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Filter Bank Common Spatial Patterns in Mental Workload Estimation

Mahnaz Arvaneh1, Alberto Umilta 2, and Ian H. Robertson1

Abstract— EEG-based workload estimation technology pro-
vides a real time means of assessing mental workload. Such
technology can effectively enhance the performance of the
human-machine interaction and the learning process. When
designing workload estimation algorithms, a crucial signal
processing component is the feature extraction step. Despite
several studies on this field, the spatial properties of the EEG
signals were mostly neglected. Since EEG inherently has a poor
spacial resolution, features extracted individually from each
EEG channel may not be sufficiently efficient. This problem
becomes more pronounced when we use low-cost but convenient
EEG sensors with limited stability which is the case in practical
scenarios. To address this issue, in this paper, we introduce a
filter bank common spatial patterns algorithm combined with
a feature selection method to extract spatio-spectral features
discriminating different mental workload levels. To evaluate
the proposed algorithm, we carry out a comparative analysis
between two representative types of working memory tasks
using data recorded from an Emotiv EPOC headset which is a
mobile low-cost EEG recording device. The experimental results
showed that the proposed spatial filtering algorithm outper-
formed the state-of-the algorithms in terms of the classification
accuracy.

I. INTRODUCTION

Recent advances in sensor technologies and computa-

tional algorithms make it possible to non-invasively monitor

brain activities and mental states. In particular, real-time

assessment of mental workload (MW) has attracted a lot

of attentions. Assessing MW can be beneficial in applica-

tions requiring high level of engagement, concentration and

alertness such as aviation, driving, education and industrial

production lines [1], [2].

In complex high demanding tasks, the human’s perfor-

mance might drop due to the mental overload caused by

excessive amount of information to be processed. In contrast,

human tends to make errors when MW is kept in a lower

level than the proper level due to getting bored. Thus, to

achieve the best performance, the flow of the information and

the complexity of the task should be controlled by correctly

estimating the user’s MW [1], [2], [3]. In addition, a system

that provides real-time feedback based on the detected MW

might potentially enhance the cognitive performance and the

learning process by encouraging the user to stay focused and

engaged [4].

It is not still clear how to exactly define MW [5]. However,

it is well accepted that MW is correlated with task demand,
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time pressure, person’s capacity and his/her performance [6].

Thus, in the existing studies, generally well-defined cognitive

tasks were used in different difficulty and demand levels to

manipulate a person’s MW level. Simultaneously, a range of

different physiological signals were recorded for estimating

the subject’s MW, such as pupil size, eye blink, skin con-

ductance, electrocardiogram (ECG), and electroencephalo-

gram (EEG). Interestingly, extensive comparisons reported

by different research groups revealed that EEG is the most

promising signal for estimating MW [7].

Studies that used EEG mostly achieved satisfactory results

based on band power features [8], [9]. It is shown that

theta (4-8Hz) and alpha (8-12Hz) are particularly sensitive

to changes in MW [8], [9], [10]. Typically, theta in the

frontal midline regions of the scalp increases as task demands

increase [10], while alpha decreases in parietal regions when

the workload increases [8], [9]. In addition to theta and alpha,

MW can also influence other frequency bands (e.g. gamma

and beta) in some subjects. Indeed, the exact locations and

the frequency bands affected by MW vary between subjects

and tasks [11], [12].

Despite several studies on the EEG-based estimation of

MW, the spatial properties of the EEG signals were mostly

neglected, and features were extracted from each channel

individually. However, due to volume conduction, EEG has

inherently a poor spatial resolution. Hence, applying proper

spatial filters increases the signal to noise ratio, and possi-

bly leads to a more accurate MW estimation. Importantly,

the previous studies mostly relied on costly wired EEG

equipments which require injecting gel on the scalp to have

good quality signals. In order to use MW estimator tools

in our daily life, they need to be utilized with dry/non-gel

wireless EEG sensors with limited stability. Thus, the impact

of applying proper spatial filtering algorithms could be even

more pronounced in practical scenarios.

To address the aforementioned issue, we first introduce a

filter bank common spatial patterns (FBCSP) technique [13]

combined with a feature selection method to extract EEG

spatio-spectral features discriminating MW levels. Second,

we look into practical issues by conducting a comparative

study between two working memory tasks (i.e. two different

n-back tasks) with three MW levels. The brain signals were

recorded from 6 subjects using a wireless low-cost Emotiv

EPOC headset [14]. We compare the performance of the

proposed FBCSP algorithm in classification of different MW

levels with classification results obtained from EEG band

power features. The between session classification accuracies

are calculated based on different time intervals, while the

training time is kept less than 6 minutes per MW level.



II. MATERIALS AND METHODS

A. Experimental design

In total, 6 young adults aged 19-33 years were partici-

pated in this study. All the participants gave their informed

consent to the study which had been reviewed and approved

by the ethical review board of the School of Psychology,

Trinity College Dublin, in accordance with the Declaration of

Helsinki. The participants were asked to complete 4 sessions

of a verbal n-back task and 4 sessions of a spatial n-back

task. Each session consisted of three 2-min blocks (i.e. 0-

back, 1-back and 2-back). After each block, the participants

took a 12-15 seconds rest. They were also welcome to take

a break at the end of each session, if they desired. Each

block consisted of 60 trials, where each trial started by 500

ms presentation of the stimulus followed by 1500 ms inter

stimulus interval.

The verbal and the spatial n-back tasks performed in

this study were similar to the tasks introduced in [9]. In

each block of the verbal n-back task, a series of letters

was randomly presented at the center of the screen (see

Fig. 1.a). The participants were asked to remember the new

letter and respond if it was the same as the letter presented

n trials before. In total, 5 consonant English letters were

used in the verbal task. In the spatial n-back task, a white

cross was presented randomly in 5 different locations on the

screen (see Fig. 1.b). Participants were asked to compare the

current location of the cross to that occurred n trials before,

and respond if they were same. In the 0-back blocks, the

participants were only required to respond to those stimuli

(i.e. letters/locations) that were the same as the one presented

at the beginning of the block. In all the blocks, 20% of the

stimuli were targets. To reduce the learning effects, before

starting the test, the participants practiced until they reached

the satisfactory performance.

(a) Verbal n-back task

(b) Spatial n-back task

Fig. 1: Graphical representation of the n-back tasks used in this
study

B. EEG data acquisition

EEG was acquired using an Emotiv EPOC headset [14].

The Emotiv EPOC headset is completely wireless with 14

electrodes and 2 mastoid reference electrodes. In this study,

we used 12 of the 14 available electrodes, namely F3, F4,

F7, F8, FC5, FC6, T7, T8, P7, P8, O1, O2, as well as the

two mastoid electrodes. Saline liquid was used to reduce

the impedance of the electrodes to a satisfactory level. The

sampling rate was 128 Hz. The recorded EEG data were

segmented to the intervals of 2, 4, and 6 s starting from the

onset of the stimuli. The segments with amplitudes exceeding

+75µV , or voltage steps of more than 150µV within a

window of 200 ms were rejected from further analysis.

C. Proposed EEG-based mental workload estimator

FBCSP is extensively used in classification of EEG-based

motor imagery data [13]. In this study, the FBCSP algorithm

was used to extract spatio-spectral features discriminating

the MW levels. Thereafter, a feature selection method was

applied to select the most discriminative set of features.

Finally, a naive bayesian classifier was used for classification.

The details about the proposed MW estimation algorithm are

as follows:

1) Multi-band spectral filtering: A filter bank was applied

to decompose the EEG data into nine equal frequency

bands, namely 4-8, 8-12, ..., 36-40 Hz. These frequency

ranges cover all the commonly used frequency bands in the

classification of MW.

2) Common spatial patterns (CSP): The EEG data from

each frequency band were spatially filtered using the CSP

filters [13]. Among various spatial filters, CSP has been

highly successful in classification of two classes of EEG data

[15]. CSP increases the discrimination between two classes

by maximizing the variance of one class while the variance

of the other class is minimized.

Let X ∈ R
Nc×S denote a bandpass filtered single-trial

EEG data, where Nc and S are the number of channels and

the number of measurement samples respectively. The CSP

transformation matrix, W ∈ R
Nc×Nc , linearly transforms

X as Z = WX. W is generally computed by solving the

eigenvalue decomposition problem:

C1W = (C1 +C2)WD, (1)

where C1 and C2 are respectively the averaged covariance

matrices of the bandpass filtered EEG data obtained from

each class; D is the diagonal matrix that contains the

eigenvalues of (C1 +C2)
−1

C1. Usually, only the first and

the last m rows of W are used as the most discriminative

filters to perform spatial filtering [16].

3) Feature extraction: The spatio-spectrally filtered EEG

data were used to determine the features associated to each

band-pass frequency range. Based on the Ramoser formula

[16], the features of the kth trial of the EEG data belonging

to each frequency band were calculated as

vk = log(diag(ZkZ
T

k )/trace[ZkZ
T

k ]), (2)

where vk ∈ R
1×2m; diag(.) returns the diagonal elements

of the square matrix; and the superscript T denotes the

transpose of the matrix. Since we have nine frequency bands,

the total number of features for each trial was 9 × 2m. In

this study, m was set to two.

4) Feature selection: The mutual information algorithm

was used for ranking the features. Subsequently, the top



n ranked features were used for classification. The value

n was chosen based on 10-fold cross-validation on the

training data, such that the top n features yielding the highest

average cross-validation accuracy on the training data were

selected as the most discriminative set of features for the

MV classification.

III. RESULT

A. Behavioral performance

For the verbal and the spatial n-back tasks, we performed 3

(Difficulty: 0-back vs. 1-back vs. 2-back) × 2 (Task: verbal

vs. spatial) repeated ANOVA tests on both the error rates

and the response times. We observed significant main effects

of Difficulty on both the error rate (F (2, 15) = 8.757, p =
0.006) and the response time (F (2, 15) = 21.75, p < 0.001).

The response time increased by increasing the memory

load with averages of 0.432s, 0.515s, 0.661s respectively

for the verbal n-back task, and 0.433s, 0.515s, and 0.702s

respectively for the spatial n-back task. Similarly, the error

rate increased by increasing the difficulty with averages of

0.83%,1.5%,5.5% respectively for the verbal n-back task,

and 0.17%, 1.17% and 4.83% respectively for the spatial

n-back task. Neither Task nor the interaction between Task

and Difficulty was significant. Post-hoc tests showed that the

error rates and the response time were significantly different

in all the difficulty levels. These results suggest that the

tasks successfully induced three different MW levels in the

participants.

B. Effects of spacial filtering and feature selection on MW

estimation

To consider the effects of the proposed algorithm on the

MW estimation, four different classification models were

trained. The first model (abbreviated as FBCSP(FS)) was

obtained based on the algorithm described in Section (II-C).

Indeed, in this model, FBCSP was used to extract spatio-

spectral features. Thereafter, the best set of features was

selected using the proposed feature selection method. In the

second model (abbreviated as FBCSP(AllF)), all the features

obtained from FBCSP were used for classification (i.e. with-

out any feature selection). In the third model (abbreviated

as BP(AllF)), the band power features were obtained per

each channel using the 9 frequency bands (i.e. 4-8, 8-12,...,

36-40 Hz) without applying any spacial filtering or feature

selection algorithms. In fact, these 9 frequency bands are the

same as those employed in FBCSP. BP(AllF) is similar to the

models that are commonly used in MW estimation studies

[8], [9]. In the last model (abbreviated as BP(FS)), using

the proposed feature selection method, a subset of the band

power features obtained from the third model was used for

classification. For each n-back task, the first three sessions

were used for training the classification models and the last

session was used for evaluation. The results presented in this

subsection are based on 2 seconds EEG intervals extracted

from the onset of the stimuli.

Fig. 2 shows the classification results of the four models

under the three conditions for the verbal and the spatial
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Fig. 2: Average classification accuracies of (a) verbal and (b)
spatial n-back tasks obtained using 4 different models. The window
size is 2 sec. BP, All F and SF denote the band power features, all
the features, and the selected features respectively.

n-back tasks. All the four models achieved the classifica-

tion accuracies above the chance level. This confirms the

satisfactory quality of the EEG signals recorded by the

Emotiv EPOC headset. As shown in Fig. 2, on average

FBCSP(FS) outperformed all the other models, whereas the

BP(AllF) performed the worst. Performing 4 (Models) × 3

(Difficulty: 0-back vs. 1-back vs. 2-back) repeated ANOVA

tests revealed significant main effects of the models in

the letter (F (3, 15) = 11.35, P = 0.001) and the spatial

(F (3, 15) = 4.86, p = 0.04) n-back tasks, respectively.

A close to significant main effect of Difficulty was also

observed in the letter n-back task (F (2, 10) = 4.06, p =
0.051). Importantly, Post-hoc tests showed that the proposed

FBCSP(FS) algorithm significantly performed better than

the BP(AllF) algorithm which is commonly used in MW

estimation.

Fig. 2.a shows that in the verbal task the low MW (i.e.

0-back) was separated from the high MW (2-back) with the

highest average accuracy, while the classification between

the low MW (i.e. 0-back) vs. the medium MW was (i.e. 1-

back) the least accurate among the other conditions. Paired

t-tests showed that the classification results of the proposed

FBCSP(FS) were significantly different between the (0- vs.

2-back) and (0- vs. 1-back) conditions (p=0.03). Unlike the

verbal n-back task, in the spatial n-back task the classification

accuracies of the proposed FBCSP(FS) are closer over the

three conditions, although still the highest accuracy obtained

in the classification of 0- vs. 2-back.

C. Effects of EEG window size

The results obtained in the previous subsection were all

based on 2 seconds EEG windows. To consider the effects

of EEG window size on the MW classification accuracy, the

performance of the proposed FBCSP(FS) algorithm was also

evaluated using longer EEG intervals (i.e. 4 and 6 seconds).

As shown in Fig. 3, the classification accuracy improved

when the EEG window size increased. Interestingly, this im-

provement was more pronounced in the spatial n-back task. A

repeated ANOVA test revealed a significant main effect of the

window size on the accuracy (F (2, 10) = 11.24, p = 0.003)

in the spatial n-back task. However, in the verbal n-back

task, the window size did not have a significant effect on the



accuracy (F (2, 10) = 0.34, p = 0.72). It should be noted that

longer window size means higher chance of having blinks

or muscle artifacts. Thus, due to artifact rejection, increasing

the window size leads to a smaller number of trials left

for training. This might negatively affect the results as the

accurate estimation of the CSP matrix is associated with the

training size [16]. Considering this issue, in future it should

be further investigated why increasing the window size did

not bring a large advantage for the verbal n-back task.
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Fig. 3: Average classification accuracy of the proposed FBCSP(FS)
algorithm as a function of window size, for (a) the verbal and (b)
the spatial n-back tasks.

D. Spatial filters in different frequency bands

To better understand why the proposed algorithm im-

proved the classification results, two spatial filters obtained

for one of the subjects were presented in Fig. 4. The spatial

filters were trained in order to get an optimum discrimination

between 0- and 2-back conditions in the letter task. As shown

in Fig. 4, the spatial filter obtained for the theta rhythm (4-

8 Hz) gives more weights to the frontal electrodes, while

attenuates the effects of the other channels. In the same

line, the spatial filter obtained for the alpha rhythm (8-12

Hz) is more focused on the temporal and parietal electrodes,

while the effects of the other channels are mitigated. Thus,

by adding spatial filters to the MW classification algorithms,

the effects of irrelevant and redundant channels that might

be different from band to band are attenuated, and more

neurophysiologically relevant features are extracted.
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Fig. 4: Spatial filters obtained for (a) theta and (b) alpha frequency
bands in the verbal n-back task, for one subject.

IV. CONCLUSIONS

To create a classification model that accurately estimates

mental workload in practical scenarios, the reliability of the

system should be evaluated using convenient low-cost EEG

sensors with limited stability. In such a noisy environment,

using spatial filters could be crucial in improving signal to

noise ratio. To address these issues, we introduced a filter

bank common spatial patterns algorithm combined with a

feature selection method to extract spatio-spectral features

discriminating different mental workloads. We compared 2

representative working memory tasks: the verbal and the

spatial n-back tasks using data collected from Emotiv EPOC,

a widely used wireless EEG headset. Our experimental

results showed that the proposed spatio-spectral features

outperformed the state-of-the art algorithms in classification

of different workload conditions in both tasks. The results

also showed that spatial filters could improve the accuracy

of the MW classification algorithms by attenuating the effects

of irrelevant and redundant channels, and enhancing the

influence of the neurophysiologically relevant channels.
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