
This is a repository copy of Small-scale intermittency and local anisotropy in turbulent 
mixing with rotation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97401/

Version: Accepted Version

Article:

Li, Y. (2011) Small-scale intermittency and local anisotropy in turbulent mixing with rotation.
Journal of Turbulence, 12 (38). pp. 1-21. ISSN 1468-5248 

https://doi.org/10.1080/14685248.2011.613398

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


August 2, 2011 12:27 Journal of Turbulence rotationcm.jot.rv1

Journal of Turbulence
Vol. 00, No. 00, 2011, 1–22

RESEARCH ARTICLE

Small-scale intermittency and local anisotropy in turbulent

mixing with rotation
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School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK
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The statistics of the velocity gradient and the gradient of a passive scalar in rotating
turbulence are studied using Lagrangian stochastic models. Models for the velocity gradients
are derived generalizing the approach proposed in Chevillard and Meneveau [Phys. Rev. Lett.
97, 174501(200)], whereas the scalar gradients are described using the model proposed by
Gonzalez in Phys. Fluids 21, 055104 (2009). The non-Gaussian and anisotropic statistics of the
gradients are analyzed, and compared with available results in the literature. It is found that
the models reproduce the observation that rotation tends to reduce small-scale intermittency
for both velocity and scalar gradients. The models predict the skewness of transverse velocity
gradient components in the perpendicular plane and its non-monotonic dependence on the
rotation rate. The models also reproduce the anisotropy in the scalar gradient at intermediate
Rossby numbers. Furthermore, we show that the anisotropy is reached at an intermediate
rotation rate, and the maximum coincides with a transition in the relative importance of the
self and cross production terms for the scalar gradient.

Keywords: Homogeneous rotating turbulence; Lagrangian stochastic models; turbulent
mixing; small-scale intermittency; local anisotropy

1. Introduction

Rotating turbulence is routinely observed in industrial, geophysical and astrophys-
ical flows. Rotation has tremendous effects on the small-scale statistics in turbu-
lence, in particular those of the velocity and scalar gradients. In non-rotating turbu-
lence, the probability density functions (PDF) of the velocity and scalar gradients
are highly non-Gaussian due to small scale intermittency. Typically, the tails of the
PDFs can be fitted by an exponential or a stretched exponential [1, 2]. The mod-
elling of the non-Gaussian statistics of the small-scale statistics is a main unsolved
problem in the theory and simulation of turbulent flows. In rotating turbulence, the
statistics of velocity gradient are reported in, e.g., [3–5]. It is observed that strong
fluctuations in the gradients are suppressed by rotation, so that the deviation from
Gaussian distribution is reduced. It is found [4, 6] that the skewness of the longitu-
dinal velocity gradient decreases with the Rossby number. Furthermore, rotation
also induces anisotropy in small scale statistics. The cyclonic vorticity component
develops a positive skewness in rotating turbulence. The skewness is the strongest
at intermediate rotation rates [4, 5, 7, 8]. In a DNS study of the mixing of passive
scalars in rotating turbulence, [9] reports that the small-scale intermittency in the
gradients of the passive scalar is also reduced. The flatness decreases with increas-
ing rotation rates. Meanwhile, the scalar gradients also become anisotropic. The
root-mean-square (RMS) value of the component along the rotation axis decays
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faster than the perpendicular components. The flatness of the parallel component
is smaller than that of the perpendicular components. The authors explain the
anisotropy by the reduced spectral transfer for the parallel component and large
scale anisotropy in the velocity field.
While much has been learned about the velocity and scalar gradients in rotat-

ing turbulence, several questions remain unanswered. In particular, how does the
anisotropy in the scalar gradient depend on rotation rates? If any nontrivial re-
lation exists, what are the mechanisms? In this paper, we attempt to gain some
understanding of these questions via a modelling study, using Lagrangian stochastic
models for the velocity and scalar gradients.
Lagrangian stochastic models for the velocity and scalar gradients have been used

extensively to study and model small scale intermittency, contaminant dispersion,
turbulent combustion and many other phenomena [10–19]. Thus, generalization of
the models to include the effects of rotation will be useful for many applications
as well. On the other hand, although we should keep the modelling assumptions
in mind when we interpret the results, stochastic models have provided useful
insights into the physics of turbulence. With the simplicity of the models, these
usually can be obtained with significantly less computational costs. Therefore, the
purpose of this paper is two fold. First, we intend to propose a stochastic model
for the velocity gradient in rotating turbulence. Second, we examine the prediction
of the model, and use the model to study some aspects of the mixing as well
as the dynamics of the small scales of rotating turbulence. We first generalize
the Lagrangian stochastic model proposed in [15, 20] to rotating turbulence. The
model makes use of the recent deformation of a fluid element along its path to
model the unclosed terms [15, 20]. In our generalization, both the direct effects of
rotation and the effects on the recent deformation history of the fluid element are
considered. Model predictions are checked against some of the results reported in
the literature. We then use the model, together with the model for the gradient of
a passive scalar proposed in [19], to study the dynamics of the velocity gradient
and the passive scalar gradient in rotating turbulence. We focus primarily on the
non-Gaussian statistics and the anisotropy of the gradients, and the dependence
on rotation rates.
The paper is organized as follows. The background and the derivation of the

models are introduced in the next section. The numerical solution method and
results are discussed in Section 3. The paper is concluded in Section 4.

2. Stochastic models for the velocity and passive scalar gradients

2.1. Background

We consider incompressible flows in a frame of reference rotating with a constant
angular velocity Ω = Ωk. The velocity field u(x, t) is governed by

du

dt
≡ ∂tu+ (u · ∇)u = −2Ω× u−∇p+ ν∇2u , (1)

where d/dt ≡ ∂t + u · ∇ denotes the material derivative, p is the pressure divided
by the constant density of the fluid, and ν the kinematic viscosity. The equation
for the velocity gradient tensor A, defined as Aij = ∂ui/∂xj = ∂jui, is obtained
by taking the gradient of the above equation. The equation reads

dA

dt
= −A2 − 2Ω×A−∇∇p+ ν∇2A, (2)
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where the tensor Ω×A is defined by (Ω×A)ij = ǫimnΩmAnj. ∇∇p is the pressure
Hessian tensor with components ∂2

ijp. For incompressible flows, the divergence of
the velocity field is zero, i.e., TrA = 0. Taking the trace of the above equation, one
finds the Poisson equation for the pressure

∇2p = −TrA2 + 2Ω · ω, (3)

where ω = ∇×u is the vorticity vector. A number of physical processes contribute
to the evolution of the velocity gradient. The first two terms on the right hand side
of Eq. (2) represent the self-stretching and the Coriolis effects, respectively. The last
two terms are contributions from the pressure Hessian and the viscous diffusion.
In a Lagrangian stochastic model, the available information is the time series of
the velocity gradient on a fluid particle. Therefore, the last two terms in Eq. (2)
are not closed. The main task is to model the two terms using the time history of
the velocity gradient, so that realistic statistics for the gradient are reproduced.
Let φ(x, t) denote a passive scalar field. The equation for φ is

dφ

dt
= Γ∇2φ (4)

where Γ is the molecular diffusivity of the scalar. We consider the gradient of the
passive scalar, denoted by G with components Gi = ∂iφ. The evolution of G is
given by

dG

dt
= −ATG+ Γ∇2G, (5)

which is obtained by taking the gradient of Eq. (4). The first term on the right hand
side (RHS) is the production term of G, which shows that G is generated when
the velocity gradient squeezes different patches of scalar together. The second term
is the molecular diffusion term. In a stochastic model that couples the evolution of
A and G, the production term is closed, but the diffusion term in Eq. (5) need to
be modelled.
For non-rotating turbulence, the equation for A and the pressure Poisson equa-

tion are obtained from Eq. (2) and Eq. (3), respectively, by setting Ω = 0. As
mentioned before, several models for the velocity gradient in non-rotating turbu-
lence have been proposed [11–15]. Among these models, the model in [11] leads to
stationary statistics, as required in stationary turbulence. It is however assumed
that Tr(AAT ) (the so-called pseudo-dissipation) follows the log-normal distribu-
tion, which is no longer true in rotating turbulence. On the other hand, the model
in [15] also produces stationary statistics and is shown to reproduce rather well the
statistics of velocity gradient in a range of tests [15, 20, 21]. Meanwhile, the model
does not rely on specific assumptions that are known to be invalid in rotating tur-
bulence. Therefore, we use the model proposed in [15] as a starting point, and now
generalize it (called CM model hereafter) to include the effects of rotation.

2.2. Stochastic model for velocity gradient

In a Lagrangian stochastic model for the velocity gradient, the time history of the
velocity gradient is available. Let A ≡ {A(s) : s ≤ t} denote the time history up
to time t. Ideally, the model should reproduce the multi-time joint PDF of the
gradient. As is noted in, e.g., [22, 23], this can be achieved as long as one has a
precise model for the conditional rate of change for A(t), 〈dA(t)/dt|A〉, where 〈· · ·〉
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denotes ensemble average. According to (2), the conditional rate of change is given
by

〈

dA

dt

∣

∣

∣

∣

A
〉

=−A2 − 2Ω×A

− 〈∇∇p|A〉+ 〈ν∇2A|A〉. (6)

The self-stretching term and the Coriolis force on the RHS are closed, since they
depend deterministically on the velocity gradient. We need to model the conditional
averages 〈∇∇p|A〉 and 〈ν∇2A|A〉.
Note that 〈∂2

ijp|A〉 is the average conditioned on the entire time series. However,
due to Lagrangian decorrelation, one expects that the information for the velocity
gradient at early time is not important in the conditional average. The DNS analysis
in [24] indeed confirms the tendency of Lagrangian decorrelation. For filtered DNS
data, the analysis shows that the decorrelation occurs at few eddy turnover time
at the cutoff scale. Using τ to denote the decorrelation time scale for the velocity
gradient, the above argument thus implies that

〈∂2
ijp|A〉 ≈ 〈∂2

ijp|Aτ 〉, (7)

where Aτ ≡ {A(s) : t− τ ≤ s ≤ t} denotes the recent time history of A from time
t− τ to t. Similarly, we can write

〈ν∇2A|A〉 ≈ 〈ν∇2A|Aτ 〉. (8)

and as a consequence the evolution of A(t) can be modelled by the following
equation:

dA

dt
= −A2 − 2Ω×A− 〈∇∇p|Aτ 〉+ 〈ν∇2A|Aτ 〉. (9)

The system is to be closed by the models for the conditional averages. Note that
Eqs. (7) and (8) are essentially the “recent fluid deformation” approximation made
in [15] (see also [24]), rephrased in terms of the conditional averages.
We first consider the conditional average of the pressure Hessian. As is presented

in the CM model, the idea is to make use of the deformation history of fluid
elements during their Lagrangian evolution. Let X denote the location of a fluid
particle at time t−τ , and x(t) denote the location of the same particle at time t. X
can be taken as the Lagrangian coordinates of the fluid particle. The deformation
and rotation of a fluid element is described by the deformation gradient D where
Dij ≡ ∂xi/∂Xj . D evolves according to dD/dt = AD , therefore is determined by
the time history Aτ . The solution can be written in terms of the “time-ordered
matrix exponential ”:

D(t) = T exp+
[
∫ t

t−τ
A(s)ds

]

, (10)

where T exp+ is the notation for the time-ordered matrix exponential. We will in
the following also use the Cauchy-Green tensor C ≡ DDT , and the inverse of the
deformation gradient D−1. The (i, j) element of D−1 is ∂Xi/∂xj , denoted as D−1

ij .

Obviously, C−1 = D−TD−1 and C−1
ij = D−1

ki D
−1
kj .
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Changing the coordinates from x(t) to X, we have for the conditional pressure
Hessian:

〈

∂2
ijp(t)|Aτ

〉

=

〈

D−1
miD

−1
nj

∂2p

∂Xm∂Xn

∣

∣

∣

∣

Aτ

〉

+

〈

∂D−1
mj

∂xi

∂p

∂Xm

∣

∣

∣

∣

∣

Aτ

〉

. (11)

The second term on the RHS involves the spatial variation of the deformation
gradient. It represents the effects of neighboring fluid particles. As proposed in
[15], this term is neglected. Note further that D−1 is a deterministic function of
the time history Aτ , therefore it can be taken out of the average. We thus find

〈∂2
ijp|Aτ 〉 ≈ D−1

miD
−1
nj

〈

∂2p

∂Xm∂Xn

∣

∣

∣

∣

Aτ

〉

. (12)

∂2p/∂Xm∂Xn is called the Lagrangian pressure Hessian. It measures the changes
in the pressure of the fluid particle at time t when it is displaced from its ini-
tial location slightly at time t − τ . For sufficiently large time delay τ , it is rea-
sonable to assume that the conditional average is isotropic. Hence we may write
〈∂2p/∂Xm∂Xn|Aτ 〉 = δmnN , N to be determined, and

〈∂2
ijp|Aτ 〉 = D−1

miD
−1
mjN = C−1

ij N. (13)

N will be chosen to reproduce the correct Laplacian of the pressure. Taking the
trace of the above equation, and making use of the pressure Poisson equation [Eq.
(3)], we find

−TrA2 + 2Ω · ω = NTrC−1, (14)

from which N can be found, giving

〈∂2
ijp|Aτ 〉 =

C−1
ij

TrC−1
(2Ω · ω − TrA2). (15)

C−1
ij in the above equation is known from the time history of A. Thus, in princi-

ple, the above expression already constitutes a closed model. Nevertheless, further
simplification is desirable to avoid the calculation of the time-ordered matrix expo-
nential. As in the CM model, we assume A(s) to be constant over the time interval
[t − τ, t], i.e., A(s) ≈ A(t) (we will discuss this approximation further below).
Hence, D(t) ≈ Dτ (t) ≡ exp[τA(t)], and

C−1 ≈ C−1
τ ≡ e−τAT

e−τA. (16)

With C−1 replaced by C−1
τ , we obtain the final model for the conditional pressure

Hessian

〈∇∇p|Aτ 〉 =
C−1

τ

TrC−1
τ

(2Ω · ω − TrA2). (17)

Compared with the CM model, system rotation introduces the new term 2Ω ·
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ω. Obviously, the Cauchy-Green tensor Cτ is also affected indirectly, since the
statistics of the velocity gradient are modified by rotation.
For the conditionally averaged viscous diffusion term 〈ν∇2A|Aτ 〉, we too apply

the Lagrangian-Eulerian coordinate substitution. Omitting again the contribution
from the gradient of the deformation gradient, we find

〈ν∇2A|Aτ 〉 ≈ D−1
mkD

−1
nk

〈

ν
∂2A

∂Xm∂Xn

∣

∣

∣

∣

Aτ

〉

. (18)

Similar to the conditional average of the Lagrangian pressure Hessian, the con-
ditional average of the Lagrangian Hessian of A on the RHS can be reasonably
assumed to be isotropic. As in [15], an isotropic linear damping model is used for
the conditional average here. As the argument in [15] shows, the damping time
scale is the integral time scale of the velocity field, denoted by T . Thus

〈ν∇2A|Aτ 〉 ≈ −D−1
mkD

−1
nk

δmn

3T
A = −TrC−1

3T
A (19)

With C−1 replaced by C−1
τ as we did previously, we obtain the model for the

diffusion term:

〈ν∇2A|Aτ 〉 = −TrC−1
τ

3T
A. (20)

More details can be found in [15].
The model equation for A is completed by adding a random forcing term. Quali-

tatively the forcing term accounts for the neglected effects, such as the contributions
from neighboring fluid particles and the external forcing. Following [15], we use an
isotropic tensorial white noise forcing term. Putting the above models into Eq. (9),
we obtain the stochastic equation for A:

dA =

[

−A2 − 2Ω ×A− C−1
τ

TrC−1
τ

(2Ω · ω − TrA2)

−TrC−1
τ

3T
A

]

dt+
a′

T 1/2
dW, (21)

where W is a tensorial Wiener process. dW =
√
2dtζ where ζ is an isotropic trace-

less random tensor such that 〈ζij〉 = 0 and 〈ζijζkl〉 = 2δikδjl − 1/2δijδkl − 1/2δilδjk
(see, e.g., [19, 25]). a′ is the magnitude of the forcing and has the dimension of the
velocity gradient. In this work, we set a′ = 1/T . More details on how to generate
ζ are given in [20].

2.3. Stochastic model for scalar gradient

The only unclosed term in the equation for the scalar gradient G is the molecular
diffusion term. A model for G has been proposed in [19], where the ideas of the
CM model are applied to the equation of G. Detailed analyses are presented in
[19] to demonstrate that the model reproduces realistically a range of kinematic
and geometrical statistics of the scalar gradient. We will use this model here to
investigate the effects of rotation on the mixing of passive scalars. According to
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[19], the model equation for G can be written as

dG = −
(

ATG+
TrC−1

τ

3Tθ
G

)

dt+

(

1

Tθ

)1/2

dWG, (22)

where Tθ is the integral time scale of the scalar field, and WG is a vectorial Wiener
process independent of W. Readers are referred to [19] for more details (note that
to simplify notation WG defined here is

√
2 times the one in [19]).

2.4. Effects of rotation on recent fluid deformation

The approximation is made in last section that A(s) ≈ A(t) for t− τ ≤ s ≤ t, so
that D(t) can be approximated by Dτ (t) . The approximation can be refined, as
we will show now. Through the comparison between the two approximations, we
will gain understanding on the impact of the approximations.
Given the Taylor expansion of A(s):

A(s) = A(t) + (s− t)
dA(t)

dt
+ · · · , (23)

we see that A(s) ≈ A(t) is a zero-order approximation keeping only the first term
in the expansion. A natural refinement is to approximate A(s) by a higher order
truncation. We consider the first-order approximation, where two terms in the
Taylor expansion are kept. To obtain a closed expression, dA/dt in this expansion
is approximated by a restricted-Euler type model (see, e.g., [26]). Namely, we omit
the diffusion term, and replace the pressure Hessian by its isotropic part:

∇∇p ≈ (∇2p)I = (2Ω · ω − TrA2)I,

where I is the identity matrix. The model for dA/dt (to be used to evaluate Dτ (t))
becomes

dA

dt
≈ −A2 − 2Ω×A− 1

3
(2Ω · ω − TrA2)I. (24)

Evaluating the integral of A(s) in the time-ordered matrix exponential, one obtains
the following alternative model for the inverse of the Cauchy-Green tensor:

C−1 ≈ e−τBT

e−τB ≡ C−1
B , (25)

where we have used C−1
B to denote the approximation, and

B =A+ (τ/2)
[

A2 + 2Ω×A

−(I/3)(TrA2 − 2Ω · ω)
]

. (26)

With Cτ in Eq. (21) replaced by CB, we obtain a refined stochastic model for A.
The refined model will be called the first order model to distinguish it from the
original zero-order model.
Whilst the first order model retains only one extra term in the Taylor expansion,

the Cauchy-Green tensor now depends explicitly on the rotation rate. In other
words, the direct effects of rotation on fluid deformation are partially captured.
This is a qualitative difference between the two models. We will compare a number
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of results of the first-order model with those of the zero-order model. Interestingly,
we find that the results are very similar despite the qualitative difference between
the models. The observation suggests that the zero-order truncation is a robust
approximation. The comparison is presented in the next section.

2.5. Summary and Comments

Eqs. (21) and (22) constitute a closed set of stochastic models for the velocity
and the passive scalar gradients in rotating turbulence. We non-dimensionalize the
equations using the integral time scale T . Using ∗ to denote the nondimensional
quantities, we have A∗ = AT , ω∗ = ωT , τ∗ = τ/T , t∗ = t/T , T ∗

θ = Tθ/T ,

dW∗ = dW/T 1/2, and dW∗
G = dWG/T

1/2. The dimensionless equation can be
obtained with simple substitution. To simplify notations, we drop the asterisks so
that the dimensionless model equation for the velocity gradient can be written as

dA =

[

−A2 − 1

Ro
k×A− C−1

τ

TrC−1
τ

(

k · ω
Ro

− TrA2

)

−TrC−1
τ

3
A

]

dt+ dW, (27)

where Ro ≡ 1/(2ΩT ) is the Rossby number. k is the unit vector in the direction
of the rotation axis. The equation for the scalar gradient [Eq. 22] is formally un-
changed as long as the variables are understood as dimensionless quantities. In
particular, Tθ is understood as the ratio between the scalar integral time scale
and the velocity integral time scale, and τ as the ratio between the Lagrangian
decorrelation time and the integral velocity time scale.
We note that in the models the nonlinear production terms as well as the Coriolis

force for the gradients are in closed forms. Thus they are particularly useful for
exploring the effects of the interaction between the two dominant processes in
rotating turbulence. Our model for the velocity gradient is a generalization of the
CM model in [15]. A number of ideas in our derivation have been presented in
[15], including the Eulerian-Lagrangian coordinates substitution, the recent fluid
deformation assumption, and the isotropic assumption for Lagrangian Hessians.
We generalize the analysis to rotating turbulence, and derive a first-order model
which incorporates the effects of rotation on the fluid deformation. Besides, we
show that the isotropic assumptions for the Lagrangian Hessian tensors should be
understood in terms of their conditional averages given the recent history of the
velocity gradient tensor.

3. Numerical results and discussion

The stochastic models are solved numerically using a second-order weak predictor-
corrector scheme [15, 27]. The computation starts from Gaussian random initial
condition, where the velocity gradient A is initialized with traceless, statistically
isotropic tensors with Gaussian random numbers as entries. For each set of param-
eters, 105 trajectories spanning over 100 integral time scales are computed, with a
step size dt = 10−4 (of the integral time scale T ). The solutions show that the tra-
jectories eventually approach a statistically steady state after a few integral time
scales. The statistics are accumulated in the stationary stage.
To examine the effects of rotation, a number of Rossby numbers are considered.

In order to compare with the results in the literature, we use the microscale Rossby
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Figure 1. The PDFs of normalized normalized gradient A31/σ31 and A32/σ32. Squares: without rotation;
solid line: Roω = 1.28; dashed: Roω = 0.2; dash-dotted: Roω = 0.01; dotted: Gaussian distribution.

number Roω ≡ ω′/(2Ω)[6] , where ω′ is the root mean square (RMS) value of the
vorticity calculated from the numerical solutions. Roω is a measure of the effects of
rotation on small scales in turbulence. One expects that rotation has strong effects
on small scales when Roω is of order one or smaller. The values of Roω in our
calculation are 1.98, 1.28, 0.94, 0.59, 0.38, 0.26, 0.20, 0.09, 0.01. The corresponding
rotation rates Ω are 0.67, 1.00, 1.33, 2.00, 2.86, 4.00, 5.00, 10.0, 100 in the unit
of 1/T . The results also depend on the two time scale ratios τ and Tθ. Note that
the Lagrangian decorrelation time scale is of the order of the Kolmogorov time
scale. Thus τ , as the ratio of the decorrelation time scale to the integral time
scale, is related to the Reynolds number of the flow. We will present results for
τ = 0.10 only, corresponding approximately to Reλ ≈ 150 [20]. Simulations with
τ = 0.08 have also been conducted. Without showing the results, we only mention
that the difference is small and is consistent with changes resulted from increasing
the Reynolds number. Tθ is the scalar to turbulence integral time scale ratio. We
use the value in [19], i.e. Tθ = 0.4.
In what follows, the three coordinate directions are denoted by (x1, x2, x3). The

rotation axis is along the x3-direction.

3.1. Non-Gaussianity and anisotropy in the velocity gradient

We first consider the effects of rotation on the non-Gaussian statistics in the veloc-
ity gradients. In homogeneous rotating turbulence, one expects the flow field to be
axisymmetric, so that certain components of the velocity gradient have identical
statistics. Our results show that the symmetry is maintained in the model. There-
fore we have averaged some of the results over identically distributed components
in what follows. The PDFs of the transverse gradients of the vertical velocity com-
ponents A31 and A32 are shown in Figs. 1, for Rossby number Roω = 1.28, 0.2, and
0.01. The variables are normalized by their RMS values (denoted by σ). For com-
parison, the Gaussian distribution and the PDF without rotation (calculated from
the models with Ω = 0) are also plotted with dotted line and squares, respectively.
Fig. 1 shows that, at Roω = 1.28, the PDFs of A31 and A32 are close to the ones
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Figure 2. The PDFs of normalized gradient for A13/σ13 and A23/σ23. Legend same as Fig. 1.
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Figure 3. The PDFs of normalized A12/σ12. Legend the same as Fig. 1.

without rotation. The PDFs displays exponential-like tails, as is expected in non-
rotating turbulence (see, e.g., [1]). When rotation rate is increased, the tails in the
PDFs are suppressed, so that the probabilities for large fluctuations are reduced.
The figure shows that the PDF tends to Gaussian distribution when the Rossby
number tends to zero. Similar behaviors are observed in the results of A13 and A23,
the vertical gradients of the components perpendicular to the rotation axis. The
PDFs of these two components are identical, and the average is plotted in Fig. 2.
Figs. 1 and 2 show that the model reproduces the general effects of rotation on the
intermittency of the velocity gradient.
Fig. 3 plots the PDFs of A12. Similar to previous figures, at Roω = 1.28 the PDF
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Figure 4. The PDFs of normalized A21/σ21. Legend the same as Fig. 1.

is not much different from the one without rotation, although slight asymmetry
towards the negative direction can be seen. The PDF at Roω = 0.2, on the other
hand, is strongly skewed towards negative fluctuations. The negative tail of the
PDF is even ‘fatter’ than the one for zero rotation. Thus the probability to ob-
serve strong negative fluctuations is increased at this Rossby number. Meanwhile,
positive fluctuations are suppressed. For further stronger rotation, on the other
hand, the PDF tends to restore symmetry, and approaches the Gaussian distri-
bution. This is illustrated by the dash-dotted line in the figure, which shows the
PDF at Roω = 0.01. Since the skewness of A12 changes sign upon a reflection of
the coordinate system with respect to a plane pivoted about the rotation axis x3,
non-zero skewness of A12 implies the lack of reflectional symmetry in the statistics.
Asymmetric distribution is also observed for the PDFs of A21, which are shown in
Fig. 4. As is given by the dashed line, the PDF at Roω = 0.2 skews heavily towards
the positive direction, in opposition to that of A12. Due to the axisymmetry of the
statistics, −A12 and A21 have same statistics. This is the reason why A12 and A21

have opposite skewness. At Roω = 0.01, the PDF again appears to have restored
symmetry and tends to Gaussian.
The skewness of −A12 and A21 are plotted as functions of the Rossby number

in Fig. 5. The skewness of a variable X is defined as S(X) = 〈(X − 〈X〉)3〉/〈(X −
〈X〉)2〉3/2. The two curves in Fig. 5 fall on each other as expected. The non-
monotonic behavior is clearly displayed. The skewness is around 0.2 at Roω = 1.2,
which increases when Roω is decreased, and reaches the maximum value 0.64 at
Roω ≈ 0.2. It starts to decrease when the Rossby number is further decreased, and
tends to zero when Roω → 0. The curves show that the skewness has appeared even
for rather weak rotation. (A number of data points calculated from the first-order
model are also plotted in Fig. 5 with the squares. We will comment on that below.
Similarly, in Figs. 6 and 7 we have also plotted results from the first-order model.)
No DNS result has been reported for the skewness of A12 and A21. A related

quantity is the skewness of the vorticity component in the direction of the rotation
axis ω3 (the cyclonic component). The latter has been measured in both DNS
[5, 8, 28] and experiments [4]. The common observation is that ω3 has positive
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skewness, and the skewness is the strongest for an intermediate Rossby number. In
[8], the maximum is reached when Roω = 0.2, coincides with the value we obtained
from the model. Since ω3 = A21 − A12, when both A21 and −A12 display positive
skewness, one would expect that ω3 have positive skewness as well. Unfortunately,
the data of ω3 calculated from the model (not shown) give no skewness for the
Rossby numbers we have considered. The reason for the latter observation is not
clear yet.
The reduction in the intermittency of the transverse velocity gradients can also

be observed in their flatness. The flatness of a random variable X is defined as
F (X) = 〈(X−〈X〉)4〉/〈(X−〈X〉)2〉2. Fig. 6 shows the flatness of all the transverse
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squares are calculated from the first order model.

components as functions of Roω. The curves fall into two groups. Different curves
in each group essentially overlap with each other. In the upper group are the curves
for A12 and A21, while in the lower group are the curves for the other components.
For the components in the lower group, the flatness apparently is continuously
reduced by rotation, and eventually approaches the Gaussian value 3 when the
latter tends to zero. For A12 and A21, the flatness stays nearly unchanged for
Roω down to approximately 0.35. From Fig. 3 (and Fig. 4) one can see that, even
though fluctuations in A12 (A21) with positive (negative) sign are suppressed by
rotation for Rossby numbers in this range, large fluctuations with opposite sign
are generated. Presumably, these fluctuations contribute to the flatness so that
the latter keep a roughly constant value down to Roω ≈ 0.35. When the Rossby
number is further reduced, the flatness is also decreased and tends to the Gaussian
value.
The model predictions on the skewness of the longitudinal velocity components

are plotted in Fig. 7 with the solid line. An empirical expression for the skewness
as a function of Roω is proposed in [6], which provides a reasonably good fit to
experimental and DNS results(see also [4]). The empirical expression reads

S(Roω) =
−0.49

(1 + 2/Ro2ω)
1/2

, (28)

and is also plotted in Fig. 7 with a dashed line for comparison. According to
the formula, for large Roω the skewness approaches −0.49 which is taken as the
value in non-rotating turbulence. Fig. 7 shows that, for moderate Roω values (say
Roω ≥ 0.3), model predictions are somewhat bigger than the values given by the
formula. Nevertheless, the deviation is at the same order as the difference between
the formula and experimental data (see, e.g., Fig. 7 of [4]). For smaller values
of Roω, the model results decrease too fast with Roω. Thus, the model appears
to over-predict the effects of rotation when it is strong, but it makes reasonable
predictions on the skewness for moderate rotation.
Finally, we comment on the results of the first-order model. A number of data

points calculated with the first-order model have been shown with symbols in Figs.
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5, 6, and 7. While there are some small differences, the results are essentially
the same as those obtained with the zero-order model. Similar behaviors are also
observed in the results (not shown) for the PDFs. Therefore model results are
not sensitive to the approximation where A(t) is assumed to be constant over its
(short) recent history.

3.2. Non-Gaussian statistics and local anisotropy of scalar gradient

We now consider the effects of rotation on the non-Gaussian statistics of the scalar
gradient. The model results for a passive scalar in non-rotating turbulence have
been presented in [19]. For the purpose of comparison, some of the results will also
be presented below.
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Figure 8. The PDFs of normalized passive scalar gradient calculated from the model without rotation.
Solid line: G1; dashed: G2; dash-dotted: G3; dotted: Gaussian distribution.
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Figure 9. The PDFs of normalized passive scalar gradient. Roω = 0.94. Legend same as Fig. 8.
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Figure 10. The PDFs of normalized passive scalar gradient. Roω = 0.2. Legend same as Fig. 8.

Roω ∞ 1.98 1.28 0.94 0.59 0.20 0.01
F (G⊥) 8.50 7.33 6.32 5.95 4.48 3.24 3.03
F (G‖) 8.49 6.49 5.42 4.82 4.04 3.28 3.00
Table 1. The flatness of the perpendicular and parallel components of the gradients of the passive scalar at

different Rossby numbers.

Without rotation, the PDFs of the gradients of the passive scalar are plotted
in Fig. 8. The PDFs display stretched exponential tails, as a consequence of small
scale intermittency. The form of the PDFs is consistent with observations in turbu-
lent flows, although the flatness is somewhat underestimated (see [19] and Table 1).
Two observations can be made. First, the three components follow the same distri-
bution. Second, comparing the PDFs with those of the velocity gradients (such as
Fig. 1), we see that the scalar gradients are more intermittent. These observations
reproduce the known results in isotropic turbulence. When rotation is imposed, the
PDFs for Roω = 0.94 and 0.2 are given in Fig. 9 and 10, respectively. Comparing
the figures, one can see generally rotation again tends to suppress large fluctua-
tions. The PDFs tend to Gaussian distribution when rotation becomes increasingly
strong.
Further observations can be made by a closer look at the PDFs at Roω = 0.94.

Comparing the PDFs in Fig. 9, one can see that the PDF for G3 decreases faster
than the PDFs for G1 and G2. It implies that the gradient G is anisotropic at this
Rossby number, and the component parallel to the rotation axis appears to be less
intermittent than the other two components. The observation is consolidated with
the data of the moments of the gradients. Our calculation shows that there is no
significant difference in the RMS values of the gradients. Therefore, the anisotropy
occurs mostly in large fluctuations, which can be characterized by flatness or higher
order moments. For the flatness, we calculate the components perpendicular and
parallel to the rotation axis separately, denoted by F (G⊥) and F (G‖), respectively.
Without rotation (Ro = ∞), F (G⊥) is the same as F (G‖) (see Table 1) as a
consequence of isotropy. When rotation is imposed, the results are plotted in Fig.
11 as well as given in Table 1. One observes that the flatness for both components
decreases with the Rossby number, and at the strong rotation limit both tend
to the Gaussian value 3. This is expected given the PDFs in Figs. 8-10 . More



August 2, 2011 12:27 Journal of Turbulence rotationcm.jot.rv1

16 Yi Li

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

F
(G

||)
,  

F
(G

⊥
)

Roω
Figure 11. The flatness of the passive scalar gradient at different Rossby numbers. Solid line: the compo-
nents perpendicular to the rotation axis (F (G⊥)); dashed line: parallel component (F (G‖)).

interestingly, the flatness of the perpendicular component F (G⊥) is significantly
bigger than that of the parallel component F (G‖) for the whole range of Rossby
numbers. Thus the observed local anisotropy in Fig. 9 is a generic behavior for the
scalar gradient with rotation. Given that the difference between F (G‖) and F (G⊥)
eventually disappears when either Roω → 0 or Roω → ∞, one can further infer
that there must be an intermediate Rossby number for which the anisotropy is the
maximum.
The anisotropy in the scalar gradient is also observed in a recent DNS study

[9], where the mixing of a freely decaying scalar field in rotating turbulence is
considered, and the flatness of the gradients at two Rossby numbers are presented.
Thanks to the simplicity of the models, here we can obtain the dependence of
the anisotropy on the Rossby number over a wide range of Rossby numbers. An
explanation for the anisotropy is proposed in [9], where the anisotropy in G is
believed to be due to the anisotropy in the spectral transfer functions for different
components. The authors further argued that the anisotropy in the spectral transfer
is due to large-scale anisotropy in the velocity field. In our model, however, there
are no large scale fluctuations involved. Therefore, one may conjecture that there
are also other mechanisms inherent to the dynamics of G and the velocity gradient
A.
To understand the possible mechanisms involved, we consider the transport equa-

tions for the marginal PDFs of the scalar gradient components Gα (α = 1, 2, 3). Let
Pα(gα) denote the probability density for Gα being equal to a given value gα. Using
the model equation for G [Eq. 22], one can show that Pα(gα) evolves according to
the Fokker-Planck equation (for derivation see, e.g., [25]):

∂Pα

∂t
+

∂

∂gα
[−〈GjAjα|Gα = gα〉 Pα]

+
∂

∂gα

[

−
〈

TrC−1
τ |Gα = gα

〉

3Tθ
gαPα

]

=
1

2Tθ

∂2Pα

∂g2α
(29)

where repeated index α does not imply summation. Thus the stationary distribu-
tion is determined by the conditional averages of the production term (the second
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Figure 12. Hα as a function of gα, without rotation. Solid line: α = 1; dashed line: α2; dash-dotted line:
α3. Inset: same results plotted in log-log scales. The two dotted lines have slopes 2 and 1, respectively.

term on the left hand side of the equation) and the damping term (the third term)
in the model. Introducing the following notations for the various terms:

Pα(gα) = −〈GjAjα|Gα = gα〉 ,

Dα(gα) =
gα

〈

TrC−1
τ |Gα = gα

〉

3Tθ
,

Hα(gα) = −
∫ gα

0
[Pα(s)−Dα(s)]ds ,

the stationary PDF is given by

Pα(gα) = C exp[−2TθHα(gα)], (30)

where C is a normalization constant. The shape of the PDF is determined by Hα.
For Gaussian distribution Hα(gα) ∼ g2α, whereas Hα(gα) ∼ gα for an exponential
distribution. More generally, larger Hα implies the PDF has steeper slopes. Hα

contains the competing effects of the production term Pα and the damping term
Dα. The anisotropy observed in the PDFs is related to the anisotropy in Pα and
Dα.
Fig. 12 plots Hα as a function of gα when rotation is absent, for the three compo-

nents α = 1, 2, 3, respectively. As expected the three curves overlap with each other
except for large gα (say gα > 9), where statistical errors cause some discrepancy.
The inset shows the same results in log-log scale. The curves at large gα increase
at a rate slower than linear. Therefore the PDFs have stretched exponential tails,
as observed previously.
Fig. 13 shows the same results as Fig. 12 at Roω = 0.94. Even though some

statistical errors are observed at large gα, it is clear that H3 is significantly bigger
than H1 and H2. Given that Pα(gα) ∼ exp(−2TθHα), it means that the PDF
P3(g3) decreases with its argument faster than P2 and P1. Thus the results for Hα

are consistent with the PDFs. H3 appears to increase linearly with g3 for large g3,
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Figure 13. Hα as a function of gα. Roω = 0.94. Legend same as Fig. 12.
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suggesting that P3 have exponential tails.
The difference in Hα (α = 1, 2, 3) comes from the conditional averaged produc-

tion term and viscous damping term. We examine the difference between different
components of these two terms. Given that the two perpendicular components are
statistically identical, we plot P⊥−P‖ andD⊥−D‖ as functions of gα, where P⊥ and
D⊥ are the averages of P1 and P2, and D1 and D2, respectively. When rotation is
absent, Pα and Dα are isotropic so that the differences are zero (result not shown).
The results at four finite Rossby numbers are shown in Fig. 14. We first observe
that the results for the viscous damping term (symbols) are close to zero, implying
that the perpendicular and parallel components of the damping term are nearly
the same. This suggests that it is the production term, rather than the damping
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Figure 15. Solid line: P⊥−P‖; dashed line: contribution from the self-production term ; circles: contribu-
tion from cross-production terms. The sum of the latter two equals the former. Top: Roω = 0.94, middle:
Roω = 0.59, bottom: Roω = 0.20.

term, that generates the anisotropy. Second, the difference in the production term
(shown with lines), P⊥ − P‖, increases when the Rossby number decreases from
Roω = 1.28 through Roω = 0.94 to Roω = 0.59. However, the difference starts to
decrease when Roω is further reduced to 0.2. Therefore, the anisotropy appears to
reach its maximum around Roω = 0.59, as far as the conditional averaged produc-
tion term is concerned.
Note that, for each α = 1, 2, 3, the production term Pα is the sum of three differ-

ent terms: a self-production term −〈GαAαα|gα〉, and two cross-production terms.
The self-production term generates scalar gradient by compressing iso-surfaces of
the scalar together. The cross-production term, on the other hand, represents the
production due to shearing and rolling-up of the iso-surfaces. Thus the difference in
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P⊥−P‖ can be further decomposed into two contributions, one from the difference
between the respective self-production terms in the perpendicular and the parallel
components, and the other from the difference between the cross-production terms.
Fig. 15 plots the two contributions for the three Rossby numbers aroundRoω = 0.59
where P⊥−P‖ is the maximum. The top panel shows that at Roω = 0.94, the self-
production term (dashed line) makes positive contributions to the total difference
P⊥ − P‖ (solid line), whereas the cross-production terms (circles) make negative
contributions. In other words, at this Rossby number the self-production terms
for the perpendicular components dominate the one for the parallel component,
whereas the cross-production terms for the latter dominates those for the former.
On the other hand, when Roω = 0.20, the signs of the contributions are reversed
(the bottom panel), i.e., the self-production term now makes negative contribu-
tions to the difference, whereas the cross-production terms make positive ones.
Thus, there is a transition happening in the dynamics of the gradients. The figure
in the middle panel shows that, during the transition at Roω ≈ 0.59, the contri-
butions from both self and cross production terms are positive. As a result, the
difference in the whole production term P⊥ − P‖ is the maximum.
The above analysis suggests that the anisotropy in the scalar gradients is re-

lated to the different responses of the self and cross production terms to rotation.
The mechanisms should also exist in rotating turbulence regardless the large scale
structures of the flow fields. It would be interesting to further the investigation
with DNS analyses.

4. Conclusions

The properties of the velocity gradient and the gradient of a passive scalar in ro-
tating turbulence are studied using Lagrangian stochastic models. The model for
the velocity gradient generalizes a previous model [15] in which the recent fluid
deformation history is used to construct closures for the pressure Hessian and vis-
cous diffusion terms. We incorporate the effects of rotation into the closure for
the pressure Hessian and the fluid deformation history. We show that the model
assumptions should be formulated in terms of the conditional averages of the La-
grangian pressure Hessian and the Lagrangian viscous diffusion Hessian.
The model equations are solved numerically and the solutions are analyzed. The

analyses focus on the effects of rotation on small-scale intermittency and local
anisotropy of the gradients. It is found that the models reproduce the observations
that rotation tends to weaken small-scale intermittency in both the velocity and
the scalar gradients. For the velocity gradient, the model prediction on the skew-
ness of the longitudinal components compares reasonably well with recent experi-
mental data for moderate Rossby numbers. The models also predict the skewness
of the perpendicular transverse components and its non-monotonic dependence
on the rotation rates. For the scalar gradient, the models find the perpendicu-
lar components are more intermittent than the parallel component, as is observed
in rotating turbulence. We show that the anisotropy increases initially but even-
tually disappear when the rotation becomes increasely stronger. The anisotropy
measured by the conditionally averaged production term is the maximum at ap-
proximately Roω = 0.59, where a transition happens in the relative strength of the
self-production terms and cross-production terms for different components.
We emphasize that the above results are obtained using stochastic Lagrangian

models. Thus, further DNS and/or experimental studies are needed in order to
draw definite conclusions. Besides, the quantitative agreement between the model
predictions and DNS/experimental results need to be improved. For example, the
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model over-predicts the effect of rotation on the skewness of the longitudinal veloc-
ity gradients when rotation is strong. Nevertheless, the analyses have shown that
the qualitative aspects of the predictions are robust and do not depend on specific
model assumptions. Further research can be pursued on several fronts. First, in
rotating turbulence, it has also been observed that the Schmidt number has an
effect on the level of anisotropy in the scalar gradient. However, the model for the
scalar gradients implicitly assumes the Schmidt number being close to one, so has
not included the effects of the Schmidt number. Second, as is mentioned in [15, 19],
further investigation is needed for the models to make accurate predictions at high
Reynold numbers. Finally, it would also be interesting to use DNS/experimental
data to examine how rotation affects some of the model assumptions, such as the
process of Lagrangian decorrelation. Such studies might explain the discrepancy
observed at strong rotations, and will also provide valuable information generally
on the Lagrangian dynamics of rotating turbulence.
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[22] S. B. Pope. Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci., 11:119–192, 1985.
[23] J. A. Langford and R. D. Moser. Optimal LES formulations for isotropic turbulence. J. Fluid Mech.,

398:321, 1999.
[24] Y. Li, L. Chevillard, G. Eyink, and C. Meneveau. Matrix exponential-based closures for the turbulent

subgrid-scale stress tensor. Phys. Rev. E, 79:016305, 2009.
[25] S. B. Pope. Turbulent flows. Cambridge University Press, Cambridge, 2000.
[26] B. J. Cantwell. Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys.

Fluids A, 4:782–793, 1992.
[27] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer,

Berlin, 1999.
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