin (1.6 22 23 mg/mL) of sodium-caseinate-stabilized emulsions (0.5 wt% protein) and bile-extract-24 stabilized emulsions (0.2–5 mg/mL) as influenced by the addition of aqueous bile extract 25 were studied under simulated intestinal conditions (37 °C; pH 7.5; 39 mM K₂HPO₄, 150 mM 26 NaCl; with continuous agitation at ~ 150 rev/min for 3 h). The droplet characteristics (size 27 and ζ -potential) of the sodium caseinate- and bile extract-stabilized droplets were evaluated 28 by light scattering techniques. The kinetics of the total fatty acids released by hydrolysis of 29 the emulsified lipids was monitored by the pH-stat method with or without the presence of 30 continuous phase bile extract. The results suggested that the presence of unadsorbed bile 31 extract markedly enhanced the rate and the extent of lipid digestion. This could be attributed 32 to considerable removal of lipolysis products (free fatty acids, mono- and/or di-acylglycerols) 33 in mixed micelles, which are known to inhibit lipid digestion, by the unadsorbed bile salts. 34 This study provides new insights for the lipid digestion of food formulations.

35

Keywords: 36

Bile extract, Emulsion, Lipolysis kinetics, Continuous phase, Interfacial layer, Sodium 37 caseinate

38

39

1. Introduction

42 The rising levels of obesity and overweight populations are some of the most serious 43 global public health challenges and are creating a huge healthcare cost burden. For this 44 reason, there is a need for the development of effective microstructural strategies to delay the 45 digestion of energy-dense lipids, suppressing appetite and thereby reducing subsequent 46 calorie intake. Consequently, understanding the fundamental aspects of the digestion of 47 emulsified lipids under conditions that simulate the human gastrointestinal tract is of paramount importance to gain insights into the physicochemical and biochemical processes in 48 49 the physiological milieu that further bioengineer the initial food structure (Golding, et al., 50 2011; Mackie & Macierzanka, 2010; Sarkar, et al., 2015; Singh & Sarkar, 2011; Singh, Ye, & 51 Horne, 2009). In the last few years, a significant level of understanding on the gastrointestinal 52 structuring of emulsions after consumption, which typically includes different extents and 53 types of droplet flocculation and coalescence, adsorption/desorption of emulsifiers and 54 binding of metabolites, has been gained (Golding, et al., 2011; Hur, Decker, & McClements, 55 2009; Julia Maldonado-Valderrama, et al., 2008; Sarkar, Goh, & Singh, 2009; Sarkar, Goh, 56 Singh, & Singh, 2009; Sarkar, Horne, & Singh, 2010a, 2010b; Torcello-Gomez, Maldonado-57 Valderrama, Martin-Rodriguez, & McClements, 2011).

58 In healthy humans, 70–90% of lipid digestion takes place in the small intestine; it is 59 essentially an interfacial process that involves a complex interplay between lipase/colipase 60 and bile salts. Bile salts are a very peculiar type of biosurfactant that, unlike classical 61 surfactants, do not have a hydrophobic head and a hydrophilic tail group. The facial 62 amphilicity of bile salts originates from the flat steroidal structure, with the polar hydroxyl 63 groups on the concave side and methyl groups on the convex side (Euston, Baird, Campbell, 64 & Kuhns, 2013; Galantini, et al., 2015; J. Maldonado-Valderrama, Muros-Cobos, Holgado-65 Terriza, & Cabrerizo-Vílchez, 2014). Because of their high surface activity, bile salts play a

66 crucial role in lipid digestion by pushing initial adsorbed materials from the interface and 67 permitting lipase/colipase complexes to act on the bile-coated oil droplets. Recent research 68 has focused mainly on bile-salt-mediated displacement studies, in which an understanding of 69 the orogenic mechanism of this displacement (Julia Maldonado-Valderrama, et al., 2008) and 70 the important role of the initial charge (Sarkar, Horne, et al., 2010a) and the type of protein 71 layer (Bellesi, Pizones Ruiz-Henestrosa, & Pilosof, 2014) in determining the kinetics of the 72 sequential adsorption or displacement of the adsorbed layer by intestinal bile salts have been 73 revealed. On the other end, the aggregation and self-assembly behaviour of bile salt solutions 74 and their role in absorption/transport have been well established (Holm, Müllertz, & Mu, 75 2013; Madenci & Egelhaaf, 2010). The aggregation of bile salts in solution is due to 76 hydrophobic interactions and hydrogen bonds between the polar hydroxyl and carboxylate 77 groups (Madenci, et al., 2010). Bile salts are believed to facilitate the solubilisation of lipid 78 digestion products into lamellar phase or mixed micelles. This solubilisation results in the 79 removal of digestion products, such as free fatty acids, mono and diacylglcerols from lipid 80 droplets and accelerates further digestion and absorption of lipidic excipients (Small, Cabral, 81 Cistola, Parks, & Hamilton, 1984). However, there is scant information available on the 82 quantitative role of aqueous (unadsorbed) bile salts in the lipid digestion and subsequent fatty 83 acid release as compared to that of the adsorbed phase.

Therefore, the objective of this study was to compare the kinetics and the degree of fatty acid release from sodium-caseinate-stabilized emulsions and porcine-bile-extractstabilized emulsions and to unravel the role of "free" bile extract in the aqueous phase, using a simple pH-stat-based autotitration technique and theoretical consideration of apparent lipolysis rates. We have introduced the use of porcine bile salts-stabilized emulsions as a relatively new template for understanding digestion of emulsified lipids, to gain some insights into possible role of the presence of bile salts in adsorbed or continuous phase during

91 digestion. Previous studies have generated useful insights into the displacement of protein or 92 phosphatidyl choline-stabilized interface by pure bile salts, such as sodium cholate, sodium 93 deoxycholate, sodium taurcholate, and sodium glycodeoxycholate (Euston, et al., 2013; 94 Wickham, Garrood, Leney, Wilson, & Fillery-Travis, 1998). To our knowledge, this is the 95 first study where we used porcine bile extract to initially stabilize oil droplets and understand 96 their in vitro lipolysis in absence or presence of continuous phase bile salts.

97 As lipid digestion is an interfacial process, the surface area of lipid droplets is 98 expected to have an impact on the binding of lipase and the formation of fatty acids, with 99 smaller droplets resulting in an increased level of fatty acid release and vice versa (Armand, 100 et al., 1992). Hence, we also compared the droplet characteristics of protein-stabilized and 101 bile-extract-stabilized emulsions using light scattering techniques.

- 102
- 103 2.

Materials and methods

104

106

105 2.1. Materials

107 Sodium caseinate (Nacas) was obtained from Fonterra Co-operative Group Ltd, 108 Auckland, New Zealand. Porcine bile extract B8631 and porcine pancreatin (P1750, $4 \times$ 109 USP) were purchased from Sigma-Aldrich Chemical Company (St. Louis, MO, USA). 110 Porcine BE used in this study had a total bile salt content of 49 wt%, of which the majority of 111 the bile acid species were glycodeoxycholic acid (10–15 wt%) followed by taurodeoxycholic 112 acid (3-9 wt%) and deoxycholic acid (0.5-7 wt%) (Zangenberg, Müllertz, Kristensen, & 113 Hovgaard, 2001). The key phospholipid was phosphatidyl choline (6 wt%) and the content of Ca^{2+} was less than 0.06% (w%). Based on the phospholipid/ bile acid ratio, it can be 114 115 suggested that the phospholipid was present as mixed micelles in conjunction with bile salt 116 (Wickham, et al., 1998). Commercial soy oil (refined, bleached and deodorized) was obtained 117 from Davis Trading Company, Palmerston North, New Zealand. All other chemicals were of 118 analytical grade and were obtained from either BDH Chemicals (BDH Ltd, Poole, England) 119 or Sigma-Aldrich Chemical Company unless otherwise specified. Prior to experiments, 120 solutions were freshly prepared using Milli-Q water (water purified by treatment with a Milli-121 Q apparatus; Millipore Corp., Bedford, MA, USA) as the solvent. 122 123 2.2. Preparation of emulsions 124 125 Aqueous solutions of Nacas (0.5 wt%) were prepared by dispersing Nacas in Milli-Q 126 water and stirring gently for at least 2 h at 20 °C to ensure complete dissolution. Similarly, 127 aqueous solutions of bile extract (BE) (0.1, 0.5 and 1.0 wt%) were prepared by dispersing 128 quantities of BE in Milli-Q water and stirring for 3 h at 45 °C until all the BE had dissolved. 129 The pH was adjusted to 7.0 using 1 M NaOH or 1 M HCl. Initially, pre-emulsions were 130 prepared by blending 20.0 wt% soy oil with 80.0 wt% aqueous Nacas solution or BE solution 131 using a conventional high speed mixer (Silverson L4RT, OFI Testing Equipment, Inc., 132 Houston, TX, USA) at 6500 rev/min for 3 min. These coarse emulsions were then passed 133 twice through a mini two-stage valve homogenizer (12.5H, Rannie, Copenhagen, Denmark) 134 operating at 250 bar and 50 bar in the first and second stages respectively. The Nacas and BE 135 emulsions were prepared at least in duplicate. 136 137 2.3. Droplet size determination 138 139 The mean droplet size distribution was monitored by static laser light scattering using 140 a particle analyser (Mastersizer 2000, Malvern Instruments Ltd, Malvern, Worcestershire, 141 UK). The relative refractive index (N) of the emulsion was taken as 1.095, i.e. the ratio of the 142 refractive index of soy oil (1.456) to that of the aqueous phase (1.33). The absorbance value

143 of the emulsion droplets was taken as 0.001. The sizes of emulsion droplets were reported as

144 the surface-weighted mean diameter $d_{3,2}$ (µm) and were calculated using the equation $d_{3,2} = \Sigma n_i d_i^3 / \Sigma n_i d_i^2$, where n_i is the number of particles and d_i is the diameter of emulsion droplets. 146

147	2.4.	ζ -Potential measurements	
148 149		The zeta-potential (ζ -potential) of emulsions was determined by a laser Doppler	
150	velocimetry and phase analysis light scattering (M3-PALS) technique using a Malvern		
151	Zetasizer Nano ZS (ZEN 3600) instrument (Malvern Instruments Ltd). One millilitre of		
152	sample diluted to approximately 0.005 wt% droplet concentration was placed in a folded		
153	capillary cell (Model DTS 1070, Malvern Instruments Ltd). An individual ζ -potential		
154	measurement was calculated from the mean and the standard deviation of at least five		
155	readings from an individual sample.		
156			
157	2.5.	Preparation of simulated intestinal fluid (SIF) and mixing of emulsions with SIF	
158 159		The SIF contained 39 mM K_2 HPO ₄ and 150 mM NaCl and the pH was maintained at	
160	7.5 (Convention, 1995). For in vitro intestinal digestion with SIF, freshly prepared emulsions		
161	were diluted with SIF buffer (without added pancreatin) and water at a ratio of 1:4, which		
162	resulted in a final oil concentration of 4 wt%. Post dilution, the final concentrations of BE in		
163	the BE-stabilized emulsions (0.1, 0.5 and 1.0 wt%) were 0.2, 1 and 2 mg/mL respectively.		
164	The mixture of BE emulsion or Nacas emulsion with SIF was digested by the addition of		
165	pancreatin (1.6 mg/mL) in powdered form in the presence of 0.2, 1, 2 or 5 mg/mL of BE		
166	during digestion. In some experiments involving the digestion of Nacas emulsions, the		
167	aqueous phase bile salts were removed by centrifugation at 48,000 g for 30 min before		
168	addition of the pancreatin. During the digestion of the emulsions, small aliquots were		

169 withdrawn periodically for analysis.

170

171 2.6. Free fatty acid release

172

173 The free fatty acids (FFAs) generated from emulsified lipids during the digestion of 174 the emulsions in SIF were measured by auto-titration. The emulsion–SIF mixture (4 wt% oil) 175 was mixed in a flask in a water bath at 37 °C. The system was then adjusted to pH 7.5 using NaOH or HCl solution, followed by the addition of pancreatin powder (48 mg of powder to 176 177 30 mL of diluted sample). The intestinal digestion was carried out over 3 h while maintaining 178 the pH at 7.5 by the addition of 0.05 M NaOH, using a pH-stat automatic titration unit 179 (TitraLab 856, Radiometer Analytical SAS, Lyon, France), to neutralize the FFAs generated 180 by lipolysis. The volume of 0.05 M NaOH consumed was recorded and calculated as the 181 amount of FFAs hydrolysed from the emulsions.

182 A series of standard oleic acid solutions containing 0-800 µmol of oleic acid was 183 prepared and titrated with 0.05 M NaOH to create a standard curve. Briefly, a stock standard 184 oleic acid solution containing 5.9 mM oleic acid (molecular weight = 282.47 g/mol) was 185 prepared by dissolving oleic acid in methanol that was pre-adjusted to pH 7.5 using 0.05 M 186 NaOH. Different volumes of the stock standard oleic acid solution were then mixed with the 187 pre-adjusted methanol (pH 7.5) and titrated with 0.05 M NaOH to pH 7.5. The amounts of 188 NaOH consumed were plotted as a function of oleic acid concentration to create the standard 189 curve, which was expressed as the molarity of oleic acid (μ M) versus the amount of 0.05 M 190 NaOH consumed (mL). The volume of NaOH consumed was converted to the amount of 191 FFAs (as µM FFAs/mL emulsion) based on the standard curve and was then plotted as a 192 function of the digestion time. The percentage of FFA released was calculated from the 193 number of moles of 0.05 M NaOH required to neutralize the FFA that could be produced 194 from the triacylglycerols if they were all digested (assuming the generation of 2 FFAs per 195 triacylglycerol molecule by the action of lipase action) using Equation 1 (Li & McClements, 196 2010):

$$\% FFA = 100 \times \left(\frac{V_{NaOH} \times M_{NaOH} \times M_{WLipid}}{2 \times W_{Lipid}}\right)$$
(1)

198

200 where, V_{NaOH} is the volume (mL) of sodium hydroxide, M_{NaOH} is the molarity of the 201 sodium hydroxide solution used (0.05 M), MW_{Lipid} is the average molecular weight of soy oil 202 (0.874 kg mol⁻¹, (Ionescu, 2005)) and W_{Lipid} is weight of lipid initially present in the reaction 203 vessel. In many if not most emulsions, the fatty acid released (Φ) gradually increases with 204 time t , potentially attaining the total release (Φmax). The kinetic parameters for the initial 205 FFA release were calculated using Equation (2) (Ye, Cui, Zhu, & Singh, 2013):

206

$$\ln[(\phi_{max} - \phi_t)/\phi_{max} = -kt \tag{2}$$

208

where k is the first-order rate constant for FFA release (s^{-1}) and t is the digestion time (s). The 209 210 other kinetic parameters, i.e. the time at which 50% of the total FFAs were released ($t_{1/2}$, min) 211 and the total FFA level ($\Phi_{\text{max}}, \mu M/mL$), were obtained from the FFA curves (Li, et al., 2010). 212 2.7. Statistical analyses 213 214 The results were statistically analysed by analysis of variance using Minitab 15.1.0 software (Minitab Inc., State College, PA, USA). Differences were considered to be 215 216 significant at $p \le 0.05$. Means and standard deviations of at least five measurements carried 217 out on two freshly prepared emulsions are reported. 218 3. **Results and discussion** 219 220 221 3.1. Droplet characteristics of Nacas and BE emulsions 222 We first discuss the droplet behaviour of the emulsions in the presence of added aqueous BE

- 223 without any added pancreatin. This sets the scene for understanding the impact of BE alone

224 on emulsions stabilized by Nacas or BE without any interference from proteolytic or lipolytic 225 activity. The average droplet sizes and the ζ -potentials of Nacas emulsions in the presence of 226 various levels of aqueous BE are shown in Fig. 1. Initially, the emulsion droplet size of the 227 Nacas emulsion was 0.33 µm and the droplet size distribution was monomodal (data not 228 shown). As shown in Fig. 1, there was no significant change in the droplet diameter on the 229 addition of 0.2–5.0 mg/mL of aqueous BE (p > 0.05). This suggested that BE did not induce 230 any droplet aggregation or coalescence in the Nacas emulsions, which was in line with the 231 behaviour of other milk-protein-stabilized emulsions in the presence of BE (Mun, Decker, & 232 McClements, 2007; Sarkar, Horne, et al., 2010a).

As shown in Fig. 2, the average droplet sizes of emulsions stabilized by BE were smaller than 0.3 μ m. Even at a low concentration of < 0.1 wt%, BE was able to form finely dispersed emulsion droplets that showed no visible droplet aggregation and coalescence. In fact, on subsequent centrifugation and removal of the continuous phase, the droplet sizes of the cream phase of BE emulsion droplets redispersed in Milli-Q water still remained unchanged (p > 0.05), which further highlights that BE is an efficient emulsifier and is capable of adsorbing rapidly and forming stable emulsions (McClements, 2005).

240 As expected, the ζ-potential of the Nacas emulsion was negative at neutral pH (Fig. 241 1); interestingly, the negative charge increased slightly from -26 to -30 mV as a function of 242 an increased concentration of aqueous BE. The overall change in ζ -potential on the addition 243 of BE ($\Delta \zeta = -4 \text{ mV}$) was in line with the results reported by Mun, et al. (2007). This could be 244 attributed to possible displacement of the original Nacas from the interface by some anionic 245 components within the BE, which is unlikely to bind to the anionic Nacas-coated interface, as 246 reported in the previous studies (Euston, et al., 2013; Sarkar, Horne, et al., 2010a). However, 247 it is worth noting that, even in the presence of 5 mg/mL of aqueous BE, the surface charge of the Nacas emulsion droplets did not reach the magnitude of that of the BE-stabilized 248

249 emulsions, with a ζ -potential of > -40 mV (Fig. 2). This suggested that, despite interfacial 250 displacement of the original Nacas by the added BE, there were possibly some remnants of 251 existing adsorbed Nacas at the oil/water interface, thus resulting in a mixed Nacas-BE 252 interface at the droplet surface (Fig. 1). In contrast, a strong electrostatic repulsion between fully BE-coated droplets could be envisaged, with ζ -potential values greater than -45 mV 253 254 (Fig. 2). The ζ -potential values for BE-coated droplets did not change significantly as a 255 function of BE concentration (p > 0.05), which is in line with the droplet size measurements, 256 suggesting that 0.2 mg/mL BE was able to saturate the droplet surface. The ζ -potential of the 257 cream phase of BE-stabilized emulsion droplets that were redispersed in Milli-Q water 258 remained highly negative, which indicated that the unadsorbed BE in the continuous phase 259 did not affect the surface charge significantly (Fig. 2).

260 It is well known that the surface area of lipid droplets affects the rate and the extent of 261 lipid digestion significantly, with smaller emulsion droplets being digested more rapidly 262 owing to the increased surface area for the initial binding of the pancreatic lipase to the 263 emulsified lipid substrate (Armand, et al., 1999; Li, et al., 2010). Our results suggested that 264 the difference (if any) between the kinetics of lipid digestion by pancreatin of Nacas 265 emulsions and BE emulsions in the presence of various levels of aqueous BE would be driven by some factors other than surface area, as the droplet sizes were similar in all cases. 266 267 3.2. Effect of aqueous BE on FFA release during digestion of Nacas emulsions 268 269 Fig. 3A shows the total FFA release from emulsions stabilized by Nacas in the 270 presence of 1.6 mg/mL of pancreatin with or without the addition of BE. In the absence of 271 BE, adsorbed Nacas appeared to restrict hydrolysis of the emulsified lipids by pancreatin and 272 the FFA release was $< 5 \mu$ M/mL (~ 7.9% FFA release, data not shown) over 150 min of digestion. This is in agreement with a previous study that showed that lipase can adsorb to 273 274 oil/water interfaces in the absence and presence of bile salts, but that the rate and the extent of

275 lipid digestion are highly dependent on the presence of bile salts (Gargouri, Julien, Bois,

Verger, & Sarda, 1983). All levels of BE enhanced the rate and the degree of lipid digestion,
compared with the emulsion without the addition of BE.

278 Linear relationships for FFA release with time were obtained using Equation (1) (Fig. 279 3B). In the absence of BE, the rate constant for the emulsion stabilized by Nacas was extremely low $(0.91 \times 10^{-3} \text{ s}^{-1})$. The rate constant showed a fourfold increase in the emulsion 280 281 containing 1 mg/mL of aqueous BE. As the concentration of BE increased, the kinetics of 282 FFA release accelerated, gradually initially (0-0.2 mg/mL) and then more dramatically (1-5)283 mg/mL). In particular, the presence of 5 mg/mL of BE, which is in line with the physiological 284 concentration (Wickham, et al., 1998), led to a marked increase in the FFA release to 22.5 285 μ M/mL, consistent with previous work (Ye, et al., 2013). Release of 22.5 μ M/mL FFA was 286 equivalent to 42.4% FFA release (data not shown), which is in line with the value obtained 287 in a previous study on digestion of protein-stabilized corn oil emulsion using similar pH stat 288 technique (Li, et al., 2010). As expected, the apparent rate constant (k) was almost 15 times higher $(13.1 \times 10^{-3} \text{ s}^{-1})$ in the presence of the physiological concentration of bile salts (5 289 mg/mL) than in the absence of bile salts $(0.91 \times 10^{-3} \text{ s}^{-1})$. The addition of 0.2 mg/mL of 290 291 aqueous BE was not sufficient to incur any change in the rate of FFA release (p > 0.05). The 292 marked increase in the initial rate of lipid digestion in the presence of $\geq 1 \text{ mg/mL}$ of BE (Fig. 293 3B) suggested that BE promoted the action of lipase on the lipid droplets. Interestingly, the presence of aqueous BE had a more prominent influence on the magnitude of Φ_{max} than on k, 294 295 which suggested that BE may have prevented the accumulation of inhibitory lipolysis 296 products (i.e. long fatty acids and monoacylglycerols) on the interface (Porter, Trevaskis, & 297 Charman, 2007; Sek, Porter, Kaukonen, & Charman, 2002), thus further enabling the 298 continuation of lipid digestion. However, it was not clear whether this increase in the

digestion rate was related to the bile salts adsorbed at the droplet surface or to the unadsorbedbile salts.

301 To understand this, the rates of FFA release were studied as a function of digestion 302 time in emulsion systems in which the excess, unadsorbed BE was removed by centrifugation 303 and replaced with Milli-Q water. Fig. 4A shows that both the rate and the extent of lipid 304 digestion decreased dramatically on removal of the continuous phase BE. For instance, $\Phi_{\rm max}$ decreased from 22.5 to 10.7 μ M/mL and t_{1/2} increased from 43 to 55 min when unadsorbed 305 306 BE was removed from emulsions to which 5 mg/mL of BE had been added initially. This 307 suggested that the unadsorbed BE made a significant contribution to the degree of total FFA 308 release, which has not been reported previously. Interestingly, these emulsions containing 309 Nacas and BE mixtures as the adsorbed layers (centrifuged and redispersed in MilliQ water 310 samples), were further treated with aqueous BE. The FFA release was increased to ~ 20 311 μ M/mL within the initial 75 min of hydrolysis on further addition of aqueous BE (5 mg/mL), 312 indicating the importance of the presence of unadsorbed BE (Fig. 4B). To obtain a 313 quantitative understanding, the difference in the extent of fatty acid release ($\Delta \Phi_{\rm max}$) on 314 removal of BE was calculated by the subtraction of FFA release in the centrifuged emulsions 315 dispersed in MilliQ water (Fig. 4A) from the FFA release of the emulsions containing the 316 aqueous phase BE at a particular BE concentration (Fig. 3A). The significant drop in FFA 317 release ($\Delta \Phi_{max}$) upon the removal of unadsorbed BE was markedly linearly correlated with 318 the initial concentration of BE present (Fig. 5). Quantitatively, the FFA levels dropped by 319 55% in the absence of unabsorbed BE at the highest level of initial BE addition (5 mg/mL of 320 BE).

321 It is worth noting that some proteins, such as β-lactoglobulin and bovine serum
322 albumin, undergo a significant increase in proteolytic digestion (both trypsin-mediated and
323 chymotrypsin-mediated digestion) in the presence of bile salts (Gass, Vora, Hofmann, Gray,

324 & Khosla, 2007). It has been suggested that bile acids can accelerate protein digestion, most 325 probably by destabilizing the tertiary structures of dietary proteins, thereby making them 326 more prone to attack by pancreatic endoproteases, such as trypsin and chymotrypsin. In our 327 case, we used pancreatin, which is essentially a mixture of pancreatic lipase, proteases and 328 amylases. As Nacas was used to stabilize the emulsions, it is possible that the unadsorbed BE 329 may have interacted with Nacas and thus resulted in an increase in proteolysis of the 330 interfacial layer. Such a plausible increase in proteolysis and the resulting peptides might 331 simultaneously increase the access of lipase to the hydrophobic lipid core because of easy 332 displacement of the interfacial remnants by bile salts, thus resulting in faster release of FFAs 333 by lipolysis. To investigate further whether or not the contribution of unadsorbed bile salts to 334 lipolysis was linked to a protein-specific mechanism, lipolytic studies with BE-stabilized 335 emulsions were carried out. In this way, the interference of protein was avoided and the roles 336 of adsorbed versus unadsorbed bile salts were revealed.

337

339

338 3.3. Effect of aqueous BE on FFA release during digestion of BE emulsions

340 The lipid digestion kinetics of BE-stabilized emulsions was studied as the release of 341 FFAs in the presence of various concentrations of aqueous BE. Fig. 6 shows the rate and the 342 extent of FFA release when Nacas emulsion (0.5 wt% protein) or a BE emulsion (0.2 mg/mL 343 of BE) was digested with 1.6 mg/mL of pancreatin in the absence of added aqueous BE. 344 Interestingly, both emulsions had similar k (data not shown), Φ_{max} and $t_{1/2}$ values (p > 0.05) 345 with low levels of FFA release of $< 5 \,\mu$ M/mL. This suggested that the presence of 0.2 mg/mL of BE at the droplet surface had similar restrictive effects on both the binding of lipase on to 346 347 the emulsified lipid substrate and the continuing lipolysis to those seen in the Nacas 348 emulsion. Interestingly, BE emulsions that were stabilized by higher concentrations of BE 349 (2–5 mg/mL) had significantly enhanced rates of FFA release (Figs. 7A and 7B). The k

350 values of the BE emulsions were comparable with those of the Nacas emulsions on the 351 addition of equivalent amounts of aqueous BE extract (p > 0.05) (Fig. 3B), which highlighted 352 the influence of aqueous BE on lipolysis, irrespective of the emulsifier type. This suggests 353 that the adsorbed bile salts of 0.2 mg/mL of BE at the surface of droplets had a relatively less influence on the degree and kinetics of lipolysis. One might argue that the emulsion was 354 355 stabilised by the very low concentration of BE (0.2 mg/ml), and thus almost entire quantity of 356 bile salts must have adsorbed on to the oil-water interface, with negligible amounts of 357 aqueous phase BE available, and later appears to be the key driving factor for lipid digestion. 358 However, it should be noted that such enhancement of FFA release in in case of 5mg/mL BE-359 stabilized emulsion may have arisen from the combined effects of the presence of BE in the 360 aqueous phase and/or the adsorbed phase. To investigate this further, the emulsion stabilized 361 by 0.2 mg/mL of BE, which had the slowest and the least FFA release, was treated with 362 increasing concentrations of aqueous BE. It is evident from Figs. 8A and 8B that unadsorbed 363 bile salts played a crucial role in promoting lipid digestion, with the k value increasing to 14.2 $\times 10^{-3}$ s⁻¹ and Φ_{max} increasing to 24 μ M/mL, (~ 45.5% FFA release, data not shown) at 5 364 mg/mL of aqueous BE. Hence, considering the generation of two FFAs and one 365 366 monoacylglycerol per triglyceride molecule during pH stat digestion, our value suggests that the lipid digestion was nearing completion in presence of aqueous 5 mg/mL BE. Previous 367 368 authors have reported that some bile salts adsorb irreversibly while others can desorb to a 369 certain extent following buffer rinsing (Maldonado-Valderrama, Muros-Cobos, Holgado-370 Terriza, Cabrerizo-Vílchez, 2014, Parker, Rigby, Ridout, Gunning, Wilde, 2014). The BE 371 used in our study contains phospholipids, which can also adsorb onto surface and stabilise the 372 emulsion. Hence, in order to understand the individual effect of pure bile salt being adsorbed at oil-water surface, lipid digestion of emulsions stabilized by 0.1 wt% sodium deoxycholate 373 374 (NaDC) was conducted in presence and absence of aqueous BE. The emulsion droplets

375 created with 0.1wt% NaDC were fine, uniformly dispersed (d₃₂ < 0.5 µm) and carried high
376 negative charge. These NaDC-stabilized emulsions also showed similar lipid digestion
377 behaviour (Supplementary information, Figure S1) with limited FFA release in absence of
378 aqueous BE, followed by enhanced FFA release on addition of 5 mg/mL of aqueous BE,
379 when compared to BE -Stabilized emulsions (Figure 8). This further suggests the role of
380 aqueous BE on the degree and rate of lipid digestion.

381 As summarized by Golding & Wooster (2010), the interfacial process of lipolysis 382 involves essentially three key steps: binding of the bile salt-lipase/colipase complex to the 383 oil/water interface, hydrolysis of the emulsified lipid to 2-monoacylglycerols and two FFAs 384 and desorption of these lipolytic products to continue the digestion. Based on the results of 385 this study, we suggest that unadsorbed bile salts contribute more significantly to the first and 386 third steps whereas adsorbed bile salts dominate the second step. Furthermore, it is worth 387 highlighting here that the porcine BE used in this study had a mainly glycodeoxycholic acid 388 followed by taurodeoxycholic acids highlighted in the method section. The presence of a 389 higher proportion of glycodeoxycholic acid than of taurodeoxycholic acid might have 390 promoted solubilization of lipolytic products from the interfacial region into the micellar 391 phase. The contribution to solubilization was more prominent than that to promotion of the 392 bile salt adsorption and the residence time of the colipase/lipase complex by 393 glycodeoxycholic acid; the latter is generally enhanced by the presence of taurodeoxycholic 394 acid residues, as schematically discussed in a previous study (Parker, Rigby, Ridout, 395 Gunning, & Wilde, 2014). Furthermore, at higher bile salt concentrations (5 mg/ mL), the 396 continuous phase would consist of mixed micelles, monomeric bile salt as well as simple 397 micelles of bile salts (Birru, et al., 2014; Wickham, et al., 1998). These mixed micelles of 398 digested bile salts will have a higher capacity for solubilization of lipids and fat digestion 399 products, which are generally inhibitory to lipolysis progress.

4. Conclusions 401

402 The present study showed that the impact of added BE on the kinetics of in vitro lipid 403 digestion in emulsions was largely dependent on its presence in the unadsorbed phase rather 404 than the adsorbed phase. Clearly, the bile salts adsorbed onto the interface had relatively less 405 influence on lipolysis than the presence of bile salts in the aqueous phase. The rate and the 406 extent of lipolysis appeared to be dominated mainly by the presence of aqueous bile salts. 407 This may be attributed to the solubilization and removal of inhibitory digestion products (e.g. 408 FFAs, mono- and/or di-acylglycerols), which may have been accumulated at the interface by 409 the aqueous bile salts. Future work is needed to characterize the hydrolysis products (long 410 chain FFA) generated in the bile-salt stabilized emulsions during digestion by pancreatic 411 lipase in presence and absence of aqueous phase bile extracts using chromatographic 412 techniques. Also, it would be interesting to provide structural information about the mixed 413 micelle formed in the aqueous phase using small angle X-ray scattering. 414

415 References

- 416 Armand, M., Borel, P., Ythier, P., Dutot, G., Melin, C., Senft, M., Lafont, H., & Lairon, D. (1992). Effects of droplet size, triacylglycerol composition, and calcium on the 417 hydrolysis of complex emulsions by pancreatic lipase: an in vitro study. The Journal 418 419 of Nutritional Biochemistry, 3(7), 333-341.
- 420 Armand, M., Pasquier, B., André, M., Borel, P., Senft, M., Peyrot, J., Salducci, J., Portugal, 421 H., Jaussan, V., & Lairon, D. (1999). Digestion and absorption of 2 fat emulsions with 422 different droplet sizes in the human digestive tract. The American Journal of Clinical Nutrition, 70(6), 1096-1106. 423
- 424 Bellesi, F. A., Pizones Ruiz-Henestrosa, V. M., & Pilosof, A. M. R. (2014). Behavior of 425 protein interfacial films upon bile salts addition. Food Hydrocolloids, 36, 115-122.
- 426 Birru, W. A., Warren, D. B., Ibrahim, A., Williams, H. D., Benameur, H., Porter, C. J. H., 427 Chalmers, D. K., & Pouton, C. W. (2014). Digestion of phospholipids after secretion of bile into the duodenum changes the phase behavior of bile components. Molecular 428 429 Pharmaceutics, 11(8), 2825-2834.

- 430 Convention, U. S. P. (1995). Simulated intestinal fluid, US Pharmacopeia. 23.
- Euston, S. R., Baird, W. G., Campbell, L., & Kuhns, M. (2013). Competitive adsorption of
 dihydroxy and trihydroxy bile salts with whey protein and casein in oil-in-water
 emulsions. Biomacromolecules, 14(6), 1850-1858.
- Galantini, L., di Gregorio, M. C., Gubitosi, M., Travaglini, L., Tato, J. V., Jover, A., Meijide,
 F., Soto Tellini, V. H., & Pavel, N. V. (2015). Bile salts and derivatives: Rigid
 unconventional amphiphiles as dispersants, carriers and superstructure building
 blocks. Current Opinion in Colloid & Interface Science, 20(3), 170-182.
- Gargouri, Y., Julien, R., Bois, A. G., Verger, R., & Sarda, L. (1983). Studies on the detergent
 inhibition of pancreatic lipase activity. Journal of Lipid Research, 24(10), 1336-1342.
- 440 Gass, J., Vora, H., Hofmann, A. F., Gray, G. M., & Khosla, C. (2007). Enhancement of 441 dietary protein digestion by conjugated bile acids. Gastroenterology, 133(1), 16-23.
- Golding, M., & Wooster, T. J. (2010). The influence of emulsion structure and stability on
 lipid digestion. Current Opinion in Colloid & Interface Science, 15(1–2), 90-101.
- Golding, M., Wooster, T. J., Day, L., Xu, M., Lundin, L., Keogh, J., & Clifton, P. (2011).
 Impact of gastric structuring on the lipolysis of emulsified lipids. Soft Matter, 7(7),
 3513-3523.
- Holm, R., Müllertz, A., & Mu, H. (2013). Bile salts and their importance for drug absorption.
 International Journal of Pharmaceutics, 453(1), 44-55.
- Hur, S. J., Decker, E. A., & McClements, D. J. (2009). Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion. Food Chemistry, 114(1), 253-262.
- Ionescu, M. (2005). Polyols from renewable resources. In M. Ionescu (Ed.), Chemistry and
 Technology of Polyols for Polyurethanes (pp. 435-470). Shrewsbury, UK: Rapra
 Technology.
- Li, Y., & McClements, D. J. (2010). New mathematical model for interpreting pH-Stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. Journal of Agricultural and Food Chemistry, 58(13), 8085-8092.
- Mackie, A., & Macierzanka, A. (2010). Colloidal aspects of protein digestion. Current
 Opinion in Colloid & Interface Science, 15(1–2), 102-108.

- 460 Madenci, D., & Egelhaaf, S. U. (2010). Self-assembly in aqueous bile salt solutions. Current
 461 Opinion in Colloid & Interface Science, 15(1–2), 109-115.
- Maldonado-Valderrama, J., Muros-Cobos, J. L., Holgado-Terriza, J. A., & CabrerizoVílchez, M. A. (2014). Bile salts at the air-water interface: Adsorption and
 desorption. Colloids and Surfaces B: Biointerfaces, 120, 176-183.
- Maldonado-Valderrama, J., Woodward, N. C., Gunning, A. P., Ridout, M. J., Husband, F. A.,
 Mackie, A. R., Morris, V. J., & Wilde, P. J. (2008). Interfacial characterization of βLactoglobulin networks: Displacement by bile salts. Langmuir, 24(13), 6759-6767.
- 468 McClements, D. J. (2005). Food emulsions: Principles, practice, and techniques. Boca
 469 Raton, US: CRC Press.
- 470 Mun, S., Decker, E. A., & McClements, D. J. (2007). Influence of emulsifier type on in vitro
 471 digestibility of lipid droplets by pancreatic lipase. Food Research International,
 472 40(6), 770-781.
- Parker, R., Rigby, N. M., Ridout, M. J., Gunning, A. P., & Wilde, P. J. (2014). The adsorption-desorption behaviour and structure function relationships of bile salts. Soft Matter, 10(34), 6457-6466.
- 476 Porter, C. J. H., Trevaskis, N. L., & Charman, W. N. (2007). Lipids and lipid-based
 477 formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov,
 478 6(3), 231-248.
- 479 Sarkar, A., Goh, K. K. T., & Singh, H. (2009). Colloidal stability and interactions of milk480 protein-stabilized emulsions in an artificial saliva. Food Hydrocolloids, 23(5), 1270481 1278.
- 482 Sarkar, A., Goh, K. K. T., & Singh, H. (2010). Properties of oil-in-water emulsions stabilized 483 by β-lactoglobulin in simulated gastric fluid as influenced by ionic strength and 484 presence of mucin. Food Hydrocolloids, 24(5), 534-541.
- 485 Sarkar, A., Goh, K. K. T., Singh, R. P., & Singh, H. (2009). Behaviour of an oil-in-water
 486 emulsion stabilized by β-lactoglobulin in an in vitro gastric model. Food
 487 Hydrocolloids, 23(6), 1563-1569.
- 488 Sarkar, A., Horne, D. S., & Singh, H. (2010a). Interactions of milk protein-stabilized oil-in489 water emulsions with bile salts in a simulated upper intestinal model. Food
 490 Hydrocolloids, 24(2–3), 142-151.

- 491 Sarkar, A., Horne, D. S., & Singh, H. (2010b). Pancreatin-induced coalescence of oil-in492 water emulsions in an in vitro duodenal model. International Dairy Journal, 20(9),
 493 589-597.
- 494 Sarkar, A., Juan, J.-M., Kolodziejczyk, E., Acquistapace, S., Donato-Capel, L., & Wooster,
 495 T. J. (2015). Impact of protein gel porosity on the digestion of lipid emulsions.
 496 Journal of Agricultural and Food Chemistry, 63(40), 8829-8837.
- 497 Sek, L., Porter, C. J. H., Kaukonen, A. M., & Charman, W. N. (2002). Evaluation of the in498 vitro digestion profiles of long and medium chain glycerides and the phase behaviour
 499 of their lipolytic products. Journal of Pharmacy and Pharmacology, 54(1), 29-41.
- Singh, H., & Sarkar, A. (2011). Behaviour of protein-stabilised emulsions under various
 physiological conditions. Advances in Colloid and Interface Science, 165(1), 47-57.
- Singh, H., Ye, A., & Horne, D. (2009). Structuring food emulsions in the gastrointestinal
 tract to modify lipid digestion. Progress in Lipid Research, 48(2), 92-100.
- Small, D. M., Cabral, D. J., Cistola, D. P., Parks, J. S., & Hamilton, J. A. (1984). The
 ionization behavior of fatty acids and bile acids in micelles and membranes.
 Hepatology, 4(S2), 77S-79S.

Torcello-Gomez, A., Maldonado-Valderrama, J., Martin-Rodriguez, A., & McClements, D. J.
 (2011). Physicochemical properties and digestibility of emulsified lipids in simulated
 intestinal fluids: influence of interfacial characteristics. Soft Matter, 7(13), 6167-6177.

- Wickham, M., Garrood, M., Leney, J., Wilson, P. D. G., & Fillery-Travis, A. (1998).
 Modification of a phospholipid stabilized emulsion interface by bile salt: effect on pancreatic lipase activity. Journal of Lipid Research, 39(3), 623-632.
- Ye, A., Cui, J., Zhu, X., & Singh, H. (2013). Effect of calcium on the kinetics of free fatty
 acid release during in vitro lipid digestion in model emulsions. Food Chemistry,
 139(1-4), 681-688.
- Zangenberg, N. H., Müllertz, A., Kristensen, H. G., & Hovgaard, L. (2001). A dynamic in vitro lipolysis model: I. Controlling the rate of lipolysis by continuous addition of calcium. European Journal of Pharmaceutical Sciences, 14(2), 115-122.
- 519

Figure 3

Figure 4

Figure 7

Figure 8

Figure S1.