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Travelling and standing waves in 
magnetoconvectiont 

B Y  1'. C. MATTHEWS A N D  A. M. R U C K L I D G E  

Department of Applied Mathematics wnd Theoretical Physics, University of 

Cambridge, Cambridge CB3 9EW, U.K. 

The problem of Boussinesq magnetoconvection with periodic boundary conditions is 
studied using standard perturbation techniques. It is fbund that either travelling 
waves or standing waves can be stable a t  the onset of oscillatory convection, 
depending on the parameters of the problem. When travelling waves occur, a steady 
shearing flow is present that is quadratic in the amplitude of the convective flow. The 
weakly nonlinear predictions are confirmed by comparison with numerical solutions 
of the full partial differential equations a t  Rayleigh numbers 10% above critical. 
Modulated waves (through which stability is transferred between travelling and 
standing waves) are found near the boundary between the regions in parameter space 
where travelling waves and standing waves are preferred. 

1. Introduction 

This work is concerned with convection that is constrained by a vertical magnetic 
field, motivated by a desire to understand the form of convection in sunspots, where 
the inhibiting effect of the vertical magnetic field on convection is responsible for the 
dark appearance of the spot. Magnetoconvection is oscillatory a t  onset if the 
magnetic diffusivity is small and the magnetic field strength is large. Much previous 
work on magnetoconvection has concentrated on the case with sidewalls (Z,, or 
reflecting, boundary conditions), which allows only standing wave (sw) oscillations 
(Weiss 1981 a,  b ;  linobloch & I'roctor 1981 ; Knobloch et a1. 1981 ; Proctor & Weiss 
1982). However, periodic (O(2)) boundary conditions are more appropriate than fixed 
sidewalls when modelling convection in an infinite layer. With periodic boundary 
conditions, travelling waves (TW) are also possible (Ruelle 1973). The question of 
whether standing or travelling waves are preferred at  onset has not been fully 
addressed; the aim of the present work is to provide a full investigation of the 
stability of standing and travelling waves near the onset of convection in a vertical 
magnetic field, over a wide range of parameter values. Tn addition to the analytical 
approach of finding the coefficients in the amplitude equations, we give the results 
of rlumerical solutions of the partial differential equations (PDES). This is useful as a 
check on the analytical results and also illustrates the transitions to modulated 
waves (MW) that can occur as the amplitude of convection increases. 

Weakly nonlinear theory must be used to resolve which of standing or travelling 
waves will occur at  the onset of convection. If' the frequency of the oscillation is 
small, it is known that either standing waves or travelling waves may be preferred 

t This paper was accepted as a rapid communication. 
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depending on the values of the parameters (Ilangellnayr & Knobloch 1986), but the 
general case has not been fully investigated. The relevant coefficients were calculated 
by 13. linobloch (unpublished results) and also by Nagata (1981i), but there is an 
error in the printed form of the coefficients and Nagata did not explore the 
consequences of his results. Proctor (1986) found that travelling waves are always 
preferred in the limit of large magnetic fields; however, his scaling is not appropriate 
for the problem considered here, and indeed we obtain a different result. 
Magnetoconvection with periodic boundary conditions in a compressible fluid has 
been studied numerically by Hurlburt et al. (1989). This work found that standing 
waves are stable when the magnetic field is weak, but travelling waves become stable 
fbr stronger fields. 

The stability of standing arid travelling waves has beer1 analysed in other double- 
diffusive systems. For convection of a binary fluid mixture in a porous medium, 
travelling waves are preferred a t  onset (linobloch 1981ia). This is also the case for 
ther~nosolutal convection (Ueane et al. 1987), although here the analysis needs to be 
carried to higher order as one of the cubic terms in the amplitude equation is zero. 
When convection is constrained by rotation about a vertical axis, either travelling 
or standing waves may be stable, depending on the Prandtl number and the rate of 
rotation (Knobloch & Silber 1990). The case of a horizontal field has been analysed 
by Nnobloch (1986b), who fbund that if the frequency of the oscillation is small, 
travelling waves are preferred. 

We describe the model under consideration in $ 2  and derive the amplitude 
equations in $3.  In  $4, we interpret the coefficients computed in $ 3  and compare our 
results with numerical solutions of the 1.~11:s and with other work. 

2.  Equations 

The model under consideration is a Boussinesq fluid of density p with thermal 
diffusivity K ,  kinenlatic viscosity v ,  magnetic diffusivity 7 and expansion coefficient 
a. The fluid is confined to a layer of depth d across which there is a temperature 
difference AT; the layer is permeated by a vertical magnetic field of strength 13,. The 
system is assumed to be periodic in the horizontal direction (with spatial period 
2ndllc) and the upper and lower boundaries are assumed stress-free, with fixed 
temperature and vertical magnetic field. The flow is assumed to be two-dimensional, 
with x and x the horizontal and vertical coordinates. 

The dimensionless equations for the strea~n-function ~, the temperature 
perturbation H and the flux function perturbation A are (Knobloch et al. 1981) 

where a = V / K  and 5 = , u / / ~  are Prandtl numbers and 
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The Rayleigh and Chandrasekhar numbers R and & are 

which measure the destabilizing efiect of'the temperature gradient and the stabilizing 
effect of'the magnetic field respectively. Lengths are scaled by the depth of the layer, 
and time is scaled by the thermal difiusion time d 2 / ~ .  It is well known (Chandrasekhar 
1961) that the static state undergoes a Hopf bifurcation a t  a critical Rayleigh 
number R(") (defined below) provided that 5 < 1 and & is sufficiently large. With 
periodic boundary conditions in 2, the Hopf' bifurcation may lead to either a 
travelling or a standing wave. 

3. Weakly nonlinear analysis 

To study the weakly nonlinear behaviour of the system near the onset of 
oscillatory convection, a small parameter s is introduced, defined by R = A(") + t2R2 ; 
the variables Ilr, H and A are expanded in powers of t as y? = t+, + s2q+, + . . . , and so 
on (see fbr example, Knobloch et al. 1981). These expansions are substituted into the 
PDES (1)-(3), which are arranged in powers of t.. 

At first order in t. the equations are linear and have general solutions of the fbrm : 

Ilrl = Re ($lLe 
i(ot+lcx) + t+hlR ei(wt-lcx)) sin nz, 

(5) 

where $,, and $,,, are the amplitudes of left-going and right-going travelling waves 

respectively; these amplitudes vary on a slow timescale T = t2t. A standing wave is 
represented by $,, = +,,,. At the Hopf bifurcation, the frequency of the oscillation 
is w. Similar expressions can be written for 0, and A,, with the exception that the x 
dependence of A, is cosnz. Substituting these expressions into the governing 
equations (1)-(3) gives the homogeneous linear system 

( - iwa2 - aa4) t+hlr, = aR(0)ik81,, + a<Qna2AlL. 

(iw +a2) 8,, = ik$,,, 

(iw + Ca2)A1, = 7~Ilr,r,, 

where a2 = n2 + k2. This linear system has a non-zero solution only if' its determinant 
is zero. Equating the real and imaginary parts of'the determinant to zero gives two 
equations from which R(") and o) can be found in terms of Q, Ic, c and <: 

The equations fbr the functions representing a right-going wave are identical to 
(6-(8) but with a sign change in E. 

At second order, the nonlinear interactions of the first-order terms generate the 
following forms for the second-order functions : 

+, = Ilr,, sin 2nx, (11) 

0, = (O,, + Re (O,,, eZiwt)) sin 2nx, (12) 

A, = Re (A,, cos 2nx+A2,, e2i(wtflcx) + A  ,, ,, e2i(wt -kx) 20 ). (13) +A e2iLx 
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?'he seven second-order coefficients can be expressed as combinations of' products of 
the first-order coefficients. The second-order stream-function represents a steady 
shear flow, and is proportional to 1 $ , L 1 2 - l $ 1 R 1 2 ;  hence the shear flow is present for 
a travelling wave but not for a standing wave. This shearing flow is responsible for 
the triangular appearance of travelling waves apparent in numerical simulations 
(Hurlburt et al. 1989), and is directed in the same sense that the wave is travelling 
at  the centre of'the layer, but in the opposite sense a t  the top and bottom of the layer. 
The $,, term is not present a t  this order in convection in a binary fluid mixture 
(Knobloch 1986a) or thermosolutal convection (1)eane et al. 1987). However, it does 
appear in convection in a rotating layer (Knobloch & Silber 1990), for which the 
equations are very similar to those considered here (essentially the only difference is 
the presence of a linear Coriolis force instead of the nonlinear Lorentz force). 

At third order in s,  the nonlinear interactions generate terms that are cubic in the 
first-order amplitudes. The slow-time derivatives of these amplitudes and terms 
proportional to the bifurcation parameter R, also appear a t  this order. Only those 
terms with the same spatial structure as the first-order functions need be retained. 
Exploiting the degeneracy of (6-(8), an evolution equation fbr $,, can be obtained; 
the equation for $,,, can be deduced by symmetry. The amplitude equations have 
the form 

The coefficients ,8, y and S are given by 

p = alc2/a(a2 + iw), ( 16) 

where 
2io)a2(a2(l + a + <) + iw) 

a = 
(a2 + io)) (a2<+ iw) 

' 

and 

(a + 5) a2(a2 -iw) (1 + a) a2(a2<-iu) - 87c4a(1 -<)I 
(1 - {) (a2 + iw) 

+ 
(1 - <) (a2<+ iw) I 

io)7c21c2& 
X 

- 2 ~ ~ 1 c ~ ( 1 +  a) ( ( A 2  -n2) a2<+ 2iw1c2) (a+ 5) a4E2 

(& + 47c2) (a4c2 + G ) ) ~  (1 - 5) (2E2<+ iw) (a2<+ iw) 2( l -  <) (a2 +iw) ' 
(18) 

27c2(1 + a) (3(k2 - 7c2) a2{1c2 + iw(3E4 - n") a2(a  + <) (3n21c2a2 + iuE4) 
a(y+S) = - - 

(1 - <) (a"+ iw) (2E2<+ io)) (1 - {) (a2 + iu) (2n2 + iw) 

This system (14), (15) has been analysed in much previous work (fbr example, 
Knobloch 1986a). The real part of ,4 is always positive, confirming that the linear 
system is unstable for R, > 0 .  A travelling wave is represented by a state in which 
$lR = 0 and l$,,I2 = -Re (P) R2/Re (y). This is stable if Re (y+  8) < 2 Re (y) < 0. A 
standing wave is given by l$lr,)2 = )$1R12 = - Re (10) R2/(Re (y + 6)) and is stable if 
2Re(y)  < Re(y+6)  < 0. 

To guard against the possibility of algebraic errors, the coeficients were computed 
by two different methods: by hand and by using the symbolic algebra package 
Reduce (Hearn 1991). The special case of a standing wave only has bcen considered 
by Knobloch et al. (1981); our results agree with theirs in this casc. 

Proe. IZ. 8oc. Lond. A (1993) 
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Figure 1. Regions of stability of steady convection (ss), standing waves (sw) and travelling waves 
(rw) at  onset, a t  the optimum wave-number. (a) 5 = 0.90; (6) 5 = 0.50; (c) 5 = 0.10; (d)  5 = 0.02. 

4. Discussion 

The coefficients in (14), (15) are complicated functions of the parameters &, k ,  a 
and 5, so it is not possible to give a simple criterion for the stability of travelling and 
standing waves. We reduce the number of parameters involved from four to three by 
considering the most unstable wave-number: the value of' k that minimizes 
given by solving 

for k (recall that a2 = n2+ k2).  To compare our results with previous work, we also 
consider fixed k below. 

The coefficients y and S were computed numerically to determine whether standing 
or travelling waves are preferred a t  the onset of oscillatory convection. For four 
values of 5, a wide range of a and C,! was considered (see figure 1). For each set of 
parameter values, the linear problem was solved to determine whether steady (ss) or 
oscillatory convection becomes unstable first as R is increased. Tf it was found that 
the oscillatory mode becomes unstable first, the coefficients y and S were determined 
a t  the value of k that minimized R("), to investigate the stability of travelling or 
standing waves. Figure 1 a-d shows the results as a function of' a and & a t  [ = 0.90, 
0.50, 0.10 and 0.02 respectively. For all the parameter values investigated, both 
oscillatory branches were fbund to be supercritical, ensuring the stability of either 
travelling or standing waves. Tf k is not equal to its optimum value, subcritical 
behaviour is possible : see below. 

/'roc.. I? Soc. Lond A (199'3) 
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Q 
Figure 2. R,egioris of stability of steady c:onvection (ss), standing wavos (sw) and travelling wavos 
(TW) a t  onset, with { = 0.50 and k ecpal t o  its optimum valuo. Tho regions in which c:ac:h type of 
c:onvoc:tiori is prof:rrc:d arc separated by solid linos. The results of dirc:c:t nllmoric:al integrations of 
t,hc: m a s  arc indic:ated: + indic:ates standing wavos, x indicates travollirig wavos and * indicates 
modu1atc:d waves. Dotted linos indicate pammc:tc:r valuc:s a t  which tho m a s  havo a Hopf 
bifurcation from 6ravc:lling waves to modulated waves, a t  R = l . lK(o). 

For I; = 0 90, travelling waves are seen first as Q is increased with rr fixed. For 

smaller I;, standing waves may be seen first, depending on the value of rr. If standing 

waves are seen first, they are replaced by travelling waves as Q is increased. As tJ is 

increased further, the solution may revert to standing waves again if a is sufficiently 

small. 
In  certain limits, the coeflicients can be simplified so that a simple stability 

criterion can be found. When & is large, and E is scaled as lc - tJi so as to minimize 

R("),  the equations become degenerate in the sense that  Re (y) = Re (8)  if only the 

largest terms are retained. Taking the next term in the asymptotic series, we find 

that  standing waves are stable if < > a2/(2 + rr) ; otherwise travelling waves are 
stablc. This disagrees with the results of l'roctor (19861, who fhund that travelling 

waves were always preferred in the limit of large magnet~c field. This discrepancy is 
due to the different scalings adopted: Proctor scaled the amplitude of convection as 

Q P ~ ,  while we have taken the limit of small amplitude a t  a fixed magnetic field, then 
taken thc limit of large magnetic field. This suggests that if standing waves are seen 
a t  onset, they will lose stability to travelling waves soon after the initial bifurcation. 
When I; is small and a and tJ are of order unity, we find that  standing waves are 
always preferred a t  onset 

Ideally, one would like a physical explanation of the preferred behaviour of the 
system. Iiowever, as the interac3tion between standing and travelling waves is 
essentially nonlinear, and thc system is capable of switching back and forth between 

/'TO( h' Soc T,ond A (1993) 
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the two types of oscillation, it seems unlikely that a simple physical mechanism can 

be found. 

The full PI)ES (1)-(3) were integrated using a fully spectral method based on that 

of Veronis (1  966) ; the results are shown in figure 2. At selected values of a and Q (with 

fixed < = 0.50), the Kayleigh number was set a t  10% above its critical value R(O) 
and the ultimate behaviour of the PDES determined. These integrations confirm the 

predictions made by the weakly nonlinear calculation, and reveal (in the nonlinear 

domain) the presence of intervals of modulated waves (MW) near the boundary 

between standing waves and travelling waves. This is to be expected from the work 

of Knobloch (1986c), who extended the amplitude equations (14), (15) to seventh 

order. 
A further check on the correctness of the weakly nonlinear predictions was made. 

As R increases, travelling waves may lose stability to modulated waves via a Hopf 

bifurcation. The locus of points in the (rr,&)-plane a t  which this occurs when R = 

l.lR(") is shown in figure 2 (dotted lines). The Hopf bifurcation was found by 

requiring that the rr>m linearized about the travelling waves have a pair of pure 

imaginary eigenvalues. The dotted lines lie very close to the solid lines of the weakly 

nonlinear calculation, but not exactly on them as the r r )B  simulation was done with 

h' # Kc"'. 

The above calculations were all done a t  the optimum wave-number; however, 

numerical simulations are usually carried out a t  fixed wave-number. In  figure 3 ,  we 

show which of standing or travelling waves are preferred as a function of E and &, for 

four representative cases. Enlargements of figure 3 a ,  1) are shown in figure 4. The 

optimum value of the wave-number E as a function of & is indicated by a dashed line. 

This line is discontinuous a t  the boundary between steady and oscillatory behaviour, 

indicated by a thick line. In the region of steady convection (to the left of the thick 

line), the bifurcation is subcritical below the dotted line and supercritical above. In  

the region of oscillatory convection (to the right of the thick line), the bifurcation to 

travelling waves is subcritical below the dash-dotted line, and that to standing waves 

is subcritical in two regions: first, when E is small and & is large (below the dotted 

line in figure 3),  and second, just below the thick line with & large. This second region 

is too narrow to be seen in figure 3, but i t  is visible in figure 4b. Recall that in the 

regions where either bifurcation is subcritical, our analysis does not determine the 

preferred behaviour a t  onset. 
The thick lines in figure 3 and figure 4 are lines of Takens-Bogdanov bifurcation 

points with O(2) symmetry where the Hopf bifurcation to standing and travelling 

waves coincides with the pitchfork bifurcation to steady convection (see Ilangelmayr 

$ Knobloch 1987). Near the Takens-Bogdanov bifurcation, the frequency a t  the 

Hopf bifurcation is small. llangelmayr bZ Knobloch (1986) have investigated the 
a Ion occurrence of standing and travelling waves near the Takens Bogdanov bifurc t '  

and found (as in, for examplc, figure 4 a ,  6 )  that standing or travelling waves may be 

preferred and may be sub- or supercritical, depending on the precise parameter 
values. We recover their expressions for the stability of standing and travelling 

waves a t  the Takens-Bogdanov bifurcation by taking the limit of small frequency in 

(IS) ,  (19). 
For each set of cr and < considered in figure 3, there is a t  least one point where the 

boundary between standing and travelling waves intersects the (thick) line of 
Takens-Bogdanov bifurcations. The analysis of this degenerate Takens-Rogdanov 

bifurcation point is not attempted here. 

Proc TI Aoc Cond 11 (1993) 
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Figure 3. 1Zogions of stability of steady oonvootion (ss), standing wavc:s (sw) and travelling waves 
(TW) a t  onsot. In the regions labelled 'suh(:ritical', thc: analysis does not detortnine which of 
standing or travelling waves arc prc:fc:rrod. ( ( 8 )  a = 1 .0 ,  [ = 0.1 ; (b )  a = 1.0, ( = 0.8; (c) u = 0.1, 
[ = 0.1 ; (d)  a = 0.2, ( = 0.2. Tho moaning of' the lines is dosc:ribed in thc: text. (a) and (b)  are 
shown in moro detail in figure: 4. 

Piguro 4. Rc:gions of stability of steady convection (ss), standing waves (sw) and travelling wavt:s 
(TW) a t  onset(detai1 of' figure 3).  ( a )  a = 1.0, [ = 0.10; (b) a = 1 .O,  [ = 0.80 (muoh on1argc:d). Thc: 
bif'urcation to standing waves is subcritioal betwc:en the dottc:d line and the thick line in (b). 

Calculations done in a box with sidewa11s may be unstable to travelling waves if 
periodic boundary c,onditions are used instead. We have examined a range of 
published investigations of the PDES (1)-(3); as rnight be expected, for sorne 

calculations done in a box, standing waves are preferred a t  onset, while for others, 

travelling waves are preferred. IVeiss (1981 cx, 6) solved the rr)Es in a box with o- = 

}'lo( I2 Aor T,orid 11 (1993) 
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1.0, { = 0.1 a t  Ic = n and & = 1000, and a t  Ic = 2n and tJ = 7840; we find that 

standing waves are preferred in the first case and travelling waves in the second (see 

figure 3a). Knobloch pt ai. (1981) studied the PDES in a box with cr = 0.2, 1; = 0.2 a t  

k = n and Q = 98.7, and a t  lc = 2n and Q = 61 7 ;  again, we find that standing waves 
are preferred in the first case and travelling waves in the second (see figure 3 d ) .  

Kucklidge (1992, 1993) has examined the lirnit of large wave-nurnber and found 

chaotic standing waves in the PI)F,S near the Takens-Kogdanov bifurcation point 

with cr = 1 .O, < = 0.8 and Ic large. The appropriate limit for this case is k - tJg with 

Q large and a and < order unity; we find that travelling waves are unstable to 

standing waves and that standing wave bifurcate subcritically in this limit (see figure 

40). The analysis of Kucklidge et al. (1993), who considered the case of the 
l'akens-Rogdanov bifurcation with standing waves only hut with Re (y + 6) positive, 

suggests that the subcritical standing waves become stable in a saddle-node 

bifurcation a t  Kayleigh numbers just below the Takens-Bogdanov bifurcation point, 

that is, stable standing waves exist in regions of parameter space where the primary 

bifurcation is a pitchfork bifurcation to steady convection. 

Hurlburt pt al. (1989) have studied the related problem of compressible convection 

in a vertical magnetic field and found, with a = < = 0.1 and E = TC and ~ T C ,  a 

transition from standing to travelling waves as & is increased, in qualitative 

agreement with figure 3 c .  This work is being extended to three-dimensional 

convection (Matthews 1993; Matthews el ad. 1993); the results of these simul' t' ions 

show that there are regions of parameter space where the two-dimensional travelling 

waves discussed here are stable, but standing waves are replaced by alternating rolls, 

which are two standing waves a t  90" to each other and 90" out of phase. For the 

Boussinesy case in three dimensions, an analysis, similar to that in $ 3  but much 

more complicated, is being carried out by T. (jlune & E. Knobloch (personal com- 
munication). 

In summary, we have calculated whether standing waves or travelling waves are 

preferred a t  the onset of oscillatory convection in a vertical magnetic field over a 

wide range of parameter values and confirmed the analysis by comparison with 

numerical solutions of the governing FDES. Near the boundary between the regions 

where standing waves and travelling waves are preferred, modulated waves are 

found a t  mildly supercritical Kayleigh numbers. 

Wc: thank Nigel Woiss, Michael Proc:tor arid Edgar Unob1oc:h for many comments arid suggestions. 
We are gratefill for financial support frotn thc: Scionce and Engirrooring R,esearch Council arrd from 
I'c:torhouse, Cambridge (A.M. R,.). 
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