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ABSTRACT

The leaching behaviour and physico-chemical properties of cementitious nuclear waste forms containing caesium and
strontium waste simulants has been investigated. The cement wasteform consisted of a 9:1 blend of blast furnace slag
and ordinary Portland cement. Both non-loaded samples and samples that were waste loaded with 3wt% caesium and
strontium added as nitrates have been studied. The cement hydration phases in the samples were identified and the
porosity and microstructure analysed prior to leaching. The samples were leached for up to 6 months and the leached
elements quantified. In the waste loaded cements portlandite was not formed and the monosulphate AF, phase
appeared to be altered by the incorporation of the Sr(NOs).. Incorporation of Cs and Sr also resulted in the increase in
the leach rate of Ca®".

KEYWORDS: Cement; Waste Encapsulation; Leaching; Caesium; Strontium; Monosulphate

1. INTRODUCTION

The radioactive isotopes caesium-137 and strontium-90 are fission products of uranium and plutonium that
may be found in intermediate level waste (ILW) [1]. These isotopes are hazardous if released into the
environment and should be immobilised in an appropriate matrix. In the UK cement wasteforms are currently
preferred for ILW [1], with the most commonly used matrix being ordinary Portland cement (OPC) blended
with blast furnace slag (BFS). These wasteforms, contained in stainless steel drums, are stored for an
appropriate time to reduce the amount of isotopes such as ¥'Cs and Psr [1]. However, the highly mobile
nature of these elements can cause significant concern if they are released into the environment. This could
happen if there was early failure of the stainless steel drums during the storage period, or after their disposal
in an underground repository, where eventually the wasteform will come into contact with groundwater.
Therefore it is important to understand the behaviour of Cs and Sr in the wasteform, what phases are likely to
be present in relation to these radionuclides, and how they behave under leaching conditions.

It has been reported that both Cs and Sr interact with calcium silicate hydrate (C-S-H) gel [2]. The Cs in OPC
cements appears to be mainly sorbed onto the C-S-H gel or to remain in the pore solution [2-4] whereas Sr is
thought to be retained in only the C-S-H gel [5,6,7], with the Sr** ions substituting for the Ca®"ions:

Ca-C-S-H (s) + Sr** (aq) < Sr-C-S-H (s) + Ca®" (aq) (1

However, Atkins and Glasser [8] state that although a small amount of Sr is immobilised in C-S-H, the
majority of the substitution occurs in the calcium aluminate (sulphate) hydrates, with significant substitution of
Sr into ettringite (AFt phase). Therefore further research is required to understand the way in which the Cs
and Sr are retained in the wasteform because this will govern their rates of dissolution and may impact the
dissolution of other elements in the cement matrix.
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The paper describes an investigation into the leaching behaviour of model cementitious nuclear wasteforms
containing Cs and Sr. Excess amounts of Cs and Sr were incorporated in a 9:1 blend of blast furnace slag
(BFS) and OPC cement. The leaching behaviour of these elements, as well as their effects on the cement
phases and microstructure, were studied.

2. EXPERIMENTAL
2.1 Sample Preparation

Cement samples shown in (table 1) were prepared using OPC and BFS (table 2). The OPC was sourced
from Castle Cement, UK, with a fineness of 352m2/kg Blaine and the BFS was sourced from Redcar
Steelworks, Teeside, UK in ground granulated form to a fineness of 286m2/kg Blaine. As waste simulants,
CsNOj; (Acros Organics, UK, purity 99.99%) and Sr(NO3), (BDH Chemicals, UK, purity 99.99%) were added
to the cement matrices.

The blank sample (labelled B) was prepared by firstly weighing the distilled water on a Toledo Delta Range
PG 4002-5 electronic balance and pouring into the bowl of a Kenwood mixer. The designated amount of BFS
was added followed by the OPC to avoid any hydration of the OPC before mixing with the BFS. The water to
solid (W/S) ratio used was 0.37 as this is widely used in the UK nuclear industry [1]. The water and cement
were mixed for approximately 7 minutes on mixer setting 1, until a homogenous cement paste was formed.
This paste was then poured into 45 ml centrifuge tubes, which were then sealed and placed in a vortex mixer
to remove any air bubbles within the paste. In the samples containing either Cs or Sr or both (labelled C, S
and CS respectively), the CsNO3; and/or the SrNO; was added to the water prior to the BFS and OPC and
mixed using the Kenwood mixer on speed setting 1 until completely dissolved to ensure homogenous
distribution of the waste simulants throughout the cement. The rest of the mixing procedure was the same as
for sample B. All samples were cured for 42 days in an environmental chamber at 20°C and 95% relative
humidity.

Table 1: Cement formulations

Sample Cement matrix (g) Waste simulant (g) Total (g)
oPC BFS H,0 CsNO; Sr(NO3),
Blank (B) 80 720 296 - - 1096
3wt% Cs and 3wt% Sr (CS) 80 720 296 54.6* 90.6* 1241.2
3wt% Cs (C) 80 720 296 49.8* - 1145.8
3wt% Sr (S) 80 720 296 - 89.9* 1206.3

* The amount of waste simulants were calculated to provide 3 wt% of elemental Cs and/or Sr with respect to the

total weight of the mix (OPC + BFS + water + nitrates).

Table 2: Oxide weight percentage present in OPC and BFS



O Jo Ul b WN

OO UG UTGTUTUTOTOTUTOT R B BB BB DD DDWWWWWWWWWWNNNNNNDNNNN R e
GRWONRFRPOOVWOJIdNNEWNROWOW®®JIANUTAWNRFROWO®O®JdNUTEWNROWOW®-JANURWNROW®O-1I0UAWNR O W

Oxides Percentage in OPC Percentage in BFS
(wt%) (Wt%)
Ca0O 64.58 421
SiO2 20.96 345
Al203 5.24 13.74
Fe203 2.61 0.97
MgO 2.09 7.29
SOs 2.46 -
K20 0.59 0.49
Naz0 0.28 0.22
Chloride 0.048 0.022
Insolubles 0.27 -

2.2 Sample Characterisation

Prior to leaching, a sample from each formulation was characterised using X-ray diffraction (XRD), thermo-
gravimetric analysis (TGA), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP).
For XRD the samples were crushed, hydration was arrested in acetone for 7 days and dried during the
preparation for analysis. A small amount of the crushed samples was ground using a pestle and mortar and
sieved to <63 ym. A Siemens D500 diffractometer was used with CuK, radiation (30kV and 40mA). A
scanning speed of 1°/min between 5° and 60° 20 was used with a step size of 0.02°. For TGA some of the
powder was weighed to 40 — 60 + 0.1 mg, placed in an alumina crucible and heated at a rate of 10°C/minute
from 25°C to 900°C in an N, atmosphere.

A cross-section was cut from sample CS for SEM, mounted in epoxy resin and successively ground using
120, 400, 800 and 1200 grit SiC papers, diamond polished using 6, 3, 1 and 4 microns and finally polished
using 0.05 Micron Buehler Master Prep Polishing Suspension on a Kement 300 manual polisher. The
polished surface was carbon coated using an Edwards ‘speedivac’ carbon coating unit and examined using
an FEI Inspect F SEM in backscattered imaging mode. Energy dispersive spectroscopy (EDS, EDAX
Genesis) was used for phase analysis and elemental mapping.

The remaining crushed samples B and CS were used to analyse the pore structure by MIP. Each specimen
was immersed in acetone at 20°C for 30 minutes under reduced pressure (20°C, 2.33x10° Pa), and D-drying
(6.666><10'2 Pa) for MIP was carried out for 24 hours prior to analysis. The pressure range was set from 0.14-
228 MPa to estimate the pore size distribution from diameter of 0.0065 to 10um.

2.3 Leaching Test

After curing samples B and CS were cut into 15mm long and 27mm diameter cylinders. The cylinders were
placed in epoxy resin leaving one surface exposed with a surface area of 573 mm?Z. Each cylinder was placed
in a polypropylene container filled with deionised water (18.3 MQ cm), collected from a Millipore Direct QUV 3
water deioniser at 25°C. The water was weighed using a microbalance to 238.44g; this amount was used for
each sample to obtain a surface area to water volume ratio of 2.4 based on the procedure of Saito et al. [2].

The leaching tests were conducted for 7, 14, 28 days, 3 months and 6 months. The water was replaced after
2,4,6, 8,15, 22, 29, 39 days and then every 10 days until 179 days, again based on the procedure of Saito

3
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et al [2]. During each water replacement, 100ml of the leachate was saved, accumulated and mixed for each
leaching period. Once each leaching period was completed 20ml of the accumulated leachate was acidified
and analysed using inductively coupled plasma — mass spectroscopy (ICP-MS).

3. RESULTS
3.1. X-RAY DIFFRACTION (XRD)

XRD patterns of the unleached samples for each formulation are shown in Fig. 1. The “0D” in the sample
notation represents 0 days leaching. The trace for the blank cement sample without waste simulants (sample
B) shows the formation of calcium silicate hydrate (C-S-H), portlandite (CH), hydrotalcite (Hc) and
monosulphoaluminate (AFm) as expected from the literature [1,3,4,8] in addition to the gehlenite (G)
contained in the original BFS.

When CsNO; was added to the matrix (sample C) no peaks for CH and Hc could be seen although the other
phases present in in sample B were still observed. In addition extra peaks associated with CsNO; can be
seen suggesting that some of the Cs has not been incorporated into the cement phases. Introduction of
Sr(NO;), into the system (sample S) also resulted in a different phase assemblage. Peaks for CH and AFm
were absent, and peaks for calcium alumino-nitrate (AFy,) were observed. A mixture of these changes in
the phase assemblage was observed when CsNO; and Sr(NOj3), were both present (sample CS). CH and
AFm were absent, and extra peaks for CsNO; and AFy ) were observed.

3.2 THERMOGRAVIMETRIC ANALYSIS (TGA)

Figure 2a shows the thermogravimetry (TG) and differential thermogravimetry (DTG) curves for samples B
and CS. The majority of the weight loss in sample B was due to C-S-H and monosulphate (AFm) phases,
with the rest of the weight loss, in principle attributable to hydrotalcite (Hc), portlandite (CH), although the
XRD results suggest that only small amounts of CH are present or that it is poorly crystalline. A small weight
loss associated with calcium carbonate (CaCOj3;) was also observed; carbonation probably occurred as a
result of the ground TGA sample coming into contact with air. The majority of the weight loss in sample CS
was due to C-S-H, the AFyn) phase and CsNO3. Because of the overlap in the weight loss associated with
these phases, it is not possible to estimate the total weight loss due to each phase. The TG and DTG profiles
for sample C shown in Fig. 2b were very similar to those for sample B (Fig. 2a) except for a small weight loss
at 550-600°C attributed to CsNO3 decomposition [8]. The profiles also show a weight loss attributable to CH,
however no peaks were observed in the XRD trace for this phase suggesting that the amount is small, or that
it is poorly crystalline.

The curves for sample S were similar to those for sample CS, showing that the maijority of the weight loss
was due to C-S-H and the AFy, phases. Decomposition of Sr(NO3),, which should appear at 645 °C [9],
was not observed. This suggests that Sr was incorporated into the cement phases.

3.3 SCANNING ELECTRON MICROSCOPY (SEM)

A backscattered electron image of sample CS is shown in Fig 3a along with X-ray dot maps of the area
highlighted by the dotted line. As shown in Fig. 3b, the EDS spectra of this area shows that Sr and Cs are
present. The dot-maps show that both Cs and Sr have localised distributions within the cement matrix. Cs
seems to be concentrated in a small area whereas Sr is slightly more dispersed. This may suggest that Cs
has not been incorporated into a cement phase whereas Sr has been.

3.4 MERCURY INTRUSION POROSIMETRY (MIP)

Figure 4 shows the pore volume distribution for samples B and CS based on the MIP results. Sample 0DB
has a larger volume of pores with a diameter of >1 uym than the sample 0DCS, which may be related to the

4
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formulation of the sample. Pores of this size are regarded as extrinsic and are generally attributed to
formulation and processing [10]. The significant majority of pores present within sample B have an average
diameter of around 0.1 um; these are known as meso-pores and arise when hydration products such as CH
and AFm grow within cavities and subdivide the larger pores within the cement structure [10].

The total porosity was 0.064 ml/g for the 0DB sample and 0.096 ml/g for the ODCS. In the ODCS sample a
significant volume of pores have diameters of around 0.01 um. These micro-pores are considered to be an
intrinsic feature attributed to the C-S-H gel [10], which coincides with the increased amount of C-S-H
observed in the TGA results. The larger amount of C-S-H could also explain why there is a negligible volume
of pores with diameter >1 ym in the sample CS as the C-S-H gel may have filled this space [11].

3.5 INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP-MS)

The amounts of Ca, Ca and Sr in leached into water for samples B and CS were analysed. The normalised
leaching rates, NR;, were calculated using

NR, = M, 4)
m, At

S

where M,. is the average amount of element i in leachate (mg); my is the elemental mass fraction of element i

in the cement; A; is the surface area of cement exposed to solution (cmz) and t is the leaching interval (days).
Fig. 5a shows that Ca leached from sample CS at a significantly higher rate than from sample B. Both rates
decreased with time and became nearly constant at around 3 months. Fig. 5b shows that the leaching rate of
Cs was almost three times that of Sr. It is also clear that these elements leach out at a significantly higher
rate than Ca from the same sample.

4. DISCUSSION
4.1 Incorporation of Cs and Sr

The results show that the introduction of CsNO3 and/or Sr(NO); have different impacts on the cement phases
formed in the system. XRD and SEM indicates that the majority of the CsNOs;was not associated with any
other phases. However introduction of Sr(NO3), led to the absence of the portlandite phase Ca(OH), and the
formation of AFyn, instead of AFm. It is considered that Sr(NO3), was incorporated in AFm phase to form

AF - According to Park et al. [12], the nitrate anions can substitute for the sulphate anions in AFm to form

AFnn- Balonis [13] also suggests that the calcium aluminohydrate phases can incorporate various anions
into an anion site and can be described by the following general formulae: 3Ca0.Al,0; CaX.nH,O and

3Ca0.Al,03 CaZ,.nH,0 where X = SO42' and Z= NOj'. It seems likely that Sr can substitute for the Ca in

CaZ, within such a phase and this is currently being investigated.

The weight loss due to the AFy, phase in CS (Fig 2a) is larger than the weight loss due to the AF,, phase in
B. This could be explained by the formation of a more significant amount of AF,,in sample CS than AF,in
sample B. This could also explain the absence of portlandite in the CS samples; in order to produce more
AFyn) more Ca would be required and therefore less is available to form the portlandite phase.

4.2 Leaching Behaviour of Ca, Cs and Sr from Sample CS

The more porous nature of the sample resulting from the incorporation of Cs and Sr may be one reason for
the significantly higher leaching rates compared with sample B, as more surface area is in contact with the

5
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leachate solution. The high leaching rate of Cs could also be due to its presence in the sample as clustered
CsNOj;. The leaching of Sr might increase the leaching rate of Ca from sample CS as compared to sample B;
leaching of Sr incorporated in AFy ) could result in an increase in Ca dissolution from the same phase.

It is important to note that CH was not formed in the waste loaded sample CS due to the introduction of the
waste simulants, which could also influence the leaching behaviour of the material. It has been reported that
when OPC is leached in water, initially CH diffuses into the leachate to replenish the Ca® ions removed from
the pore solution, and only when the CH has been leached does leaching of the C-S-H begin [7]. This is due
to the chemical equilibrium between the two main hydrate phases in the cement and their component ions in
the pore water:

Ca(OH)2 & Ca* +20H" (2)

C-S-H & Ca* +20H™ + SiO, (3)

Because of the lack of CH in sample CS, leaching of CSH most likely occurred from the start of leaching.

The leaching rate of Ca significantly decreases between 7 and 28 days. Usually as leaching progresses, the
the solubility limit of Ca is approached slowing down the leaching rate. However in these experiments the
water was regularly replaced and thus the concentration of Ca in solution varied up and down. Thus the
decreasing Ca leach rate for sample B could be because CH from the top layer has fully leached out. CH
leaching from deeper within the cement bulk sample travels through longer pathways, thus decreasing the
leaching rate.

A similar decrease in the leaching rate of Sr was also observed. This is in agreement with Crawford et al. [14]
who stated that when Sr** present in the cement surface is completely leached out into solution, ions from
deeper within the cement sample diffuse into the solution in order to maintain the equilibrium. This means the
ions take longer to reach the solution and thus slowing the rate of leaching. Shrivastava et al. [15] described
this as the surface wash-off process. A similar phenomenon is likely to be the reason for the decrease in Cs
leach rate by around 70% after the first 7 days.

The leaching rates of Cs and Sr are compared with those of Ca in Fig 6. For congruent leaching, all the data
should fall on a straight line with a gradient of 1. Fig.6 does not show this behaviour and therefore
incongruent leaching is occurring, with Cs leaching more readily than Sr, which leaches more readily than Ca.
This is compatible with Cs not being bonded into any of the cement phases. It may also indicate that Sr
bearing AF ) is more readily leached than other phases, however further research is needed to determine
this.

5. CONCLUSION

CsNOj; and Sr(NO3), behave differently when introduced into an OPC:BFS matrix. CsNOj is thought not to be
immobilised, and reforms during the hydration reactions within the cement, thus not impacting the crystalline
phases formed. As a result the diffusion rates of Cs are significantly higher than any of the other elements
within the cement.

Sr(NO3), is not reformed during the hydration reaction and alters the phases formed within the cement.
Portlandite is absent and a nitrated AF,, phase is formed. The leaching rates of Sr are significantly lower than
Cs suggesting better immobilisation within the cement.
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Figure captions

Figure 1: XRD trace for samples of each formulation before leaching (0D = 0 Days of leaching)

Figure 2: (a) TGA & DTG curves for CS and B before leaching (b) TG & DTG curves for C and S before
leaching
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Figure 3: SEM results on CS sample before leaching (a) back scattered electron image with X-ray dot maps
of the area highlighted by the dotted line and (b) EDS trace from a point within highlighted region

Figure 4: MIP results for B and CS before leaching

Figure 5: Normalised leaching rates over 6 months (a) Ca from sample B and CS (b) Cs and Sr from sample
CS

Figure 6: Leaching rates of Cs and Sr with respect to the Ca leaching rates within the CS sample
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Figure 4: MIP results for B and CS before leaching
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Figure 5: Normalised leaching rates over 6 months (a) Ca from sample B and CS (b) Cs and Sr from sample
Cs
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Figure 6: Leaching rates of Cs and Sr with respect to the Ca leaching rates within the CS sample



