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ABSTRACT

The stability of current sheets in collisionless relativistic pair plasma was studied via two-
dimensional two-fluid relativistic magnetohydrodynamic simulations with vanishing internal
friction between fluids. In particular, we investigated the linear growth of the tearing and
drift-kink modes in the current sheets both with and without the guide field and obtained the
growth rates which are very similar to what has been found in the corresponding particle in
cell (PIC) simulations. This suggests that the two-fluid simulations can be useful in studying
the large-scale dynamics of astrophysical relativistic plasmas in problems involving magnetic

reconnection.

Key words: magnetic fields— MHD —plasmas —relativistic processes —waves —methods:

numerical.

1 INTRODUCTION

It is now well recognized that magnetic field is a ‘major player’ in
the dynamics of astrophysical plasma — the Lorentz force shapes a
wide variety of flows in the Universe. The dissipative effects are also
important, leading to magnetic reconnection and explosive release
of stored magnetic energy. This could be of particular relevance
in the astrophysics of neutron stars and black holes, which are
expected to produce relativistic magnetically dominated plasma.
Magnetic reconnection accompanied by dissipation of magnetic
energy may be the main processes leading to the observed non-
thermal emission from winds and jets produced by these compact
relativistic objects (e.g. Romanova & Lovelace 1992; Drenkhahn
& Spruit 2002; Lyutikov & Blandford 2003; Zhang & Yan 2011;
McKinney & Uzdensky 2012; Komissarov 2013; Porth, Komissarov
& Keppens 2013, 2014).

The magnetic dissipation associated with the magnetic reconnec-
tion is not captured in the framework of ideal relativistic magneto-
hydrodynamic (MHD), which is currently the most common tool of
modelling astrophysical phenomena. The approximation of resistive
MHD does introduce Ohmic dissipation of magnetic field but the
astrophysical plasmas are often collisionless, whereas the resistivity
has strong physical justification only for collisional plasmas.

Kinetic models of plasma are better routed in fundamental
physics and more suitable for collisionless plasma but they are
also much more complex and computationally expensive. PIC-
simulations, based on dynamics of individual particles (or rather
‘superparticles’), are also quite expensive. Studies based on these
methods shows that fast magnetic reconnection involves develop-
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ment of current sheets whose thickness is comparable to the electron
skin depth, the kinetic scale absent in single fluid MHD (Zenitani
& Hoshino 2001, 2007; Bessho & Bhattacharjee 2012; Cerutti et al.
2014; Sironi & Spitkovsky 2014; Liu et al. 2015).

Half-way between these frameworks and the single fluid MHD
are the multifluid models, where plasma is considered as a collec-
tion of several interpenetrating charged and neutral fluids, coupled
via macroscopic electromagnetic field. Like a single fluid MHD,
this approach is well suited for studying the large-scale dynam-
ics of plasma flows. Moreover, it also captures some elements of
plasma microphysics in the form of collective interaction between
its positively and negatively charged components, which leads to
the emergence of the plasma frequency and electron skin depth. Its
generalized Ohm’s law has several terms which introduce non-ideal
properties even in the absence of explicit internal friction between
fluids. For this reason, the multifluid approximation is considered as
a potential alternative to more expensive kinetic and PIC approaches
when it comes to problems of macroscopic plasma dynamics where
the magnetic reconnection plays an important dynamic role via
restructuring of magnetic field and magnetic dissipation. For rel-
ativistic plasma, created in magnetospheres of neutron stars and
black holes via various pair production processes, a simple two-
fluid approximation involving electron and positron fluids may be
sufficient. Obviously, the lack of spectral information means that
the fluid framework has rather limited potential for addressing such
important issues as radiation and non-thermal particle acceleration.

So far, there has been only a rather limited effort to explore
the potential of the two-fluid approximation in numerical mod-
elling of relativistic plasma. Zenitani, Hesse & Klimas (2009a,b)
used this approach for studying the relativistic magnetic reconnec-
tion, Amano & Kirk (2013) to study the termination shocks of
pulsar winds, and Kojima & Oogi (2009) tried to construct two-
fluid models of steady-state pulsar magnetospheres. In the same
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way as this is done in resistive MHD simulations, Zenitani et al.
(2009a,b) used anomalous resistivity to trigger fast magnetic recon-
nection of Petschek-type. However, they noticed that the inertial
terms of the generalized Ohm’s law also make a significant contri-
bution to the reconnection electric field, even exceeding that of the
friction term, which represents the resistivity. Based on this obser-
vation, they suggested that the inertial terms alone may be sufficient
to sustain magnetic reconnection. The robustness of this conclusion
is not clear as they have also found that the simulations outcome
strongly depends on the model of resistivity. Moreover, they used
the Lax—Wendroff numerical scheme which also introduces numer-
ical resistivity, whose contribution to the reconnecting electric field
exceeds the other terms (Zenitani et al. 2009a,b). However, if the
two-fluid model can reproduce the reconnection rate sufficiently
accurately then this approach becomes very useful for studying
large-scale phenomena where magnetic restructuring and dissipa-
tion are important dynamical factors.

Until recently, the fast magnetic reconnection was viewed in the
context of the Petschek model with its compact diffusion zone, as
opposed to the slow Sweet—Parker type reconnection of long and
thin current sheets. However, long current sheets are unstable to tear-
ing mode instability (TI), which splits it into much shorter current
sheets separated by plasmoids. Two-dimensional (2D) simulations
discovered that at the non-linear stage the current sheet becomes
highly dynamic, with mergers of original plasmoids and creation of
new ones. This leads to a much higher overall reconnection rate (e.g.
Biskamp 1986; Shibata & Tanuma 2001; Loureiro, Schekochihin
& Cowley 2007; Bhattacharjee et al. 2009; Uzdensky, Loureiro &
Schekochihin 2010). In addition to TI, currents sheets are also sub-
ject to the so-called drift-kink instability (DKI) which grows faster
(Zenitani & Hoshino 2007; Cerutti et al. 2014). This discovery sug-
gested that DKI may hinder the development of TI. However, recent
3D PIC simulations, where both types of modes are allowed, show
that TI is not suppressed and becomes dominant at the non-linear
phase. The reconnection rates in 3D and 2D simulations are found
to be similar (Sironi & Spitkovsky 2014; Liu et al. 2015).

Given the importance of TI and DKIs in the fast magnetic re-
connection, the potential of the two-fluid model depends on how
well it can describe their development. In this paper, we focus on
the linear development of these instabilities numerically. To this
aim, we used our recently developed two-fluid code for pair plasma
(1anus; Barkov et al. 2014). This code is based on a Godunov-
type numerical scheme which is much less dissipative compared
to the Lax—Wendroff one. It is third-order accurate in smooth re-
gions, which makes it powerful tool for studying the instabilities.
By setting the internal friction between the fluids (the resistivity)
to zero we focus on the role of the inertial terms in the generalized
Ohm’s law. The results are compared with the growth rates ob-
tained via PIC simulations by other groups. In the follow-up paper,
we will discuss the non-linear phases of magnetic reconnection in
the plasmoid-dominated regime.

2 TWO-FLUID MODEL OF PAIR PLASMA

Following Zenitani et al. (2009b), we adopt the 341 (—+ + +) Spe-
cial Relativistic equations originated from the covariant formulation
by Gurovich & Solov’ev (1986). The corresponding dimensionless
equations are (for details see Barkov et al. 2014)

(i) the continuity equations

di(neys) + Vi(neu') = 0; (D
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(ii) the total energy equation

Kq
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(iii) the total momentum equation
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(iv) the Maxwell equations
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(v) and the generalized Ohm’s law

0, (Z :I:wiyiu’;) + V; (Z :t(wiuiiux + pigiS))

+ +

= %n(E + ' *y; By) + Kifnm,(ui —u'). (8)
In these equations E and B are the electric and magnetic field, ny,
P+, Wy, Y+ and ur = yy v, are the density, pressure, relativistic
enthalpy, Lorentz factor and four-velocity of electron and positron
fluids, respectively, g’ is the spatial metric tensor of Minkowski
space—time and, e’ is the Levi—Civita tensor, indexes s, i and k
correspond to three spatial direction.

In the Ohm’s law, /i = nyy, + n_y_ is the total number density
of charged particles as measured in the laboratory frame and v’ =
(nyy+ v’ 4+ n_y_v' )/it is their average velocity in this frame. The
last term of the Ohm’s law describes the internal friction between
the fluids, which is related to resistivity.

The three dimensionless parameters in these equations are

By mec? mec

=, = s Kp=—7—, 9
47'[eL0n0 m eBoL(] f %fl’l()L() ( )

Kq

where L is the characteristic length-scale, the speed of light, c,
is the characteristic speed, By the characteristic value of magnetic
(and electric) field, ny the characteristic number density of particles
and e is the electron charge. The corresponding scales for the time
is Ty = Ly/c, for the mass density m.n, and for the pressure and
enthalpy mec*ny, s is the dynamic coefficient of friction between
these fluids.
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The dimensionless polytropic equation of state (EOS) is
we =ns + Cpe/(T = 1), (10)

where I' is the ratio of specific heats.

In this paper, we solve these equations numerically, using the
code janus (Barkov et al. 2014). The code is based on a conser-
vative finite-difference scheme which utilizes a third-order WENO
interpolation (Liu, Osher & Chan 1994; Yamaleev & Carpenter
2009) and a third-order TVD time integration of the Runge—Kutta
type (Shu & Osher 1988), thus ensuring overall third-order accu-
racy on smooth solutions. Hyperbolic fluxes are computed using
the Lax—Friedrich prescription. The magnetic field is kept near
divergence-free by means of the method of generalized Lagrange
multiplier (Munz et al. 2000; Dedner et al. 2002; Komissarov 2007).

3 HARRIS CURRENT SHEET

In this paper, we study stability of the Harris current sheet using
Cartesian coordinates aligned with the sheet. In these coordinates,
the initial magnetic field B = (B, (y), 0, B.), where B, is a uniform
guide field and

B, = B, tanh (g) , (11)

where § is the half-thickness of the current sheet and B, is the mag-
netic field strength far away from the sheet. The force equilibrium
of the current sheet implies the total gas pressure distribution

2

pr=pt o (1t (1)) (12)

The gas pressure in the centre of the current sheet py = po +
B2 /8. Introducing the pressure ratio f, = po/peo, we find that

fr=1+8," (13)

where B, = 8Ttpoo/ Bgo is the traditional (non-relativistic) magneti-
zation parameter of plasma. Following previous studies, we assume
that the plasma temperature is uniform and hence the particle den-
sity distribution follows that of the gas pressure.

The half-thickness § determines the drift speed of fluids in the
current sheet. From the Faraday equation we find four velocity as

wt = B oo (2). (14)
8mden_ 8
where we used the charge neutrality condition n_ = n., and hence
Uy =—u_.
Using Boo, 8 and n as the characteristic scales By, Lo and ng of
the problem, we find

o
40(f, =1’

where uy is the magnitude of u* at the centre of the current sheet
and 0 = k,T/m.c? is the dimensionless temperature, here k; is
Boltzmann constant. Following Cerutti et al. (2014), we use f, =
10 and uy = 0.75 but set & = 10 instead of 108. The latter should
not have a strong effect as in both cases the thermal energy domi-
nates in the plasma inertia and this is indeed what has been found
in the previous theoretical and numerical studies (Zelenyi & Kras-
noselskikh 1979; Zenitani & Hoshino 2007). Given these values,
we have Iy = 15 and K\, = 0.042. The corresponding relativistic
magnetization parameter

Kq=2uof, and K, = (15)

2
BOC
O =
41w,

~ 4.4,
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where wo, = W_ o + W4 . Using the definitions of the plasma
Larmor radius, pg = 6m,c*/eBy, and the skin depth, d? =
Om,c?/(4mn.e?), as in Cerutti et al. (2014), we find § = 2.4p,
and § = 1.26d,, which is similar to what they have in the setup of
their PIC simulations (§ = 2.7p¢ and § = 1.61d,).!

4 SIMULATIONS

All simulations presented in this paper are 2D. We split them
in four groups. In Sections 4.1 and 4.2, we present our studies
of the tearing and DKIs of the Harris current sheet described in
Section 3, without the guide field. The main goal is to obtain disper-
sion curves and compare them against the results of PIC simulations.
In Section 4.3, we investigate the role of the guide field, by studying
the response of modes with highest growth rates. In all models, the
ratio of specific heats, I' = 4/3 and Courant number C = 0.5. All
physical parameters are dimensionalized using the characteristic
scales ¢, Ly = 8, By = By, and ng = 1.

In order to focus on the role of inertial terms in Ohm’s law, we
effectively remove the resistive term by setting Ky = 10'5.

4.1 Tearing instability without guide field

For the study of the tearing instability, we consider a 2D problem
with 9, = 0. The current sheet is pushed out of equilibrium by
perturbing the magnetic field, B — B + b, where the divergence-
free perturbation

2y

b= bpe O/ |
0 (ki?)

cos(kx)i, + sin(kx)i, | , (16)
where k = 27t/ is the wavenumber and by = 107 is the amplitude
of the perturbation. In the x-direction, the size of the computational
domain is set to be exactly one wavelength of the perturbation and
we employ the periodic boundary conditions at the x boundaries.
In the y-direction, we have a comparable size of the computational
domain and use the free-flow boundary conditions. The basic pa-
rameters of the simulations are given in the Table 1.

To quantify the perturbation amplitude we use the maximum
value of B in the computational domain. Fig. 1 shows examples
of the amplitude evolution for a number of models. As the initial
perturbation is not a normal mode of the instability, it leads to ex-
citement not only of the normal mode with the wavelength equal
to the x size of the computational box, the fundamental mode, but
also its overtones as well as and propagating waves. The latter are
partially transmitted through the y boundaries of the computational
box and do not grow in amplitude. Soon they become dominated
by the unstable normal modes. When the wavelength of the fun-
damental mode is below the maximum of the dispersion curve, it
completely dominates the evolution as the parasitic overtones grow
slower. This is illustrated in Fig. 2.

When the wavelength of the fundamental mode is above the max-
imum, the evolution is more complicated. Initially, it dominates
overtones simply because its initial amplitudes is higher. However,
some parasitic overtones may now grow faster and eventually over-
take it while still at the linear phase. In the amplitude plots, this is
manifested by an increase of the curve gradient, as exhibited by the
curve of the TW160 model in Fig. 1. In the 2D plots of the solution,

! The difference is probably because they used vy = /0.6 and not vy = 0.6
as stated in their paper. We realized this issue a bit too late.
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Table 1. TI models. The case without guide field. Here A and w; are initial perturbation wavelength and

perturbation grow rate, respectively.

Name Resolution domain X domain Y A w;
TWO06 128 x 128 [-3,3] [—5,5] 6 0.0
TWO07 128 x 128 [—3.5,3.5] [—5,5] 7 0.0
TWO08 128 x 128 [—4,4] [-5,5] 8 0.011
TWO09 128 x 128 [—4.5,4.5] [—5,5] 9 0.041
TWI10 128 x 128 [-5,5] [-5,5] 10 0.0603
TWI11 128 x 128 [—5.5,5.5] [—5,5] 11 0.077
TWI12 160 x 128 [—6,6] [-5,5] 12 0.085
TW14 160 x 160 [—7,71 [—7,7] 14 0.095
TW20 256 x 256 [—10,10] [—10,10] 20 0.100
TW30 384 x 256 [—15,15] [—10,10] 30 0.089
TW40 512 x 256 [—20,20] [—10,10] 40 0.079
TW80 1024 x 512 [—40,40] [—20,20] 80 0.047
TW160 2048 x 1024 [—80,80] [—40,40] 160 0.030
TW10h 192 x 192 [—5,5] [—5,5] 10 0.0657
TWI10H 256 x 256 [-5,5] [—5,5] 10 0.0669
-1.5
of 1 16 |
0.5 ] A7t g
al ] -1.8
> >
S a9t
— _1 5 B —
g g 2|
— — =
2t 1 )
2.1 P
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Figure 1. Left-hand panel: evolution of the perturbation amplitude for the models TWO08 (blue solid line), TW30 (magenta dot-dashed line), TW80 (cyan
dashed line) and TW160 (green dotted line). Right-hand panel: evolution of the perturbation amplitude for the models TW10 (solid line), TW 10h (dashed line)

and TW10H (dot—dashed line) which differ only by resolution.
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Figure 2. The distribution of By for the model TW20 at the times ¢ = 23 (top panel) and 7 = 88 (bottom panel).

this is manifest by the appearance of dominant small scale struc-
tures (see Fig. 3). This has to be taken into account when measuring
the growth rate of the fundamental mode.

We have checked the convergence of our numerical results by
comparing the data obtained with different numerical resolutions.
The right-hand panel of Fig. 1 shows the results for the model TW10
obtained with 128 x 128 cells, 192 x 192 cells (TW10h) and 256

MNRAS 458, 1939-1947 (2016)

x 256 (TW10H), which clearly indicate their convergence. Based
on the study we conclude the numerical error of our growth rates
does not exceed 10 per cent.

The growth rates, w;, of the fundamental modes are collected in
Table 1 and Fig. 4. The results agree with the theoretical models
which predict instability for 0 < k < 1 with a peak at k ~ 0.5
(Zelenyi & Krasnoselskikh 1979; Pétri & Kirk 2007). The PIC

9T0Z ‘T |1Udy U0 Spsa Jo AlsleAluN e /6.10°s euinopiojxo'seluw//:dny woJj pspeojumoq


http://mnras.oxfordjournals.org/

Pseudocolor
Var: By

—0.0008

Y Axis

~-0.0017

Tearing mode in two-fluid RMHD 1943

Pseudocolor
Var: By

' 1.5490

—0.7745

¥ Axis

1.5490

X Axis

Figure 3. The distribution of By, for the model TW160 at the times ¢ = 60 (top panel) and # = 180 (bottom panel). One can see that initially it is the original
perturbation of the wavelength equal to the domain length in the x-direction which dominates. However, at later times shorter wavelengths begin to dominate.
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Figure 4. Growth rates of TI (thick red solid line) and DKI (green thick
dot—dashed line) modes in the current sheet without guide field. The magenta
circle shows the result obtained with doubled numerical resolution.

simulations show a broader dispersion curve, with unstable modes
existing beyond k£ = 1 and the peak growth rate w;/wy =~ 0.045,
where wy = Om,c/eB, at k ~ 0.58 (Cerutti et al. 2014). In our
simulations, the peak is more pronounced and located at k ~ 0.3. In
order to compare our results, we note that with our scaling w, =
0K = 0.42 and thus w;/wy ~ 0.04. Overall, we conclude that our
results agree quite well with the PIC data.

Table 2. DKI models. The case without guide field.

4.2 Drift-kink instability without guide field

For the study of the DKI, we consider a 2D problem with 9, = 0.
The current sheet is pushed out of equilibrium by perturbing the
velocity field of both the electron and positron fluids, U — U + u,
where

u = ugcos(kz)iy , a7

with uy = 1073, Like in the tearing simulations, the size of the
computational domain in the z-direction is set to be exactly one
wavelength of the perturbation and we employ relevant periodic
boundary conditions at the z boundaries. In the y-direction, we have
a comparable size and use the free-flow boundary conditions. The
basic parameters of the simulations are given in the Table 2.

The left-hand panel of Fig. 5 illustrates the structure of the unsta-
ble modes across the current sheet in our simulations. These results
are in a good agreement with the structure of normal modes found
in the linear theory of DKI (Zenitani & Hoshino 2007). We quantify
the perturbation amplitude using the maximum value of |« | in the
computational box. The right-hand panel of Fig. 5 shows typical
examples of its evolution in the simulations.

Fig. 4 shows the dispersion curve. Like in the tearing instabil-
ity, the dispersion curve of DKI has a clear maximum and in the
simulations with longer wavelengths, faster growing parasitic over-
tone modes can outperform the fundamental mode. In such cases,
we compute w; only for the initial part of the amplitude curve, where
the fundamental mode is still dominant. In order to verify that the
numerical resolution is sufficient and the growth rates are trustwor-
thy, we have carried out a separate convergence study. For example,

Name Resolution Domain Z Domain Y A wj
KWO06 128 x 128 [—3,3] [-5,5] 6 0.0
KW065 128 x 128 [—3.25,3.25] [—5,5] 6.5 0.0
KwWO07 128 x 128 [—3.5,3.5] [—5,5] 7 0.058
KWO08 128 x 128 [—4.4] [—5,5] 8 0.135
KW09 128 x 128 [—4.5,4.5] [—5,5] 9 0.159
KW10 128 x 128 [—5,5] [—5,5] 10 0.165
KWi1l1 128 x 128 [-5.5,5.5] [-5,5] 11 0.1646
KwW12 192 x 128 [—6,6] [—5.,5] 12 0.160
KWI15 192 x 128 [-7.5,7.5] [-5,5] 15 0.137
KW20 256 x 128 [—10,10] [—5,5] 20 0.110
KW30 384 x 256 [—15,15] [—10,10] 30 0.061
KW40 512 x 256 [—20,20] [—10,10] 40 0.0
KW80 1024 x 512 [—40,40] [—20,20] 80 0.0
KW10h 192 x 192 [—5.,5] [—5.,5] 10 0.16553
KWI10H 256 x 256 [-5,5] [-5,5] 10 0.16581
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value, arbitrary units

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Y+ 5

0 50 100 150 200
T [Ly/cl

Figure 5. Left-hand panel: structure of DK modes without guide field. The lines show the perturbation of electron density (solid red line), E, x 30 (dashed
green line) and E; x 30 (dash—dotted black line) as found in the model KW09. The measurements are taken at # = 66 along the line z = 2. Right-hand panel:
growth of DK modes without guide field. The curves represent models KW065 (magenta dashed line with diamonds), KWO7 (red dotted line), KW 10 (green
dot—dashed line) and KW20 (blue solid line). The shown quantity is the maximum value of ufr in the computational box.

we repeated the simulations KW10 with higher resolution: 1922
(model KW10h) and 256> (model KW10H). The results indicate
that the growth rate error for the model KW10 is below 1 per cent
(see Table 2).

Like in the tearing instability, the unstable modes occupy the
range 0 < k < 1, though the long-wavelength modes with £ <
0.2 appear to be suppressed (see Fig. 4). In the PIC simulations
the instability occurs even for k > 1 but at a lower growth rate
(Zenitani & Hoshino 2007; Cerutti et al. 2014). In our simulations,
the growth rate peaks at ky,x ~ 0.6, where it reaches the value
Wmax ~ 0.16. Whereas in the PIC simulations we have kp,x ~ 0.7
and wp,x & 0.13 (Zenitani & Hoshino 2007; Cerutti et al. 2014).
Thus, the results of two-fluid and PIC simulations agree with each
other quite well again. The linear analysis of Zenitani & Hoshino
(2007) shows that the instability domain extends beyond k = 1.
However this theoretical results is not trustworthy as it is obtained
using the long-wavelength approximation, k < 1.

Interestingly, the short-wavelength modes appear to be non-
decaying periodic or quasi-periodic oscillations. The model KW065
is one such example. Its amplitude remains on the level of initial per-
turbation. The model KW07 seems to be a transitional case, where
the initial phase of exponential growth terminates at a relatively low
amplitude and is followed by oscillations.

In the PIC simulations, the non-linear phase of DKI is character-
ized by magnetic dissipation, plasma heating, and widening of the
current sheet. All these properties are observed in our simulations
as well. Moreover, we find that shock waves develop in electron
and positron fluids (see Fig. 6) and they play an important role in
plasma heating.

4.3 Current sheets with guide field

Following Zenitani & Hoshino (2008) and Cerutti et al. (2014), we
first study the effect of guide field on the fastest growing modes
in the case without the guide field. In our study, these are k =~

MNRAS 458, 1939-1947 (2016)

0.31 (A = 20) for TI and k£ =~ 0.63 (A = 10) for DKI. The com-
putational domain is [—5, 5] x [—5, 5] with 128 x 128 cells for
the TI simulations and [—10, 10] x [—5, 5] with 256 x 128 cells
for the DKI simulations. The strength of the guide field is de-
scribed by the parameter o, = B. /B.. The perturbations are intro-
duced in exactly the same way as in the models without the guide
field.

The results are shown in Fig. 7. As in the previous studies, the
guide field makes a stronger impact on the DKI mode than on
the TI mode. For the TI mode, we find that the growth rate is
reduced by 50 percent only at agr = 5, which is in agreement
with the two-fluid linear analysis by Zenitani & Hoshino (2008)
and their PIC simulations. The PIC simulations by Cerutti et al.
(2014) show a somewhat stronger effect, with a45 per cent reduction
already at oy = 1. However, their curve is not monotonic, which
may indicate higher numerical errors. As to the DKI mode, we
find that it is totally suppressed when o, > 1. This is in a good
agreement with the linear stability analysis of Zenitani & Hoshino
(2008), who find that for the DKI mode with k = 0.7 the critical
guide field is o, . ~ 0.5, which also agrees with the results of
their PIC simulations. Based on their PIC simulations, Cerutti et al.
(2014) find ogp. &~ 0.8 for k = 0.67, which is even closer to our
results.

Given the strong effect of the guide field on the DKI, we have
carried out additional simulations with the aim to clarify the de-
pendence of the DKI dispersion curve on the guide field strength.
The parameters of these simulations are given in Table 3 and their
results are illustrated in Fig. 7. The surprising result is that the
growth rate is not uniformly reduced for all wavelengths. As the
guide field increases, the peak of the curve does get lower but in
addition the unstable range shifts towards shorter wavelengths. As
a result, some modes which grow at oy = 0 become completely
stabilized for gy # 0 and the other way around (see the right-hand
panel of Fig. 7). The blue line in the left-hand panel of Fig. 7 shows
the dependence of the maximal growth rate on ay.
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Figure 6. Development of the DKI in the model KW 10. In the left-hand panels, the coloured image shows the distribution of the out-of-the-plane component
of magnetic field B, and in the right-hand panels, the distribution of electric charge. The arrows show the velocity field of positrons. The simulation time is
t = 20, 50 and 58 (from top to bottom). By the time # = 58, a significant fraction of magnetic energy has been dissipated and shock waves developed in the
electron and positron fluids.
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Figure 7. Left-hand panel: dependence of the growth rates of the tearing and DKIs on the strength of guide field, agt = B;/Boo. The red line shows the TI
mode with k 2 0.3 (A = 20) and the green line the DKI mode with k & 0.6 (A = 10). The blue line shows the growth rate for the fastest growing DKI mode
(its wavelength depends on agf). Right-hand panel: growth rates of the DKI in the presence of the guide field. The lines are the dispersion curves for agr = 0
(green triangles), 0.9 (black crosses), 1.2 (magenta squares) and 1.6 (magenta stars).

Table 3. The full set of models with guide field in the study of DKI.

Name Resolution Domain Z Domain Y A agf w;
Ka09Wo05 192 x 192 [—2.5,2.5] [-5,5] 5 0.9 0.0
Ka09WO055 192 x 192 [—2.75,2.75] [—5.,5] 5.5 0.9 0.064
Ka09Wo06 192 x 192 [—3.0,3.0] [—5,5] 6 0.9 0.107
Ka09W07 192 x 192 [—3.5,3.5] [—5.,5] 7 0.9 0.128
Ka09W08 192 x 192 [—4.0,4.0] [-5,5] 8 0.9 0.113
Ka09W09 192 x 192 [—4.5,4.5] [—5.,5] 9 0.9 0.092
Ka09W10 192 x 192 [—5.0,5.0] [—5,5] 10 0.9 0.054
Ka09W12 192 x 192 [—6.0,6.0] [—5.,5] 12 0.9 0.0
Kal2W04 192 x 192 [—2.0,2.0] [-5,5] 4 1.2 0.0
Kal2W045 192 x 192 [—2.25,2.25] [—5.,5] 4.5 1.2 0.0
Kal2Wo05 192 x 192 [—2.5,2.5] [-5,5] 5 1.2 0.079
Kal2WO055 192 x 192 [—2.75,2.75] [—5.,5] 5.5 1.2 0.106
Kal2Wo06 192 x 192 [—3.0,3.0] [-5,5] 6 1.2 0.104
Kal2W065 192 x 192 [—3.25,3.25] [—5.,5] 6.5 1.2 0.086
Kal2wo07 192 x 192 [—3.5,3.5] [-5,5] 7 1.2 0.0
Kal6W038 192 x 192 [—1.9,1.9] [—5,5] 3.8 1.6 0.0
Kal6W04 192 x 192 [—2.0,2.0] [-5,5] 4 1.6 0.037
Kal6Wo045 192 x 192 [—2.25,2.25] [—5,5] 4.5 1.6 0.068
Kal6WO05 192 x 192 [—2.5,2.5] [-5,5] 5 1.6 0.050
Kal6W055 192 x 192 [—2.75,2.75] [—5,5] 5.5 1.6 0.017
Kal6W06 192 x 192 [—3.0,3.0] [-5,5] 6 1.6 0.0

5 CONCLUSION

In this work, we studied the tearing and DKIs of current sheets in
collisionless electron—positron plasma by means of 2D two-fluid
computer simulations. We set the internal friction (resistivity) to
zero and considered current sheets of thickness comparable to the
electron skin depth, so that the inertial terms of the generalized
Ohm’s law become significant. Our results are compared with those
of the PIC simulations carried out by other researches for current
sheets with similar parameters. We find that there is a good over-
all agreement between the two-fluid and PIC simulations. In both
cases, the fastest growing modes have very similar wavelengths
and growth rates when the guide field is small. In both cases, the
guide field reduces the growth rates of unstable modes. There are
some differences too. For example, the unstable range of both TI
and DKI appears to be somewhat narrower and the guide field
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has a weaker stabilizing effect on the TI mode in the two-fluid
simulations. We also find that, in addition to getting lower, the
dispersion curve of DKI also shifts towards higher wavenumbers
when the guide fields gets stronger. We cannot say if this is in
agreement with the PIC simulations due to the lack of relevant PIC
data.

It would be naive to hope that the two-fluid simulations could
exactly reproduce the results of PIC simulations, and they do not.
However, the differences appear to be rather minor. This suggests
that the two-fluid model can adequately describe the macroscopic
dynamics of plasma with collisionless currents sheets, yielding suf-
ficiently accurate magnetic reconnection rates. In order to con-
firm this we have started a study of 2D magnetic reconnection
in the plasmoid-dominated regime. The preliminary results are
encouraging.
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