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Abstract

Genome wide association studies (GWAS) and large scale replication studies have identified 

common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of 

the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS 

comprising of 15,748 breast cancer cases and 18,084 controls, and 46,785 cases and 42,892 

controls from 41 studies genotyped on a 200K custom array (iCOGS). Analyses were restricted to 

women of European ancestry. Genotypes for more than 11M SNPs were generated by imputation 

using the 1000 Genomes Project reference panel. We identified 15 novel loci associated with 

breast cancer at P<5×10−8. Combining association analysis with ChIP-Seq data in mammary cell 

lines and ChIA-PET chromatin interaction data in ENCODE, we identified likely target genes in 

two regions: SETBP1 on 18q12.3 and RNF115 and PDZK1 on 1q21.1. One association appears to 

be driven by an amino-acid substitution in EXO1.

Breast cancer is the most common cancer in women worldwide1. The disease aggregates in 

families, and has an important inherited component. This inherited component is driven by a 

combination of rare variants, notably in BRCA1, BRCA2, PALB2, ATM and CHEK2 

conferring a moderate or high lifetime risk of the disease, together with common variants at 

more than 70 loci, identified through GWAS and large scale replication studies2–20. Taken 

together, these loci explain approximately one-third of the excess familial risk of breast 

cancer.

The majority of susceptibility SNPs has been identified through the Breast Cancer 

Association Consortium (BCAC), a collaboration involving more than 50 case-control 

studies. We recently reported the results of a large-scale genotyping experiment within 

BCAC, which utilised a custom array (iCOGS) designed to study variants of interest for 

breast, ovarian and prostate cancers. iCOGS comprised more than 200,000 variants, of 

which 29,807 had been selected from combined analysis of nine breast cancer GWAS 

involving 10,052 breast cancer cases and 12,575 controls of European ancestry. In total, 

45,290 breast cancer cases and 41,880 controls of European ancestry from 41 studies were 

genotyped with iCOGS, leading to the discovery of 41 novel susceptibility loci16. A parallel 

analysis identified four loci specific to oestrogen receptor (ER)-negative disease17. 

However, additional susceptibility loci may have been missed because they were not 

selected from the original GWAS, or not included on the array.

Genotype imputation is a powerful approach to infer missing genotypes using the genetic 

correlations defined in a densely genotyped reference panel, thus providing the opportunity 

to identify novel susceptibility variants even if not directly genotyped21. In this analysis we 

aimed to identify additional breast cancer susceptibility loci by utilising data from all 200k 

variants on the iCOGS array, and used imputation to estimate genotypes for more than 11M 

SNPs. We applied the same approach to data from 11 GWAS. After quality control (QC) 

exclusions, the dataset comprised 15,748 breast cancer cases and 18,084 controls from 

GWAS, and 46,785 cases and 42,892 controls from 41 studies genotyped with iCOGS (see 

Online Methods and Supplementary Tables 1a–1e). All subjects were women of European 

ancestry.

Michailidou et al. Page 2

Nat Genet. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We imputed genotypes using the 1000 Genomes Project March 2012 release as the reference 

dataset (see Online Methods) The main analyses were based on ~11.6M SNPs that were 

imputed with imputation r2 >0.3 and had MAF>0.005 in at least one of the datasets22.

Of common SNPs (MAF>0.05), 88% were imputed from the iCOGS array with r2>0.5; this 

compared to 99% of variants for the largest GWAS (UK2), which was genotyped using a 

670k SNP array (Figure 1a and 1b, Supplementary Table 2). Thirty-seven per cent of 

common SNPs were imputed on the iCOGS with r2>0.9, compared with 85% for UK2. 

Thus, despite being designed as a follow-up of GWAS for different diseases rather than a 

genome-wide array, the majority of common variants could be imputed using the iCOGS, 

but the overall imputation quality was, poorer that from a standard GWAS array. Imputation 

quality decreased with decreasing allele frequency (Figure 1c and 1d, Supplementary Table 

2).

Log odds ratio estimates and standard errors were calculated for each dataset using logistic 

regression, adjusting for principal components where it was found to reduce substantially the 

inflation factor. We then combined the results from each dataset for variants with MAF 

>0.5% using a fixed effects meta-analysis23. More than 7,000 variants with a combined 

P<5×10−8 for association were identified, the large majority of which was in regions 

previously shown to be associated with breast cancer susceptibility. Of the 79 previously 

published breast cancer susceptibility loci identified in women of European ancestry, all but 

eight show evidence of association at P<5×10−8 for overall, ER-positive or ER-negative 

disease risk (Supplementary Tables 3a, 3b and 3c). For four of the eight variants, (rs1550623 

on 2q31, rs11571833 on 13q13.1, rs12422552 on 12p13.1 and rs11242674 on 6p25.3), 

slightly weaker evidence of association was observed. One reported variant, rs7726159 did 

not reach P<5×10−8 in this (P=0.0017) or the previous analysis – it was identified through 

fine-mapping of the TERT region on 5p15.3318. One other variant in AKAP9, rs6964587 

reported previously19 did not reach P<5×10−8 but an alternative correlated with it did 

(P=3.67×10−8 for chr7:91681597:D; r2 between the two markers = 0.98). The two remaining 

variants (rs2380205 on 10p15 and rs1045485 at CASP8) were reported in earlier analysis9,24 

but did not even reach P<0.0001, suggesting that they may have been false positive reports. 

An alternative variant at CASP8, rs1830298 (r2=0.06, D’ =1 with rs1045485 in 1000G CEU) 

did reach P<5×10−8 in this dataset25.

To assess evidence for additional susceptibility loci, we removed all SNPs within 500kb of 

susceptibility variants identified previously in women of European ancestry2–14,16–19, 

leaving 314 variants from 27 regions associated with breast cancer at P<5×10−8 

(Supplementary Figures 1 and 2). The strongest associations were observed in a 610kb (b37 

28,314,612- 28,928,858) interval on chromosome 22 (smallest P=8.2×10−22, for 

rs62237573). This interval lies approximately 100kb centromeric to CHEK2, and further 

analysis revealed that the associated SNPs were correlated with the CHEK2 founder variant 

1100delC (strongest correlation r2=0.39 for SNP rs62235635), CHEK2 1100delC is known 

to be associated with breast cancer through candidate gene analysis, but has not previously 

generated an association in GWAS 26,27. We performed an analysis adjusting for CHEK2 

1100delC using data on ~40,000 samples that had been genotyped for this variant. The 

strongest associated variant in this subset was rs140914118; after adjustment for 1100delC 
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the statistical significance diminished markedly (P=3.1×10−9 to P=0.78; Supplementary 

Figures 3a and 3b), suggesting that this signal is driven by CHEK2 1100delC.

Variants in four regions (DNAJC1, 5p12, PTHLH and MKL1) lay within 2Mb of a 

previously published susceptibility-associated SNP. In each case, these associations became 

weaker (no longer P<5×10−8) after adjustment for the previously associated SNP(s) in the 

region (data not shown). For four other regions, the significant variants were identified in 

just one GWAS, and failed imputation (r2<0.3) in the remaining datasets, including iCOGS; 

we did not consider these variants further.

To confirm the results for the remaining 18 regions, we performed re-imputation in the 

iCOGS dataset without phasing (See Online Methods). Fifteen loci remained associated with 

breast cancer at P<5×10−8 (Table 1 and Supplementary Table 4). For three of the loci, the 

most significant SNP, or a highly correlated SNP, had been directly genotyped on iCOGS 

(Supplementary Table 5); one, rs11205277, had been included on the array because it is 

associated with adult height28, while the other two were selected based on evidence from the 

combined breast cancer GWAS but failed to reach genome-wide significance in the earlier 

analyses. We attempted to genotype the 12 remaining variants on a subset of ~4K samples to 

confirm the quality of the imputation (10 variants could be directly genotyped, for one 

region an alternative correlated variant was selected (Supplementary Table 5). For the 11 

variants that could be assessed, the r2 between the observed and imputed genotypes were 

close to the r2 estimated in the imputation. Furthermore, the estimated effect sizes in the 

subset of individuals that we genotyped were similar to those obtained from the imputed 

genotypes (Supplementary Table 5). These results indicate that the analyses based on 

imputed genotype data were reliable.

There was little or no evidence of heterogeneity in the per-allele odds ratios (ORs) among 

studies genotyped using iCOGS (Supplementary Table 6 and Supplementary Figure 4). 

There was little evidence for departure from a log-additive model for any locus, except for a 

borderline departure for rs6796502 (P=0.049) for which the ORs for heterozygotes and 

homozygotes for the risk associated allele were similar (Supplementary Table 6).

The estimated ORs for invasive versus in-situ disease were similar for all the loci (P>0.05) 

(Supplementary Table 7). For four of the loci, rs12405132, rs12048493, rs4593472 and 

rs6507583 the association was stronger for ER positive disease (case only P<0.05) 

(Supplementary Table 8). Seven of the loci were associated with ER-negative disease 

(P<0.05) but none had a stronger association for ER-negative than ER-positive disease. Two 

of the loci showed significant trends in the OR by age at diagnosis: for rs13162653, the OR 

was higher at younger ages (P=0.007), while for rs6507583, the OR was higher at older ages 

(P=0.006) (Supplementary Table 9). One of the variants, chr17:29230520:D in ATAD5 is 

correlated with a variant that has also been shown to be associated with serous ovarian 

cancer in a meta-analysis29 (r2=0.93 between chr17:29230520:D and chr17:29181220:I).

To approach the task of identifying the likely causal variants and genes underlying these 

associations, we first defined the set of all SNPs correlated with each of the 15 lead SNPs 

and that could not be ruled out as potentially causal (based on a likelihood ratio 100:130), 
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resulting in a subset of 522 variants (Supplementary Table 10). One of the variants, 

rs72755295, lies in an intron of EXO1, encoding a protein involved in mismatch repair. It is 

strongly correlated with only one other variant, rs4149909, coding for an amino-acid 

substitution in EXO1 (p.Asn279Ser; CADD score 3331), suggesting that this variant is likely 

to be functionally related to breast cancer risk. None of the remaining SNPs lay within gene 

coding sequences, consistent with previous observations that most common cancer 

susceptibility variants are regulatory. For each of the remaining 520 variants, we then looked 

for enhancer elements in mammary cell lines, based on ENCODE ChIP-Seq data32,33. To 

identify potential gene targets, we combined this information with ENCODE ChIA-PET 

chromatin interaction data. We identified two regions in which the associated variants 

overlapped with putative enhancer sequences and for which consistent promoter interactions 

were predicted (Table 1). For rs12405132 at 1q21.1, we identified four potential interacting 

genes, RNF115, POLR3C, PDZK1 and PIAS3 (Figure 2). Of these, the strongest evidence 

was for RNF115 and PDZK1; three of the 64 potentially causal variants lay in interacting 

enhancer regions. RNF115 (also known as BCA2) is an E3 ubiquitin ligase RING finger 

protein that is overexpressed in ER-positive breast cancers34. PDZK1 is a scaffold protein 

that connects plasma membrane proteins and regulatory components, regulating their surface 

expression in epithelial cells apical domains, and has been proposed to act as an oncogene in 

breast cancer35.

SNPs correlated with rs6507583 at 18q12.3 lay in regions interacting with the promoter of 

SETBP1 (Supplementary Figure 5). The encoded protein has been shown to bind the SET 

nuclear oncogene which is involved in DNA replication.

We utilised data from TCGA to assess associations between the 15 novel susceptibility 

variants and expression of neighbouring genes in breast tumors and normal breast tissue. 

One SNP, rs7707921, was strongly associated with RPS23 expression in all tissues 

(Supplementary Table 11, Supplementary Figure 6). However, stronger associations with 

expression were observed with more telomeric SNPs that were less strongly associated with 

disease risk (top eQTL SNP rs3739: P=10−23, P-risk=5.28×10−7), suggesting that this 

association may be coincidental. SNP, rs7707921 was also more weakly associated with 

expression of ATP6AP1L (P=5.6×10−5 in tumours, P=0.066 in normal tissue).

Based on the estimated ORs in the iCOGS stage (all but one of which were in the range 

1.05–1.10), the 15 novel loci identified here would explain a further ~2% of the 2-fold 

familial risk of breast cancer. Taken together with previously identified loci, more than 90 

independent common susceptibility loci for breast cancer have been identified, explaining 

~16% of the familial risk. We estimate assuming a log-additive model that, based on 

genotypes for variants at these loci, approximately 5% of women in the general population 

have a >2 fold increased risk of breast cancer and 0.7% of women have a >3 fold increased 

risk. In the current analyses, more than 50% of variants with MAF>0.005 in subjects of 

European ancestry were well imputable (r2>0.5) These results suggest that, while there may 

be further susceptibility variants with comparable associated effects that were not well 

imputed, the identification of many additional loci will require larger association studies. In 

the meantime, inclusion of these additional loci in polygenic risk scores will improve our 
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ability to discriminate between high and low risk individuals, potentially improving breast 

cancer screening and prevention.

Online Methods

Details of the subjects, genotyping and QC measures for the GWAS and iCOGS data are 

described elsewhere12,14,16,36,37. All participating studies were approved by their 

appropriate ethics review board and all subjects provided informed consent. Analyses were 

restricted to women of European ancestry. All imputations were performed using the 1000 

Genomes Project March 2012 release as the reference panel. Of the 11 GWAS, 8 (C-BCAC) 

plus a subset of the BPC3 GWAS (CGEMS) were used in the combined GWAS analysis 

that nominated 29,807 SNPs for the array. The BPC3 and TNBCC GWAS nominated 

additional SNPs with evidence for association with ER-negative or triple-negative (ER-, PR- 

and HER2- negative) breast cancer. The EBCG GWAS was not used to nominate SNPs for 

the iCOGS array.

For eight GWAS (C-BCAC), genotypes were imputed in a two-stage procedure, using 

SHAPEIT to derive phased genotypes and IMPUTEv2 to perform the imputation on the 

phased data 22. We performed the imputation using 5Mb non-overlapping intervals for the 

whole genome. OR estimates and standard errors where obtained using logistic regression 

with SNPTEST 21. For two of the studies we adjusted for the 3 leading principal 

components as it was found to reduce materially the inflation factor; for the rest of the 

studies no such adjustment was necessary. For the remaining three GWAS (BPC3, TNBCC 

and EBCG), imputation was performed using MACH and Minimac23. Genomic control 

adjustment was applied to each GWAS as previously described16. The iCOGS data were 

also imputed in a two-stage procedure using SHAPEIT and IMPUTEv2, again using 5Mb 

non-overlapping intervals. We split the ~90K samples into 10 subsets, where possible 

keeping subjects from the same study in the same subset. We obtained OR estimates and 

standard errors using logistic regression adjusting for study and 9 principal components.

For the regions showing evidence of association we repeated the imputation in iCOGS, 

using IMPUTEv2 but without pre-phasing in SHAPEIT to improve imputation accuracy. 

We also increased the number of MCMC iterations from 30 to 90, and increased the buffer 

region from 250kb to 500kb.

Meta-analysis

OR estimates and standard errors were combined in a fixed effects inverse variance meta-

analysis using METAL23. For the GWAS, results were included in the analysis for all SNPs 

with MAF>0.01 and imputation r2>0.3, except for the TN GWAS where the criteria were 

r2>0.9 and MAF>0.05. For iCOGS, we included all SNPs with r2>=0.3 and MAF>0.005.

Confirmatory genotyping

The best variant in each region after the re-imputation and meta-analysis was genotyped in 

4123 samples from SEARCH, using Taqman according to the manufacturer’ s instructions. 

The squared correlations between the observed genotypes and the genotypes estimated by 

imputation are shown in Supplementary Table 5. For all the imputed SNPs the squared 
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correlations was greater than 0.7, the call-rates were >=0.98 and there was no evidence of 

departure of genotype frequencies from those expected under HWE (p>0.1).

eQTL analyses

Germline genotype, mRNA expression, and somatic copy number data for samples taken 

from breast tumours and tumour-adjacent normal tissue were obtained from The Cancer 

Genome Atlas38. The copy number and genotype data were measured using the Affymetrix 

Genome-Wide Human SNP 6.0 platform. For the mRNA expression data, we used the 

expression profiles obtained using the Agilent G4502A-07-3 microarray. The genotype data 

were subjected to the following quality control filters. SNPs were excluded in case of low 

frequency (MAF < 1%), low call rate (< 95%,) or departure from Hardy-Weinberg 

equilibrium at P < 1 × 1013. Individuals were excluded based on low call rate (< 95%), or 

high heterozygosity (false discovery rate < 1%). Furthermore, individuals were also 

excluded in case of non-European ancestry, or male gender. Quality control and intersection 

with the other genomic data types resulted in 380 tumour samples and 56 normal samples.

The genotype data were imputed as described above. eQTL analysis was performed using 

linear regression with SNPTEST, regressing the mRNA expression of selected candidate 

genes on the imputed genotype. For each gene, we performed the eQTL analysis against 

every microarray probe that uniquely maps to that gene. We adjusted the analyses for 

somatic copy number of the gene, and for SNPs that intersect the probe sequence, provided 

that their MAF exceeds 1% in individuals of European ancestry in the 1,000 Genomes data.

Enhancer analyses

Maps of enhancer regions with predicted target genes were obtained from Hnisz et al.33, and 

Corradin et al.32. Enhancers active in the mammary cell types MCF7, HMEC and HCC1954 

were intersected with candidate causal variants using Galaxy. ENCODE ChIA-PET 

chromatin interaction data from MCF7 cells (mediated by RNApolII and ERř) were 

downloaded using the UCSC Table browser. Galaxy was used to identify ChIA-PET 

interactions between an implicated mammary cell enhancer (containing a strongly associated 

variant) and a predicted gene promoter (defined as regions 3 kb upstream and 1 kb 

downstream of the transcription start site).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histograms of the imputation r2 a) Histogram of the imputation r2 for the iCOGS for 

variants with MAF>0.05 b) Histogram of the imputation r2 for the UK2 GWAS for variants 

with MAF>0.05 c) Histogram of the imputation r2 for the iCOGS for variants with 

MAF<=0.05 d) Histogram of the imputation r2 for the UK2 GWAS for variants with 

MAF<=0.05.
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Figure 2. 
The chromosome 1 locus tagged by rs12405132 a) The Manhattan Plot displays the strength 

of genetic association (−log10 P) versus chromosomal position (Mb), where each dot 

presents a genotyped (solid black dot) or imputed (red circle) SNP (in the iCOGS stage). 

The purple horizontal line represents the threshold for genome-wide significance 

(P=5×10−8). Gene structures are depicted as well as the location of SNPs with MAF>0.01 

which were neither imputed reliably nor genotyped. b) Mammary cell enhancer locations as 

defined in Corradin et al.32, and Hnisz et al.33, are shown where elements overlapping the 

best associated SNPs are labelled with their predicted target genes. A subset of ChiA-PET 

interactions in MCF7 cells (mediated by either RNApolII or ERa) between enhancers and 

their target gene promoters are also shown.
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Table 1

Results for the 15 regions with combined P<5×10−8. Results are shown for the strongest associated variant in the region.

Best variant Locus Position2 Alleles3 EAF4 r25 GWAS OR
(95% CI)6

GWAS P7 iCOGS OR
(95% CI)

iCOGS P Combined
GWAS +
iCOGS P

Genes within
+/−2kb

Enhancers in
MCF7/HMEC

eQTLs

rs12405132 1q21.1 145644984 C/T 0.36 0.96 0.96 (0.92–0.99) 0.00962 0.95 (0.93–0.97)2.34×10−7 7.92×10−9 LOC10028814, NBPF10, RNF115 RNF115, POLR3C,PDZK1, PIAS3 -

rs12048493 1q21.2 149927034 A/C 0.34 0.76 1.04 (0.99–1.09) 0.121 1.07 (1.05–1.10)1.66×10−9 1.10×10−9 - - -

rs72755295 1q43 242034263 A/G 0.03 0.94 1.19 (1.03–1.39) 0.021 1.15 (1.09–1.22)2.60×10−7 1.82×10−8 EXO1 - -

rs6796502 3p21.3 46866866 G/A 0.09 0.91 0.92 (0.87–0.98) 0.00657 0.92 (0.89–0.95)8.13×10−7 1.84×10−8 - - -

rs13162653 5p15.1 16187528 G/T 0.45 0.72 0.92 (0.88–0.95)5.18×10−6 0.95 (0.93–0.97) 1.71×10−6 1.08×10−10 - - -

rs2012709 5p13.3 32567732 C/T 0.46 0.81 1.06 (1.02–1.09) 0.00101 1.05 (1.03–1.08)1.66×10−6 6.38×10−9 - - -

rs7707921 5q14 81538046 A/T 0.23 0.88 0.94 (0.9–0.98) 0.00302 0.93 (0.91–0.95)4.09×10−9 5.00×10−11 ATG10 - RPS23, ATP6AP1L

rs9257408 6p22.1 28926220 G/C 0.38 0.92 1.05 (1–1.1) 0.0372 1.05 (1.03–1.08)4.53×10−7 4.84×10−8 - - -

rs4593472 7q32.3 130667121 C/T 0.35 1.00 0.92 (0.88–0.96)2.57×10−5 0.95 (0.94–0.97) 3.97×10−6 1.83×10−9 FLJ43663 - -

rs13365225 8p11.23 36858483 A/G 0.17 0.94 0.89 (0.85–0.93)6.32×10−7 0.95 (0.93–0.98) 0.000159 1.06×10−8 - - -

rs13267382 8q23.3 117209548 G/A 0.36 0.97 1.07 (1.03–1.12) 0.000537 1.05 (1.03–1.07)4.87×10−6 1.72×10−8 LINC00536 - -

rs11627032 14q32.12 93104072 T/C 0.26 0.73 0.94 (0.9–0.98) 0.00114 0.94 (0.92–0.96)1.06×10−6 4.48×10−9 RIN3 - -

chr17:29230520 17q11.2 29230520 GGT/G 0.20 0.77 0.94 (0.89–0.98) 0.009 0.93 (0.91–0.96)1.11×10−6 3.34×10−8 ATAD5 - -

rs745570 17q25.3 77781725 A/G 0.50 0.93 0.94 (0.91–0.98) 0.000754 0.95 (0.93–0.97)4.52×10−7 1.40×10−9 - - -

rs6507583 18q12.3 42399590 A/G 0.07 0.96 0.91 (0.85–0.98) 0.00803 0.91 (0.88–0.95)1.21×10−6 3.20×10−8 SETBP1 SETBP1 -

1
Chromosome

2
Build 37 position

3
Reference/effect allele, based on the forward strand

4
Mean effect allele frequency over all controls

5
Imputation r2 in the iCOGS samples (calculated by the average info score from IMPUTEv2)

6
Per allele odds ratio for the minor allele relative to the major allele

7
P value for the 1df trend test
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