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Abstract 

Although several in situ techniques, including the Autoclam Permeability System, are available to 

examine normal concretes (NCs) for this purpose, none are sufficiently sensitive to quantify and 

distinguish relative high performance concrete (HPC) performance. Therefore, to assess the HPC 

performance characteristics using the Autoclam air permeability test methodology, two key 

modifications were investigated and a new test protocol developed. The first modification considered 

a reduced volume of compressed air applied to the test area (named LV test), and the second an 

increased test area (named A-75). The reliability of the proposed modifications was investigated by 

comparing against a laboratory-based gas permeability test method (RILEM air permeability test). 

Surface resistivity and relative humidity were assessed to evaluate the influence of moisture 

conditions on in situ air permeability test results. A strong correlation between LV test and RILEM 

air permeability test results was found when the free moisture near concrete surface regions (up to 20 

mm) was removed. It was concluded that the LV test exhibits strong potential to become an 

established method for assessing in situ HPC permeability.  

Key words 

In situ air permeability test, high performance concrete, relative humidity, surface resistivity, RILEM 

gas permeability test, Autoclam air permeability test  
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1 Introduction 

High performance concretes (HPCs) are typically designed with superior performance characteristics 

relative to normal concretes (NCs) [1-3]. Resulting enhanced durability of concrete structures 

containing HPCs is a key driving force behind their application [2,3]. This is particularly relevant 

given the large sums of money spent annually on repairing and maintaining structures worldwide 

[4,5]. Various grades of HPCs can be designed, manufactured and tested in laboratory conditions to 

satisfy design specifications for different service conditions [2,6,7]. However, it is not safe to assume 

at all times that pre-specified durability levels are achieved on site, as ultimate engineering concrete 

properties are not solely related to materials, mix proportions and service environments, but also 

factors which are difficult to control on site, such as manufacturing and delivery processes, as well as 

construction practices employed from initial placement to final curing [4,8,9]. As a result, a 

correlation between performance assumptions and in situ construction quality should ideally be 

considered.  

To ensure the ultimate delivery of high performance in practice, on site evaluation is essential and so 

were many field techniques proposed [10-14]. Amongst these, assessment of concrete’s near-surface 

permeation characteristics is recognised as a reliable tool to qualify durability [4,10,14,15], because 

deterioration of reinforced concrete usually involves ingress of aggressive substances from the 

surrounding environment [3,5,7,11]. Air permeability tests have gained popularity in recent years 

due to their short test duration and the fact that concrete pore structure is unaffected during testing 

[5,13,16]. Whilst a variety of field methods are available for the assessment of NC air permeability 

and some have become standards [4,10,11,17], no suitable in situ method exists for the assessment of 

HPCs. Previous research attempting to utilise currently available in situ methods has found that due 

to low test sensitivity, most are ineffective at quantifying permeation characteristics of concrete with 
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very low porosity and permeability [18-20]. This is unfortunate given that air permeability is an 

excellent parameter for in situ quality control [3,5,8]. Using the established Autoclam air 

permeability method, a preliminary study by Yang et al. [21] identified two potential approaches for 

improving test sensitivity sufficiently to assess relative HPC permeability. This included using a 

reduced volume of compressed air exposed to the test area (designated as low volume, or LV, 

Autoclam air permeability test) and using a larger test area (75mm internal diameter base ring 

instead of 50mm). Whilst positive results were obtained using these modifications, further 

assessment and quantification of basic instrument performance characteristics and measurement 

processes is required before widespread in situ use. In addition, reliability needs to be established by 

testing a wider range of HPCs as well as any preconditioning requirements for the proposed methods. 

 

2 Aims and scope of the research 

Against this background, the aim of the current study was to assess the performance characteristics 

of these modified test approaches that enable more sensitive and reliable determination of air 

permeability of HPCs. This requires: 

1. Establishment of the preconditioning regime for air permeability measurement, targeting at 

selecting a suitable indicator to reflect concrete moisture conditions. 

2. Assessment of the effect of moisture on air permeability tests with the aim of identifying an initial 

condition for in situ measurement.  

3. Validation of the proposed technique by comparing against results obtained from a standard 

laboratory-based RILEM gas permeability test method.  

4. Comparison of two modified air permeability tests in order to select the better test for future 

research investigations. 
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The research scope is to assess the HPC performance characteristics using the Autoclam air 

permeability test methodology, after incorporating two key modifications investigated and a new test 

protocol developed. The first modification considered a reduced volume of compressed air applied to 

the test area (named LV test), and the second an increased test area (named A-75). The reliability of 

the proposed modifications was investigated by comparing against a laboratory-based gas 

permeability test method (RILEM air permeability test). Surface resistivity and relative humidity 

(RH) were assessed to evaluate the influence of moisture conditions on in situ air permeability test 

results. The results obtained from this investigation led to the development of a new protocol for 

measuring the in situ air permeability of HPCs and a proposal for eliminating the effect of moisture 

content on measured air permeability values. Furthermore, the suitability of RH and resistivity 

measurements for quantifying the influence of moisture content of the HPCs on air permeability was 

established. 

 

3 Experiment programme 

3.1. Variables investigated 

As shown in Table 1, the two key variables studied in this work included concrete mix type and test 

methodology using the Autoclam air permeability apparatus. In terms of mix type, one normal 

concrete (control) and five HPCs were investigated. The intention was to assess a sufficiently wide 

range of performance levels to allow accuracy to be established adequately [22]. In terms of test 

methodology, three approaches were considered; namely the conventional Autoclam air permeability 

test with both a 50 and 75mm base ring (designated as A-50 and A-75 respectively) and the low 

volume Autoclam air permeability test (designated as LV-test). To investigate the effect of moisture 

condition on results obtained, all three test methods were carried out on concretes exposed to five 
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different drying durations. Moisture conditions of test specimens were subsequently quantified using 

relative humidity and surface resistivity measurements. 

3.2. Materials and concrete mixes 

Based on previous studies carried out at Queen’s University Belfast [18,23], mix compositions of the 

NC and five HPCs were decided (reported in Tables 1 and 2). Typical of HPCs [1-3,8], four of the 

HPC mixes contained SCMs, including microsilica (MS), pulversised fuel ash (PFA) and ground 

granulated blast-furnace slag (GGBS). 

CEM-I cement confirming to BS-EN 197 [24] was used where applicable. PFA was obtained from 

Kilroot Power Station in Northern Ireland, UK, with its properties conforming to BS-EN 450 [25]. 

Microsilica used was in the form of slurry from Elkem, manufactured to BS-EN 13263-1 [26]. 

GGBS was from Civil Marine Slag Cement Ltd, manufactured according to BS-EN 15167 [27]. The 

superplasticiser was a polycarboxylic acid based polymer. The fine aggregate was medium graded 

natural sand and the coarse aggregate was crushed basalt with 10 and 20 mm size proportions in 

equal mass. The moisture condition of the aggregates was controlled by pre-drying in an oven at 

105(± 5)oC for 24 hours, followed by cooling to 20(±1)oC for one day before casting. 

3.3. Preparation of specimens and testing 

Concrete mixing was undertaken in accordance with BS 1881, Part 125: 2005 [28] and followed 

immediately by slump and air content testing in accordance with BS-EN 12350-2 [29] BS-EN 

12350-7 [30] respectively. Three 230×230×100mm slabs and six 100mm cubes were manufactured 

for each mix. Moulds were filled with concrete in two equal layers, with each being compacted using 

a vibrating table until air bubbles stopped appearing on the surface. All test specimens were covered 

with wet hessian and placed in a constant temperature room at 18(±2)oC. After 24 hours, specimens 

were removed from their moulds and cured in a water bath at constant temperature of 20(±1)oC). 
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Cube specimens were removed after 28 and 56 days and tested for compressive strength according to 

BS-EN 12390-3 [31]. 

Fresh properties and compressive strength values for each concrete are shown in Table 3. Disparity 

between the normal concrete (NC) and HPC is evidenced by the variation in 28-day compressive 

strength, which was 37 N/mm2 for mix NC and, on average, 70 N/mm2 for the five HPC mixes. 

Slab specimens were removed from the water bath after three days, wrapped in polythene sheets and 

relocated to a constant temperature room (20±1oC) for 90 days to remove any influence of hydration 

on subsequent test results. After this 90 day period, sides of the slab were painted with three coats of 

an epoxy paint to prevent moisture transport. Specimens were then saturated in water in layers by an 

incremental immersion method in order to ensure that the specimens were saturated whilst the 

entrapped air was removed [32]. 

At the end of the saturation period, slabs were placed in a drying cabinet (40±1ºC and 35% RH). 

After drying for 7 days, they were removed from the oven and cooled in a constant temperature room 

(20 ± 2 oC) for 1 day prior to carrying out the three Autoclam air permeability tests, relative humidity 

and surface resistivity measurements. Once these tests were completed, specimens were dried in the 

oven again for another 7 days and measurements repeated after cooling to room temperature. This 

process was repeated when concrete slabs were dried for 21, 28 and 35 days. 

After carrying out the last set of measurements, three cores (3×50 mm diameter) were cut from the 

specimens and dried in an oven at 40oC until they reached constant weight. After drying, the cores 

were left in a constant temperature room (20 ± 2oC, 50% RH) to cool for one day. The RILEM gas 

permeability test [33] was then carried out as described in section 2.4. 

The curing, preparation, drying and testing regime for the slab specimens is summarised in Table 4. 
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3.4. Test methods 

3.4.1 Relative humidity test 

A chilled mirror dew-point probe, manufactured by Michell Ltd., was used for relative humidity 

(RH) measurements of the surface and at depths of 10 and 20 mm in holes drilled in the slab 

specimens, as shown in Figure 1. As per the recommendations of an investigation by Nolan et al. 

[32], the probe was left in place for one hour to obtain stable RH readings. Each value shown is the 

mean of two measurements (one measurement in each of the test blocks). 

3.4.2 Surface resistivity test 

With surface resistivity representing another technique to assess near-surface concrete moisture 

conditions [9], the non-destructive Wenner probe method (see Figure 2) was employed to measure 

electrical resistivity. This technique measures potential differences across two inner electrodes by 

applying alternating current at a constant magnitude between outer electrodes. Resistivity is given by 

the following equation: 

ȡ=2ʌa(V/I)           (1) 

where: ȡ is the surface resistivity (Ωm); a is the spacing between probes (m); V is the potential 

difference across the electrodes (V); and I is the applied current (A). 

The spacing ‘a’ of the Wenner probe defines the electrical flow patterns and specifies the effective 

tested region. As such, resistivity gradients near the surface region can be quantitatively investigated 

by varying the spacing [9]. Therefore, this study utilised two spacings (20 and 30mm) to identify 

whether resistivity values can be used as an alternative approach to estimating near-surface moisture 

conditions. 
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After drying, five measurements were carried out on the surface of one randomly selected slab for 

each concrete mix and the average value reported. 

3.4.3 Autoclam air permeability test 

As described previously, three Autoclam-based air permeability tests were undertaken as part of this 

study. The first test employed a conventional 50mm diameter base ring (designated as A-50), which 

is the base ring size widely used for testing normal concrete. The second test employed a 75mm 

diameter base ring (designated as A-75), modified for testing high performance concrete. The third 

test was undertaken using a modified low volume of compressed air (designated LV test), with a 50 

mm base ring. Figure 3 shows the instruments used in this study and further details have been 

published elsewhere [21]. 

The three test methods have the same working principle and hence similar procedures were applied. 

A base ring was used to isolate the test area on the surface of the concrete blocks and the instrument 

was pressurised manually. When the pressure reached 0.5 bar, the test commenced automatically. 

With air escaping through the pores in the test specimen, pressure decreased and was monitored 

every minute for 15 minutes. To calculate the value of air permeability index (API), natural 

logarithms of air pressure were plotted against time. The slope of the last 10 data points was reported 

as an air permeability index, API, [in ln(bar)/min]. API values lower than 0.1 ln(bar)/min from the 

conventional Autoclam test with a 50mm base ring generally represent good quality concrete [10]. 

However, this cannot be applied directly to qualify the durability of HPCs because most values for 

HPCs would be less than 0.1 ln(bar)/min [20,21]. 

3.4.4 RILEM gas permeability test 

Coefficients of gas permeability were determined according to RILEM TC-116 PCD [33] using three 

50mm diameter cores for each mix. Each specimen was placed in the permeability cell and gas 
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(Nitrogen) applied under 1.2 bar pressure. The test pressure was kept at this value and flow rates 

measured. Gas permeability coefficients were calculated based on Darcy’s equation, without 

accounting for any gas slippage effects on the rate of flow, as follows: 

Kg=2µLPoQs/A(Pi
2-Po

2)          (2) 

Where: Kg is the gas permeability coefficient (m2); µ is dynamic viscosity of N2 (Ns/m2) at 20 oC; L 

is the sample thickness (m); A is the section area subjected to flow (m2); Qs is volume flow rate of 

gas (m3/s); and Pi/Po is the inlet/outlet pressure (N/m2). 

 

4 Results and discussion 

4.1. Moisture condition after drying 

Illustrated in Figure 4 is the influence of drying duration on surface resistivity for the two Wenner 

probe spacings considered (20 and 30mm). With loss of moisture connectivity within capillary pores 

leading to increased concrete resistivity [9, 34], perhaps not surprisingly it was found that surface 

resistivity generally increased with prolonged drying periods. No significant difference in surface 

resistivity was noted when Wenner probe spacing increased from 20 to 30 mm, and readings for all 

concretes tended to stabilise after 28 days of drying. Resistivity values for the different concretes 

varied considerably, but reflecting their inherent material and performance differences. It was noted 

that conclusions drawn for a given concrete were difficult to extend to other concretes and no general 

experimental strategy could be established. Therefore, it was concluded that surface resistivity not 

only reflects changes of moisture condition, but also the porosity and permeation properties of the 

concrete. As such, it is very difficult to propose a reference value of surface resistivity to be used as 

an indication of the dryness of different concretes. In agreement with conclusions drawn by Romer 
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[19], therefore, air permeability compensations for the effects of moisture in HPCs cannot be based 

on surface resistivity measurements.  

In terms of using RH as a reliable indication of concrete moisture condition, Figure 5 reports 

measured values at different concrete depths (surface, 10 and 20mm) after different drying periods 

(7, 14, 21, 28 and 35 days). As shown, surface RH values varied between 40 and 55% across the 

whole drying period and no general pattern was identifiable. It is generally recognised that when RH 

values are below 60%, little free moisture is present in the capillary pore system [35,36]. From 

Figure 5, therefore, it can be assumed that low levels of free surface moisture are present after 7 

days of drying. Whilst no specific trends between RH and drying duration were noted for all of the 

concrete mixes, this conclusion is consistent with previous related research [32]. 

For RH testing undertaken at depths of 10 and 20mm, clearly apparent from Figure 5 are progressive 

reductions of RH with drying duration. Perhaps not surprisingly, RH values at 10mm were lower 

across the board than at 20mm and decreased with drying time at a more rapid rate. 

At both 10 and 20mm depths, equilibrium was not established even after 35 days of drying. This 

suggests that, consistent with previous studies [32,35,37], drying alone is not sufficient to obtain 

uniform moisture distribution across specimens. It is clear, however, that RH values at both 10 and 

20mm depths were lower than 60% after drying for 21 days, indicating very low levels of free 

moisture in this region (i.e. from the surface to 20mm) [35-37]. This observation suggests that RH 

measurement at depth is a suitable indicator to assess the moisture condition in concrete. 

4.2. In situ air permeability after drying 

The influence of drying duration on results obtained from the three Autoclam air permeability tests is 

shown in Figures 6(a)-(c). 
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For the control mix NC, accuracy of the test methods was anticipated based on previous research 

[32] confirming the conventional Autoclam test’s effectiveness to assess NC permeability when RH 

levels at a 10mm depth are below 80%. From Figure 5, it has already been shown that RH values for 

all concretes in this study were below 70% after only 7 days of drying. From Figure 6, a clear 

influence of drying was noted for the control NC mix, with API values generally increasing with 

drying duration for all three test methods. This increase was most pronounced for the LV test, as was 

the clear distinction between the NC result and those obtained for the various HPC mixes. 

From Figure 6(a), it can be seen that the API values obtained for all HPC mixes using test A-50 

were low and within a narrow range (between 0.03 and 0.05). No obvious variation or result trend 

was noted during the entire drying period. Within such a small range, it was not surprising to see the 

five HPC data sets coinciding with each other. This suggests that due to its low sensitivity, the A-50 

test is not capable of distinguishing between relative performance and changes caused by moisture 

variations for HPC. This is perhaps not surprising given that the A-50 test method was developed in 

the 1990s for measuring the permeability of NCs [10]. 

In terms of API results obtained from the A-75 test, Figure 6(b) shows generally increasing values 

with drying duration up to 21 days, with data stabilising thereafter. Also apparent was improved test 

sensitivity, with more pronounced differences (ranging from 0.03 to 0.10) noted between the 

different HPCs. 

As shown in Figure 6(c), the LV test produced the highest API values for all mixes and drying 

durations. Relative to the A-75 test, performance differences between the HPC mixes were even 

more pronounced, with values ranging from 0.05 to 0.18. This trend implies that the LV test has the 

highest sensitivity among the three test methods investigated when assessing HPC performance. 

Despite having RH values less than 80% at 10mm after 7 days of drying (see Figure 5), also noted 

from Figure 6 for the HPC mixes was a level of result randomness at early drying ages. This was 
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particularly apparent for the LV-test where a more pronounced spread of relative values was 

recorded. This trend suggests that, in contrast to NC, the influence of moisture for HPCs needs to be 

further removed or controlled in order to obtain reliable results. From the trends noted from Figures 

5 and 6, it is clear that for accurate evaluations of moisture effect on API for HPCs, measurement of 

RH at depths greater than 10mm is merited.  

Results shown in Figures 6(b) and (c) for the A-75 and LV tests highlighted that for HPCs, ranking 

of API values was almost constant after 21 days of drying.  

Against this background, the results from the current study suggest that 21 days of oven drying (40oC) 

is an appropriate preconditioning laboratory regime to remove moisture effects prior to HPC air 

permeability testing. Obviously, this level of drying is a challenge for the use of in situ air 

permeability tests to assess the performance of HPCs in structures. 

4.3. Influence of drying on reliability of Autoclam air permeability tests 

The next phase of the research focused on assessing the reliability of the proposed Autoclam test 

methods. This was achieved by comparing Autoclam results with reference permeability coefficients 

obtained from RILEM steady state gas permeability test. As shown in Table 5, average gas 

coefficients obtained from the RILEM gas permeability testing for all concretes were relatively low, 

ranging from 2.5 to 12×10-17m2. As expected, the control NC mix achieved the highest average value 

of 12×10-17m2. In comparison, the HPC mixes achieved values which were on average around three 

times lower. The lowest (2.5×10-17m2) and highest (6.2×10-17m2) average HPC permeability values 

were achieved by the PFA and GF mixes respectively.   

Using the results obtained from both the Autoclam and RILEM test methods, a linear regression 

analysis was subsequently performed to assess the relative performance. As data from the different 

tests could not easily be compared directly due to their non-homogeneous variance and the different 
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units used for expressing the results, results were transformed by log-function and normalised as 

follows [38,39]: 

Z = (xi-xav)/SD           (3) 

where: Z is the normalised data; xi the log transformed data; xav the average value of the specific 

method; and SD the standard deviation of the specific method. With no physical meaning, the values 

obtained in this way were used to reflect relative differences in concrete permeability properties 

only. 

The relationship between normalised values of Kg (RILEM gas permeability test) and normalised 

results from the Autoclam-based A-50, A-75 and LV tests are given in Figures 7, 8 and 9 

respectively. In each figure, plots are included for results obtained after 7, 14, 21, 28 and 35 days of 

drying to enable an investigation of its influence on test reliability. A summary of the regression 

analysis data supporting Figures 7-9 is additionally provided in Table 6.  

For all three Autoclam test methods, Figures 7-9 indicate general positive relationships between 

normalised API and RILEM gas permeability values. This is verified by the fact that the p-values 

obtained from regression analysis were all lower than 0.05, meaning that the relationship between the 

independent variable (Kg) and the dependent variable (API) can be considered to be statistically 

significant. Also apparent is the significant influence of drying time, with correlations between API 

and Kg strengthening for all three Autoclam tests as the drying duration increased from 7 to 35 days. 

For the LV test, for example, R2 values for the relationship increased progressively from 0.443 at 7 

days to 0.881 at 35 days. This trend further strengthens the importance of precondition drying before 

undertaking air permeability measurements. 

Across the range of drying conditions considered, the strongest correlations between API and Kg 

were noted for the A-50 and LV tests. For both, respective increases and decreases of R2 and error of 
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regression were noted with prolonged drying durations, with values generally stabilising after 14 

days of drying. As moisture conditions in HPC mixes are known to be generally stable due to their 

dense pore structure [36,40], prolonged drying is needed to remove this moisture. This trend has 

already been confirmed in Figure 5 and further justifies the improved relationships between API and 

Kg with prolonged drying period as plotted in Figures 7-9. 

When comparing the similar reliability of the A-50 and LV tests using the results in Table 6, 

however, it is important to bear in mind the very poor levels of sensitivity noted for the former in 

Figure 6. This phenomenon indicates that test sensitivity and reliability are two different 

characteristics that cannot be viewed independently. From this study, therefore, the LV test appears 

to be the most appropriate method for assessing HPC air permeability.  

To confirm the conclusion of the linear regression analysis, three basic hypothesises were 

subsequently verified [38,39]. Final checks were undertaken to ensure that errors were independent 

of the fitted values, normally distributed and had equal variances. Graphical analysis of the residual 

plots was used to check these hypothesise [39]. The normal distribution of errors was confirmed by a 

probability plot, while the other two were checked using a plot of the residuals against the fitted 

values [38]. For the LV test, results of this analysis are shown in Figure 10, which contains five 

separate plots relating to the drying periods of 7, 14, 21, 28 and 35 days.  All of the probability plots 

approximate a straight line, meaning that errors are normally distributed. Plots of residuals versus 

fitted values show that the former are randomly scattered around zero, indicating no non-consistent 

variability over the data range. Furthermore, there is no evidence to show dependence between 

residuals and fitted values. As such, the three hypothesises are proven and the interpretation of the 

regression analysis justified. 

Against the background of this experimental work and analysis, the Autoclam-based LV test exhibits 

the best performance and is recommended as a new test method for assessing HPCs, using test 
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specimens preconditioned in an oven at 40oC for 21 days. For site applications, this means that the 

concrete should achieve this state of internal moisture content up to a depth of at least 20mm before 

the in situ air permeability test can be used to assess the performance of HPC in structures. 

 

5 Conclusions 

This study was undertaken to propose a scientifically sound method capable of distinguishing the air 

permeability of different HPCs, by taking into account of their moisture content and the influence of 

drying. The following main conclusions have been drawn based on the results reported in this paper: 

1) Results of RH testing for HPC mixes do not show significant variation after 21 days of specimen 

drying in an oven at 40oC. RH readings within the near-surface region (surface to 20mm depth) 

of below 60% are achievable, meaning no influence of moisture in capillaries on measured air 

permeability results. That is, RH testing is a reliable indicator to eliminate the influence of 

moisture on air permeability testing and the RH values in the near-surface region (from surface 

to 20mm depth) of HPC should be less than 60% to get reliable air permeability values.  

2) Values of HPC surface resistivity do not show significant variations after 21 days of drying. This 

method is not an appropriate approach to reflect the moisture conditions; therefore, no critical 

value can be proposed for a range of concrete mix types. 

3) The effect of moisture dominates air permeability measurements and may result in misleading 

conclusions for HPCs. To overcome this, specimen preconditioning in an oven at 40oC for more 

than 21 days (or similar extent of drying) is recommended. Results indicated that after drying for 

21 days in this way, strong correlations between Autoclam air permeability test and RILEM gas 

permeability tests existed.  
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4) Combining findings of the sensitivity and reliability analysis, the Autoclam-based LV test 

performed best among the three Autoclam air permeability tests considered. This test is 

recommended, therefore, as a robust technique for determining the air permeability of HPCs.  

5) The LV test method could be used to measure in situ air permeability of HPCs, but it should be 

noted that in order to yield reliable results, the concrete should be in a moisture state equivalent 

of 21 days of drying in an oven at 40oC, which can be assessed by measuring relative humidity, 

i.e. internal relative humidity of less than 60% in the near-surface region.  
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Table 1 Experimental variables 

Mix proportions* Test variables*** 

Control 
One normal 
concrete: NC**  

A-50 
Oven drying at 40oC for 7, 14, 
21,28, 35 days 

A-75 

LV  

HPC 
Five HPCs: MF, 
PC, PFA, GGBS, 
GF 

A-50 
Oven drying at 40oC for 7, 14, 
21,28, 35 days 

A-75 

LV  

* Proportion details of six concrete mixes are given in Table 2 

*** NC - normal concrete 

MF - HPC with both MS and PFA 

PC - HPC with only PC 

PFA - HPC with PFA  

GGBS - HPC with GGBS  

GF - HPC with both GGBS and PFA 

** A-50 refers to conventional Autoclam testing with a 50mm base ring, A-75 refers to Autoclam 
testing with a modified 75mm base ring; LV refers to low volume Autoclam testing with a 50 mm 
base ring. 
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Table 2 Concrete mix proportions  

Designation 
Binder 

proportions 
(% by mass) 

Material quantities (kg/m3) 
W/B 
ratio 

SP 
(% by mass) PC MS GGBS PFA Water FA CA 

Control normal concrete: 

NC 
100:0 

Only PC 
375 0 0 0 256 625 1136 0.68 0 

High performance concretes: 

MF 
73:7:20 

PC:MS:PFA 
352 36 0 97 145 652 1150 

0.3 

1.5 

PC 
100:0 

Only PC 
485 0 0 0 145 689 1150 1.3 

PFA 
80:20 

PC:PFA 
388 0 0 97 145 668 1150 1.4 

GGBS 
50:50 

PC:GGBS 
243 0 243 0 145 676 1150 1.4 

GF 
30:50:20 

PC:GGBS:PFA 
145 0 243 97 145 655 1150 1.3 

 
Notes: 

1) FA and CA represent fine and coarse aggregate contents respectively;  

2) SP refers to superplasticiser dosage as a percentage by mass of the total binder content. 
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Table 3 Fresh properties and compressive strength of concrete 

Mix 
Slump 

(mm) 

Air content 

(% by volume) 

Compressive strength (N/mm2) 

28 day 56 day 

MF 240 1.6 84.2 94.6 

PC 225 1.0 81.8 87.3 

PFA 220 0.6 81.3 90.7 

GGBS 235 1.5 74.7 79.9 

GF 195 1.7 62.8 69.7 

NC 145 1.2 36.8 43.2 
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Table 4. Slab specimen curing, preparation, drying and testing regime  

CURING REGIME / SPECIMEN PREPARATION Comments 

T
es

t s
pe

ci
m

en
 c

u
rin

g 
an

d
 

P
re

pa
ra

tio
n

 

Specimens de-moulded after 24 hours. 

3 days 20±1oC 
Constant temperature water 

bath. 
Initial curing period. 

90 days 20±1oC 

Wrapped in polythene sheet 

and located in a constant 

temperature room. 

Intended to achieve the 

maximum degree of 

hydration and, thereby, 

remove the effect of 

hydration on subsequent 

test results. 

3 days 

Sides painted with epoxy paint and 

specimens saturated by incremental 

immersion. 

Sample preparation to 

prevent future moisture 

transport through sides. 

D
ry

in
g

 

1,2, 3, 4 or 

5 weeks 

50±1ºC 

R.H. 35% 
Drying cabinet. 

Assessment of drying 

time on performance. 

1 day ~20oC 
Wrapped in polythene and 

cooled to room temperature. 
Pre-testing conditioning. 

Testing: Relative humidity, surface resistivity and air permeability Main testing programme. 

T
es

t s
pe

ci
m

en
 

P
re

pa
ra

tio
n

 

3 days 

50mm diameter cores extracted. 

Specimens dried in an oven at 40oC and 

35% R.H. until the constant weight 

reached. 

Specimen preparation 

before testing.  

Confirm testing: RILEM gas permeability test Confirmation testing. 
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Table 5. Permeability coefficients (Kg) 

Concrete mix 
Kg (10-17m2) results Relative 

ranking Test 1 Test 2 Test 3 Average 

PFA 2.2 2.5 2.9 2.5 1 

MF 2.8 2.4 4.0 3.1 2 

PC 4.1 5.5 6.5 5.4 3 

GGBS 5.5 6.0 - 5.8 4 

GF 5.2 7.7 5.8 6.2 5 

NC 12.0 12.0 - 12.0 6 
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Table 6 Summary of the regression results between Autoclam and RILEM permeability test methods 

Correlation 
Parameters of 

regression analysis 
Drying duration (d) 

7 14 21 28 35 

A-50 
Vs 

RILEM gas 
test 

R2 0.275 0.626 0.736 0.74 0.804 

Regression error 0.881 0.633 0.531 0.527 0.458 

F -Value 5.32 23.41 39.11 39.94 57.34 

P-value for F-test 0.037 <0.001 <0.001 <0.001 <0.001 

A-75 
Vs 

RILEM gas 
test 

R2 0.197 0.475 0.539 0.568 0.49 

Regression error 0.927 0.75 0.702 0.68 0.739 

F-value 3.44 12.66 16.4 18.42 13.46 

P-value for F-test 0.085 0.003 0.001 0.001 0.003 

LV test 
Vs 

RILEM gas 
test 

R2 0.443 0.717 0.75 0.753 0.881 

Regression error 0.773 0.55 0.517 0.514 0.357 

F-value 11.12 35.50 42.07 42.66 103.86 

P-value for F-test 0.005 <0.001 <0.001 <0.001 <0.001 
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Dew point sensor

O-ring
Blue tack to seal 
void

Blue tack 
Temperature 
sensor

Hole

 

(a) Surface measurement  (b) Measurement at different depths 

Figure 1. Method of measuring RH at surface and in the preformed cavities 
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Figure 2 Surface resistivity meter 
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(a) Autoclam permeability system, including 50 and 75mm internal diameter test rings and syringe for 

applying air pressure 

Base ring

Pump (P)

Transducer 

(TX)

Logger 

(LG)

Power supply

(P.S.)

 

(b)                                                                    (c) 

(b) Test schematic; (c) Low volume (LV) test instrument  

 

Figure 3 Autoclam air permeability test apparatus 
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(a) 20 mm spacing    (b) 30 mm spacing 

Figure 4 Influence of drying duration on surface resistivity 
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Figure 5 Relative humidity values at different depths after drying for different periods 
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Figure 6 Relationship between API value and drying duration for Autoclam-based tests methods 
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Figure 7 Effect of drying on relationship between A-50 and RIELM permeability tests 
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Figure 8 Effect of drying on relationship between A-75 and RIELM permeability tests 
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Figure 9 Effect of drying on relationship between LV and RIELM permeability tests 
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Figure 10 Diagnostic plots of regression analysis for LV test 
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