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Abstract—The gradients of a quaternion-valued function are
often required for quaternionic signal processing algorithms. The
HR gradient operator provides a viable framework and has
found a number of applications. However, the applications so far
have been mainly limited to real-valued quaternion functions and
linear quaternion-valued functions. To generalize the operator to
nonlinear quaternion functions, we define a restricted version of
the HR operator, which comes in two versions, the left and the
right ones. We then present a detailed analysis of the properties
of the operators, including several different product rules and
chain rules. Using the new rules, we derive explicit expressions
for the derivatives of a class of regular nonlinear quaternion-
valued functions, and prove that the restricted HR gradients are
consistent with the gradients in real domain. As an application,
the derivation of the least mean square algorithm and a nonlinear
adaptive algorithm is provided. Simulation results based on
vector sensor arrays are presented as an example to demonstrate
the effectiveness of the quaternion-valued signal model and the
derived signal processing algorithm.

I. INTRODUCTION

Quaternion calculus has been introduced in signal process-

ing with application areas involving three or four-dimensional

signals, such as color image processing [1]–[5], vector-sensor

array systems [6]–[11] and wind profile prediction [12].

Several quaternion-valued adaptive filtering algorithms have

been proposed in [10], [11], [13], [14]. Notwithstanding the

advantages of the quaternionic algorithms, extra care have

to be taken in their developments, in particular when the

derivatives of quaternion-valued functions are involved, due

to the fact that quaternion algebra is non-commutative. A so-

called HR gradient operator was proposed in [15] and the

interesting formulation appears to provide a general and flex-

ible framework that could potentially have wide applications.

However, it has only been applied to real-valued functions

and linear quaternion-valued functions. In order to consider

more general quaternion-valued functions, we propose a pair

of restricted HR gradient operators, the left and the right

restricted HR gradient operators, based on the previous work

on the HR gradient operator [15] and our recent work [12].

To summarize, we make the following main contributions.

Firstly, we give a detailed derivation of the relation between

the gradients and the increment of a quaternion function,

highlighting the difference between the left and the right

gradients due to the non-commutativity of quaternion algebra.

Secondly, we document several properties of the operators that

have not been reported before, in particular several different

versions of product rules and chain rules. Thirdly, we derive

a general formula for the restricted HR derivatives of a wide

class of regular quaternion-valued nonlinear functions, among

which are the exponential, logarithmic, and the hyperbolic

tangent functions. Finally, we prove that the restricted HR gra-

dients are consistent with the usual definition for the gradient

of a real function of a real variable. Its application to the

derivation of quaternion-valued least mean squares (QLMS)

adaptive algorithm and a nonlinear adaptive algorithm based

on the hyperbolic tangent function is also briefly discussed.

As an example for quaternion-valued signal processing, we

will consider the reference signal based adaptive beamform-

ing problem for vector sensor arrays consisting of multiple

crossed-dipoles and provide some simulation results.

The paper is organised as follows. The restricted HR

gradient operator is developed in Sec. II, with its properties

and rules introduced in Sec. III. Explicit expressions for the

derivatives for a wide range of functions are derived in Sec. IV

and results for the right restricted HR operator are summarised

in Sec. V. The increment of a general quaternion function is

discussed in Sec. VI, followed by its two applications. The

quaternion-valued adaptive beamforming example is provided

in Sec. VII and conclusions are drawn in Sec. VIII.

II. THE RESTRICTED HR GRADIENT OPERATORS

A. Introduction of quaternion

Quaternion is a non-commutative extension of complex

number. A quaternion q is composed of four parts, i.e.,

q = qa + qbi + qcj + qdk, where qa is the real part, which

is also denoted as R(q). The other three terms constitute the

imaginary part I(q). i, j and k are the three imaginary units,

which satisfy the following rules for multiplication: ij = k,

jk = i, ki = j, i2 = j2 = k2 = −1, and

ij = −ji, ki = −ik, kj = −jk. (1)

Due to (1), in general the product of two quaternions depends

on the order, i.e., qp ̸= pq where p and q are quaternions.

However, the product commutes as long as at least one of the

factors, say q, is real.
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Let v = |I(q)| and v̂ = I(q)/v, the quaternion q can also

be written as q = qa + vv̂. v̂ is a pure unit quaternion, which

has the convenient property v̂
2 := v̂v̂ = −1. The quaternionic

conjugate of q is q∗ = qa−qbi−qcj−qdk, or q∗ = qa−vv̂. It is

easy to show that qq∗ = q∗q = |q|2, and hence q−1 = q∗/|q|2.

B. Definition of the restricted HR gradient operators

Let f : H → H be a quaternion-valued function of a

quaternion q, where H is the non-commutative algebra of

quaternions. We use the notation f(q) = fa+fbi+fcj+fdk,

where fa, ..., fd are the components of f . f can also be

viewed as a function of the four components of q, i.e., f =
f(qa, qb, qc, qd). In this view f is a quaternion-valued function

on R4: f : R4 → H . To express the four real components of

q, it is convenient to use its involutions qν := −νqν where

ν ∈ {i, j, k} [16]. Explicitly, we have

qi = −iqi = qa + qbi− qcj − qdk, (2)

qj = −jqj = qa − qbi+ qcj − qdk, (3)

qk = −kqk = qa − qbi− qcj + qdk. (4)

The real components can be recovered by

qa =
1

4
(q + qi + qj + qk), qb =

1

4i
(q + qi − qj − qk), (5)

qc =
1

4j
(q − qi + qj − qk), qd =

1

4k
(q − qi − qj + qk). (6)

Two useful relations are

q∗ =
1

2
(qi + qj + qk − q), q + qi + qj + qk = 4R(q). (7)

A so-called HR gradient of f(q) was introduced in [15],

which has been applied to real-valued functions and linear

quaternion-valued functions. In order to find the gradients of

more general quaternion-valued functions, we follow a similar

approach to propose a ‘restricted’ HR gradient operator (some

of the derivation was first presented in [12]). To motivate the

definitions, we consider the differential df(q) with respect to

differential dq := dqa + dqbi+ dqcj + dqdk. We observe that

df = dfa + idfb + jdfc + kdfd, where

dfa =
∂fa
∂qa

dqa +
∂fa
∂qb

dqb +
∂fa
∂qc

dqc +
∂fa
∂qd

dqd. (8)

We have dqa = (dq + dqi + dqj + dqk)/4 according to (5).

Making use of this and similar expressions for dqb, dqc and

dqd, we find an expression for dfa in terms of the differentials

dq, dqi, dqj and dqk. Repeating the calculation for idfb, jdfc
and kdfd, we finally arrive at

df = Ddq +Didq
i +Djdq

j +Dkdq
k (9)

where

D :=
1

4

(

∂f

∂qa
−

∂f

∂qb
i−

∂f

∂qc
j −

∂f

∂qd
k

)

, (10)

Di :=
1

4

(

∂f

∂qa
−

∂f

∂qb
i+

∂f

∂qc
j +

∂f

∂qd
k

)

, (11)

Dj :=
1

4

(

∂f

∂qa
+

∂f

∂qb
i−

∂f

∂qc
j +

∂f

∂qd
k

)

, (12)

Dk :=
1

4

(

∂f

∂qa
+

∂f

∂qb
i+

∂f

∂qc
j −

∂f

∂qd
k

)

. (13)

More details are given in Appendix A. Thus one may define

the partial derivatives of f(q) as follows:

∂f

∂q
:= D,

∂f

∂qi
:= Di,

∂f

∂qj
:= Dj ,

∂f

∂qk
:= Dk. (14)

Introducing operators ∇q := (∂/∂q, ∂/∂qi, ∂/∂qj , ∂/∂qk),
and ∇r := (∂/∂qa, ∂/∂qb, ∂/∂qc, ∂/∂qd), equations (10-14)

may be written as

∇qf = ∇rfJ
H (15)

where the Jacobian matrix

J =
1

4









1 i j k
1 i −j −k
1 −i j −k
1 −i −j k









(16)

and JH is the Hermitian transpose of J [15]. Using JJH =
JHJ = 1/4 [17], we may also write

∇qfJ =
1

4
∇rf, (17)

which is the inverse formulae for the derivatives.

We call the gradient operator defined by (15) the restricted

HR gradient operator. The operator is closely related to the HR

operator introduced in [15]. However, in the original definition

of the HR operator, the Jacobian J appears on the left-hand

side of ∇rf , whereas in our definition it appears on the right

(as the Hermitian transpose).

The differential df is related to ∇qf by

df =
∂f

∂q
dq +

∂f

∂qi
dqi +

∂f

∂qj
dqj +

∂f

∂qk
dqk. (18)

Due to the non-commutativity of quaternion products, the

order of the factors in the products of the above equation (as

well as equations (10-13)) can not be swapped. In fact, one

may call the above operator the left restricted HR gradient

operator. As is shown in Appendix A, one may also define a

right restricted HR gradient operator by

(∇R
q f)

T := J∗(∇rf)
T , (19)

where

∇R
q := (∂R/∂q, ∂R/∂qi, ∂R/∂qj , ∂R/∂qk),

and

∂Rf

∂q
:=

1

4

(

∂f

∂qa
− i

∂f

∂qb
− j

∂f

∂qc
− k

∂f

∂qd

)

, (20)

∂Rf

∂qi
:=

1

4

(

∂f

∂qa
− i

∂f

∂qb
+ j

∂f

∂qc
+ k

∂f

∂qd

)

, (21)

∂Rf

∂qj
:=

1

4

(

∂f

∂qa
+ i

∂f

∂qb
− j

∂f

∂qc
+ k

∂f

∂qd

)

, (22)

∂Rf

∂qk
:=

1

4

(

∂f

∂qa
+ i

∂f

∂qb
+ j

∂f

∂qc
− k

∂f

∂qd

)

. (23)

The right restricted HR gradient operator is related to the

differential df by

df = dq
∂Rf

∂q
+ dqi

∂Rf

∂qi
+ dqj

∂Rf

∂qj
+ dqk

∂Rf

∂qk
. (24)
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In general, the left and right restricted HR gradients are not

the same. For example, even for the simplest linear function

f(q) = q0q with q0 ∈ H a constant, we have

∂q0q

∂q
= q0,

∂Rq0q

∂q
= R(q0). (25)

However, we will show later that the two gradients coincide

for a class of functions. In particular, they are the same for

real-valued quaternion functions.

The relation between the gradients and the differential is

an important ingredient of gradient-based methods, which we

will discuss further later.

III. PROPERTIES AND RULES OF THE OPERATOR

We will now focus on the left restricted HR gradient

and simply call it the restricted HR gradient unless stated

otherwise. It can be easily calculated from the definitions, that

∂q

∂q
= 1,

∂qν

∂q
= 0,

∂q∗

∂q
= −

1

2
, (26)

where ν ∈ {i, j, k}. However, in order to find the derivatives

for more complex quaternion functions, it is useful to first

establish the rules of the gradient operators. We will see

that some of the usual rules do not apply due to the non-

commutativity of quaternion products.

1) Left-linearity: for arbitrary constant quaternions α and

β, and functions f(q) and g(q), we have

∂(αf + βg)

∂qν
= α

∂f

∂qν
+ β

∂g

∂qν
(27)

for ν ∈ {1, i, j, k} with q1 := q. However, linearity does

not hold for right multiplications, i.e., in general

∂fα

∂q
̸=

∂f

∂q
α. (28)

This is because, according to the definition (10),

∂fα

∂q
=

1

4

∑

(φ,γ)

∂f

∂qφ
αγ (29)

for (φ, γ) ∈ {(a, 1), (b,−i), (c,−j), (d,−k)}. However,

αγ ̸= γα in general. Therefore it is different from

(∂f/∂q)α, which is

1

4

(

∂f

∂qa
−

∂f

∂qb
i−

∂f

∂qc
j −

∂f

∂qd
k

)

α. (30)

2) The first product rule: the following product rule holds:

∇q(fg) = f∇qg + [(∇rf)g]J
H . (31)

For example,

∂fq

∂q
= f

∂g

∂q
+
1

4

(

∂f

∂qa
g −

∂f

∂qb
gi−

∂f

∂qc
gj −

∂f

∂qd
gk

)

.

(32)

Thus the product rule in general is different from the

usual one.

3) The second product rule: However, the usual product

rule applies to differentiation with respect to real vari-

ables, i.e.,
∂fg

∂qφ
=

∂f

∂qφ
g + f

∂g

∂qφ
(33)

for φ = a, b, c, or d.

4) The third product rule: The usual product rule also

applies if at least one of the two functions f(q) and

g(q) is real-valued, i.e.,

∂fq

∂q
= f

∂g

∂q
+

∂f

∂q
g. (34)

5) The first chain rule: For a composite function f(g(q)),
g(q) := ga + gbi+ gcj + gdk being a quaternion-valued

function, we have the following chain rule [17]:

∇qf = (∇g
qf)M (35)

where ∇g
q := (∂/∂g, ∂/∂gi, ∂/∂gj , ∂/∂gk) and M is a

4 × 4 matrix with element Mµν = ∂gµ/∂qν for µ, ν ∈
{1, i, j, k} and gµ = −µgµ (g1 is understood as the

same as g). Explicitly, we may write

∂f

∂qν
=

∑

µ

∂f

∂gµ
∂gµ

∂qν
. (36)

The proof is outlined in Appendix C.

6) The second chain rule: The above chain rule uses g
and its involutions as the intermediate variables. It is

sometimes convenient to use the real components of g
for that purpose instead. In this case, the following chain

rule may be used:

∇qf = (∇g
rf)O (37)

where O is a 4 × 4 matrix with entry Oφν = ∂gφ/∂q
ν

with φ ∈ {a, b, c, d} and ν ∈ {1, i, j, k}, and ∇g
r :=

(∂/∂ga, ∂/∂gb, ∂/∂gc, ∂/∂gd). Explicitly, we have

∂f

∂qν
=

∑

φ

∂f

∂gφ

∂gφ
∂qν

. (38)

7) The third chain rule: if the intermediate function g(q)
is real-valued, i.e., g = ga, then from the second chain

rule, we obtain

∂f

∂qν
=

∂f

∂g

∂g

∂qν
. (39)

8) f(q) is not independent of qi, qj or qk in the sense that,

in general,

∂f(q)

∂qi
̸= 0,

∂f(q)

∂qj
̸= 0,

∂f(q)

∂qk
̸= 0. (40)

This can be illustrated by f(q) = q2. Using the first

product rule (equation (31)), we have

∂q2

∂qi
= q

∂q

∂qi
+

1

4

∑

(φ,ν)

∂q

∂qφ
qν

for (φ, ν) ∈ {(a, 1), (b, i), (c,−j), (d,−k)}. It can then

be shown that

∂q2

∂qi
= qbi,

∂q2

∂qj
= qcj,

∂q2

∂qk
= qdk. (41)

This property demonstrates the intriguing difference

between the HR derivative and the usual derivatives,

although we can indeed show that

∂q

∂qν
= 0. (42)
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One implication of this observation is that, for a nonlin-

ear algorithm involving simultaneously more than one

gradients ∂f/∂qν , we have to take care to include all

the terms.

IV. RESTRICTED HR DERIVATIVES FOR A CLASS OF

REGULAR FUNCTIONS

Using the above operation rules, we may find explicit

expressions for the derivatives for a whole range of functions.

We first introduce the following lemma:

Lemma 1. The derivative of the power function f(q) = (q−
q0)

n, with integer n and constant quaternion q0, is

∂f(q)

∂q
=

1

2

(

nq̃n−1 +
q̃n − q̃∗n

q̃ − q̃∗

)

, (43)

with q̃ = q − q0.

Remark. The division in (q̃n− q̃∗n)/(q̃− q̃∗) is understood as

(q̃n − q̃∗n)(q̃ − q̃∗)−1 or (q̃ − q̃∗)−1(q̃n − q̃∗n) which are the

same since the two factors commute. The division operations

in what follows are understood in the same way.

Proof: The lemma is obviously true for n = 0. Let n ≥ 1,

we apply the first product rule, and find

∂(q − q0)
n

∂q
= q̃

∂q̃n−1

∂q
+R(q̃n−1) (44)

where R(q̃n−1) is the real part of q̃n−1. We then obtain by

induction

∂(q − q0)
n

∂q
=

n−1
∑

m=0

q̃mR(q̃n−1−m). (45)

Using R(q̃n−1−m) = 1
2 (q̃

n−1−m + q̃∗(n−1−m)), the summa-

tions can be evaluated explicitly, leading to equation (43).

For n < 0, we use the recurrent relation

∂((q − q0)
−n)

∂q
= q̃−1

[

∂q̃−(n−1)

∂q
−R(q̃−n)

]

(46)

and the result

∂(q − q0)
−1

∂q
= −q̃−1R(q̃−1). (47)

Equation (43) is proven by using induction as for n > 0. More

details are given in Appendix B.

Theorem 1. Assuming f : H → H admits a power series

representation f(q) := g(q̃) :=
∑

∞

n=−∞
anq̃

n, with an being

a quaternion constant and q̃ = q − q0, for R1 ≤ |q̃| ≤ R2

with R1, R2 > 0 being some constants, then

∂f(q)

∂q
=

1

2

[

f ′(q) + (g(q̃)− g(q̃∗))(q̃ − q̃∗)−1
]

, (48)

where f ′(q) is the derivative in the usual sense, i.e.,

f ′(q) :=
∞
∑

n=−∞

nanq̃
n−1 =

∞
∑

n=−∞

nan(q − q0)
n−1. (49)

Proof: Using Lemma 1 and the left-linearity of HR

gradients, we have

∂f

∂q
=

1

2

∞
∑

n=−∞

an[nq̃
n−1 + (q̃n − q̃∗n)(q̃ − q̃∗)−1]

= f ′(q) +
1

2

[

∞
∑

n=∞

an(q̃
n − q̃∗n)

]

(q̃ − q̃∗)−1

=
1

2
[f ′(q) + (g(q̃)− g(q̃∗))(q̃ − q̃∗)−1],

proving the theorem.

The functions f(q) form a class of regular functions on H .

A full discussion of such functions is beyond the scope of this

paper. However, we note that a similar class of functions have

been discussed in [18]. A parallel development for the former

is possible, and will be the topic of a future paper. Meanwhile,

we observe that many useful elementary functions satisfy the

conditions in Theorem 1. To illustrate the application of the

theorem, we list below the derivatives of a number of such

functions.

Example 1. Exponential function f(q) = eq has representa-

tion

eq :=
∞
∑

n=0

qn

n!
. (50)

Applying Theorem 1 with an = 1/n! and q0 = 0, we have

∂eq

∂q
=

1

2

(

eq +
eq − eq∗

q − q∗

)

. (51)

Making use of eq = eqa+v̂v = eqaev̂v = eqa(cos v + v̂ sin v)
with the representation of q = qa + v̂v and v̂

2 = −1,

respectively, we have

∂eq

∂q
=

1

2

(

eq + eqav−1 sin v
)

. (52)

Example 2. The logarithmic function f(q) = ln q has repre-

sentation

ln q =

∞
∑

n=1

(−1)n−1

n
(q − 1)n. (53)

with an = (−1)n−1/n and q0 = 1. Since q0 is a real number,

g(q̃∗) = f(q∗). Therefore, we have from Theorem 1

∂ ln q

∂q
=

1

2

(

q−1 +
ln q − ln q∗

q − q∗

)

. (54)

Using representation ln q = ln |q| + v̂ arccos(qa/|q|), the

expression can be simplified as

∂ ln q

∂q
=

1

2

(

q−1 +
1

v
arccos

qa
|q|

)

, (55)

where v = |I(q)|.

Example 3. Hyperbolic tangent function f(q) = tanh q is

defined as

tanh q :=
eq − e−q

eq + e−q
= q −

q3

3
+

2q5

15
− ... (56)



5

Therefore, Theorem 1 applies. On the other hand, using the

relation eq = eqa(cos v + v̂ sin v), we can show that

tanh q =
1

2

sinh 2qa + v̂ sin 2v

sinh2 qa + cos2 v
. (57)

Then the second term in the expression given by Theorem 1

can be simplified. The final expression can be written as

∂ tanh q

∂q
=

1

2

(

sech2 q +
v−1 sin 2v

cosh 2qa + cos 2v

)

, (58)

where sech q := 1/ cosh q is the quaternionic hyperbolic

secant function.

Remark. Apparently, the derivatives for these functions can

also be found by direct calculations without resorting to

Theorem 1.

We now turn to a question of more theoretical interests.

Even though it might not be obvious from the definitions, the

following theorem shows that the restricted HR derivative is

consistent with the derivative in the real domain for a class of

functions, including those in the above examples.

Theorem 2. For the function f(q) in Theorem 1, if q0 is a

real number, then
∂f(q)

∂q
→ f ′(q) (59)

when q → R(q), i.e., when q approaches a real number.

Proof: Using the polar representation, we write q̃ =
|q̃| exp(v̂θ), where θ = arcsin(v/|q̃|) is the argument of q̃
with v = |I(q̃)|. Then q̃n = |q̃|n exp(nv̂θ), and

(q̃n − q̃∗n)(q̃ − q̃∗)−1 =
I(q̃n)

I(q̃)
=

|q̃|n−1 sin(nθ)

sin θ
. (60)

For real q0, q̃ → qa − q0 and v → 0 when q → R(q). There

are two possibilities. Firstly, if qa− q0 ≥ 0, then θ → 0 at the

limit. Thus,

sin(nθ)

sin θ
∼

sin(nθ)

θ
→ n, |q̃|n−1 → (qa − q0)

n−1. (61)

Therefore,

(q̃n − q̃∗n)(q̃ − q̃∗)−1 → nq̃n−1 (62)

and

[g(q̃)− g(q̃∗)](q̃ − q̃∗)−1 →
∞
∑

n=−∞

nanq̃
n−1 = f ′(q). (63)

Thus
∂f(q)

∂q
→

1

2
[f ′(q) + f ′(q)] = f ′(q). (64)

Secondly, if qa − q0 < 0, then θ → π. Thus

sin(nθ)

sin θ
∼

sin(nθ)

π − θ
(65)

Note sin(nθ) = sin[nπ−n(π− θ)] = (−1)n−1 sin[n(π− θ)],
we have

sin(nθ)

sin θ
∼

(−1)n−1 sin(n(π − θ)

π − θ
→ (−1)n−1n. (66)

On the other hand, in this case |q̃| → −(qa − q0), hence

|q̃|n−1 → (−1)n−1(qa − q0)
n−1. Since q̃ → qa − q0, as a

consequence, we have

(q̃n − q̃∗n)(q̃ − q̃∗)−1 → nq̃n−1 (67)

which is the same as Eq. (62). The proof then follows from

the first case.

The functions in above three examples all satisfy the con-

ditions in Theorem 2, hence we expect Theorem 2 applies.

One can easily verify by direct calculations that the theorem

indeed holds.

V. THE RIGHT RESTRICTED HR GRADIENTS

In this section, we briefly summarize the results for the right

restricted HR gradients, and highlight the difference with left

restricted HR gradients.

1) Right-linearity: for arbitrary quaternion constants α and

β, and functions f(q) and g(q), we have

∂R(fα+ gβ)

∂qν
=

∂Rf

∂qν
α+

∂Rg

∂qν
β. (68)

However, linearity does not hold for left multiplications,

i.e., in general

∂Rαf

∂q
̸= α

∂Rf

∂q
. (69)

2) The first product rule: for the right restricted HR oper-

ator, the following product rule holds:

[∇R
q (fg)]

T = [(∇R
q f)g]

T + J∗[f(∇rg)
T ]. (70)

The second and third product rules are the same as for

the left restricted operator.

3) The first chain rule: for the composite function f(g(q)),
we have

(∇R
q f)

T = MT (∇gR
q f)T . (71)

4) The second chain rule becomes:

(∇R
q f)

T = OT (∇g
rf)

T . (72)

5) The third chain rule becomes

∂Rf

∂qν
=

∂g

∂qν
∂f

∂g
. (73)

Note that, ∂g/∂qν = ∂Rg/∂qν since g is real-valued.

We thus have omitted the superscript R. Also, ∂f/∂g is

a real derivative, so there is no distinction between left

and right derivatives.

We can also find the right restricted HR gradients for common

quaternion functions. First of all, Lemma 1 is also true for right

derivatives:

Lemma 2. For f(q) = (q − q0)
n with n integer and q0 a

constant quaternion, we have

∂Rf(q)

∂q
=

1

2

(

nq̃n−1 +
q̃n − q̃∗n

q̃ − q̃∗

)

, (74)

with q̃ = q − q0.
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Remark. To prove the lemma, we use the following recurrent

relations:

∂(q − q0)
n

∂q
=

∂q̃n−1

∂q
q̃ +R(q̃n−1) (75)

∂((q − q0)
−n)

∂q
=

[

∂q̃−(n−1)

∂q
−R(q̃−n)

]

q̃−1. (76)

Using Lemma 2, We can prove the following result:

Theorem 3. Assuming f : H → H admits a power series

representation f(q) := g(q̃) :=
∑

∞

n=−∞
q̃nan, with an being

a quaternion constant and q̃ = q − q0, for R1 ≤ |q̃| ≤ R2

with R1, R2 > 0 being some constants, then

∂Rf(q)

∂q
=

1

2

[

f ′(q) + (q̃ − q̃∗)−1(g(q̃)− g(q̃∗))
]

, (77)

where f ′(q) is the derivative in the usual sense, i.e.,

f ′(q) :=
∞
∑

n=−∞

nq̃n−1an =
∞
∑

n=−∞

n(q − q0)
n−1an. (78)

Note that, the functions f(q) in Theorem 3 in general form a

different class of functions than the one in Theorem 1, because

in the series representation an appears on the right-hand side

of the powers. However, if an is a real number, then the two

classes of functions coincide. Therefore, we have the following

result:

Theorem 4. If an is real, then the left and right restricted HR

gradients of f(q) coincide.

Remark. As a consequence, we can see immediately the right

derivatives for the exponential, logarithmic and hyperbolic

tangent functions are the same as the left ones.

Apparently, Theorem 2 is also true for the right derivatives.

Hence, we have:

Theorem 5. The right-restricted HR gradient is consistent

with the real gradient in the sense of Theorem 2.

VI. THE INCREMENT OF A QUATERNION FUNCTION

When f(q) is a real-valued quaternion function, both left

and right restricted HR gradients are coincident with the HR

gradients. Besides, we have

∂Rf

∂qν
=

∂f

∂qν
=

(

∂f

∂q

)ν

, (79)

where ν ∈ i, j, k. Thus only ∂f/∂q is independent. As a

consequence (see also [15]),

df =
∑

ν

∂f

∂qν
dqν =

∑

ν

(

∂f

∂q

)ν

dqν

=
∑

ν

(

∂f

∂q
dq

)ν

= 4R

(

∂f

∂q
dq

)

, (80)

where equation (79) has been used. Hence, −(∂f/∂q)∗ gives

the steepest descent direction for f , and the increment is

determined by ∂f/∂q.

On the other hand, if f is a quaternion-valued function, the

increment will depend on all four derivatives. Taking f(q) =
q2 as an example, we have (see equations (41) and (43))

dq2 = (q + qa)dq + qbidq
i + qcjdq

j + qdkdq
k, (81)

even though f(q) appears to be independent of qi, qj and qk.

It can be verified that the above expression is the same as the

differential form given in terms of dqa, dqb, dqc and dqd. Thus

it is essential to include the contributions from ∂f/∂qi etc.

We also note that, if the right gradient is used consistently,

the same increment would result, since the basis of the

definitions is the same, namely, the differential form in term

of dqa, dqb, dqc and dqd.

A. Quaternion-valued LMS algorithm

As an application, we now apply the quaternion-valued re-

stricted HR gradient operator to develop the QLMS algorithm.

Different versions of the QLMS algorithm have been derived

in [10], [12], [14]. However, with the rules we have derived,

some of the calculations can be simplified, as we will be

showing below.

In terms of a standard adaptive filter, the output y[n] and

error e[n] can be expressed as

y[n] = wT [n]x[n], e[n] = d[n]− wT [n]x[n], (82)

where w[n] is the adaptive weight coefficient vector, d[n]
the reference signal, and x[n] the input sample vector. The

conjugate e∗[n] of the error signal e[n] is

e∗[n] = d∗[n]− xH [n]w∗[n]. (83)

The cost function is defined as J [n] = e[n]e∗[n] which is real-

valued. According to the discussion above and [15], [19], the

conjugate gradient (∇wJ [n])
∗ gives the maximum steepness

direction for the optimization surface. Therefore it is used to

update the weight vector. Specifically,

w[n+ 1] = w[n]− µ(∇wJ [n])
∗, (84)

where µ is the step size. To find ∇wJ , we use the first product

rule:

∇wJ =
∂e[n]e∗[n]

∂w

= e[n]
∂e∗[n]

∂w
+

1

4
(
∂e[n]

∂wa
e∗[n]−

∂e[n]

∂wb
e∗[n]i

−
∂e[n]

∂wc
e∗[n]j −

∂e[n]

∂wd
e∗[n]k) (85)

After some algebra, we find ∇wJ [n] = − 1
2x[n]e∗[n], which

leads to the following update equation for the QLMS algorithm

w[n+ 1] = w[n] + µ(e[n]x∗[n]). (86)

B. Quaternion-valued nonlinear adaptive algorithm

Another application is the derivation of quaternion-valued

adaptive filtering algorithms. We use the quaternion-valued

hyperbolic tangent function as an example [20], so that

the output s[n] of the adaptive filter is given by s[n] =
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tanh(y[n]) = tanh(wT [n]x[n]). The cost function is given

by J [n] = e[n]e∗[n], with e[n] = d[n]− tanh(wT [n]x[n]).
Using the product rules in (85) and chain rules, and letting

y[n] = wT [n]x[n], we have

∂e∗[n]

∂w[n]
= −(

∂ tanh(y∗[n])

∂(y∗[n])a

∂(y∗[n])a
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])b

∂(y∗[n])b
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])c

∂(y∗[n])c
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])d

∂(y∗[n])d
∂w[n]

). (87)

Let u = |I(y)| and û = I(y)/u. Then the quaternion y =
ya+ I(y) can also be written as y = ya+uû. û is a pure unit

quaternion. Finally, the gradient can be expressed as follows

by using (57)

∇wJ [n] =
1

4(sinh2 ya + cos2 u)2

·
(

(2 sin 2u(ea sin
2 ya + sin 2u(eû)a)

+ (cosu−
sinu

u
)(sinh2 ya + cos2 u)(eû)a)xû

+ ea((sinh
2 ya + cos2 u)(

sinu

u
− 4 cosh 2ya)

+ sinh 2ya(sinh
2 ya − sin 2u(eû)a))x

+ 2
sinu

u
(sinh2 ya + cos2 u)(exa + e∗x)a)

)

(88)

Substituting the above result into Eq. (84) we can then obtain

the update equation for the nonlinear adaptive algorithm.

On the other hand, if we use the series representation of

tanh(q), we can obtain another form of the gradient function

and the corresponding update equation becomes

w[n+ 1] =

w[n]+
1

2
µ

∞
∑

m=0

m−1
∑

r=0

am(xH [n]w∗[n])m−1−r

· e[n](xH [n]w∗[n])rx∗[n], (89)

where am is the coefficient in the series representation of

tanh(y[n]), i.e., tanh(y[n]) =
∑

∞

m=0 am(y[n])m. It can be

shown that if the items in the gradient part of the above

expression are commutative, it will be reduced to the same

form as in the real or complex domain.

VII. APPLICATION TO ADAPTIVE BEAMFORMING BASED

ON VECTOR SENSOR ARRAYS

As an example for the application of quaternion-valued

signal processing, we here consider the reference signal based

adaptive beamforming problem for vector sensor arrays con-

sisting of multiple crossed-dipoles, where the earlier derived

QLMS algorithm can be employed for beamforming.

A. Vector sensor arrays with a quaternion model

A general structure for a uniform linear array (ULA) with

M crossed-dipole pairs is shown in Fig. 1, where these pairs

are located along the y-axis with an adjacent distance d, and at

each location the two crossed components are parallel to the

d
 ...

θ

φ
y

z

x

Fig. 1. A ULA with crossed-dipoles.

x-axis and y-axis, respectively. For a far-field incident signal

with a direction of arrival (DOA) defined by the angles θ and

φ, its spatial steering vector is given by

Sc(θ, φ) = [1, e−j2πd sin θ sinφ/λ,

· · · , e−j2π(M−1)d sin θ sinφ/λ]T (90)

where λ is the wavelength of the incident signal and {·}T

denotes the transpose operation. For a crossed dipole the

spatial-polarization coherent vector can be given by [11], [21],

[22]

Sp(θ, φ, γ, η) =

{

[− cos γ, cos θ sin γejη] for φ = π
2

[cos γ,− cos θ sin γejη] for φ = −π
2
(91)

where γ is the auxiliary polarization angle with γ ∈ [0, π/2],
and η ∈ [−π, π] is the polarization phase difference.

The array structure can be divided into two sub-arrays: one

parallel to the x-axis and one to the y-axis. The complex-

valued steering vector of the x-axis sub-array is given by

Sx(θ, φ, γ, η) =

{

− cos γSc(θ, φ) for φ = π
2

cos γSc(θ, φ) for φ = −π
2

(92)

and for the y-axis it is expressed as

Sy(θ, φ, γ, η) =

{

cos θ sin γejηSc(θ, φ) for φ = π
2

− cos θ sin γejηSc(θ, φ) for φ = −π
2
(93)

Combining the two complex-valued subarray steering vec-

tors together, an overall quaternion-valued steering vector with

one real part and three imaginary parts can be constructed as

Sq(θ, φ, γ, η)

= ℜ{Sx(θ, φ, γ, η)}+ iℜ{Sy(θ, φ, γ, η)}

+jℑ{Sx(θ, φ, γ, η)}+ kℑ{Sy(θ, φ, γ, η)},

(94)

where ℜ{·} and ℑ{·} are the real and imaginary parts of a

complex number/vector, respectively. Given a set of coeffi-

cients, the response of the array is given by

r(θ, φ, γ, η) = wHSq(θ, φ, γ, η) (95)

where w is the quaternion-valued weight vector.
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Fig. 2. Reference signal based adaptive beamforming structure.

B. Reference signal based adaptive beamforming

Suppose one of the incident signals to the array is the

desired one and the remaining signals are interferences. Then

the aim of beamforming is to receive the desired signal while

suppressing the interferences at the output of the beamformer

[23]. When a reference signal d[n] is available, adaptive beam-

forming can be implemented by the standard adaptive filtering

structure, as shown in Fig. 2, where xm[n], m = 1, · · · ,M
are the received quaternion-valued input signals through the

M pairs of crossed-dipoles, and wm[n], m = 1, · · · ,M are

the corresponding quaternion-valued weight coefficients. y[n]
is the beamformer output and e[n] is the error signal

y[n] = wT [n]x[n]

e[n] = d[n]− wT [n]x[n] , (96)

where

w[n] = [w1[n], w2[n], · · · , wM [n]]
T

x[n] = [x1[n], x2[n], · · · , xM [n]]
T
. (97)

Simulations are performed based on such an array with 16
crossed-dipoles and half-wavelength spacing using the QLMS

algorithm in (86). The stepsizes µ is set to be 2 × 10−4. A

desired signal with 20 dB signal to noise ratio (SNR) impinges

from the broadside of the array (θ = 15◦) and two interfering

signals with a signal to interference ratio (SIR) of -10 dB arrive

from the directions (30◦, 90◦), and (15◦,−90◦), respectively.

All the signals have the same polarisation of (γ, η) = (30◦, 0).
Its learning curve obtained by averaging results from 200
simulation runs is shown in Fig. 3 and the resultant beam

pattern is shown in Fig. 4, where for convenience positive

values of θ indicate the value range θ ∈ [0◦, 90◦] for φ = 90◦,

while negative values of θ ∈ [−90◦, 0◦] indicate an equivalent

range of θ ∈ [0◦, 90◦] with φ = −90◦. We can see that the

ensemble mean square error has reached almost -30dB and two

nulls have been formed successfully in the two interference

directions, demonstrating the effectiveness of the quaternion-

valued signal model and the derived QLMS algorithm.

VIII. CONCLUSIONS

We have proposed a restricted HR gradient operator and

discussed its properties, in particular several different versions

of product rules and chain rules. Using the rules that we

establish, we derive a general formula for the derivative of

a large class of nonlinear quaternion-valued functions. The
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Fig. 3. Learning curve of the QLMS algorithm.
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Fig. 4. Resultant beam pattern of the QLMS algorithm.

class includes the common elementary functions such as the

exponential function, the logarithmic function, among others.

We also prove that, for a wide class of functions, the restricted

HR gradient becomes the usual derivatives for real functions

with respect to real variables, when the independent quaternion

variable tends to the real axis, thus showing the consistency

of the definition. Both linear and nonlinear adaptive filtering

algorithms are derived to show the applications of the operator.

An adaptive beamforming example based on vector sensor

arrays has also been provided to demonstrate the effectiveness

of the quaternion-valued signal model and the derived signal

processing algorithm.

APPENDIX A

DEFINITION OF THE OPERATORS

We consider df = dfa+idfb+jdfc+kdfd. By definition, we

have dfγ =
∑

φ(∂fγ/∂qφ)dqφ, with γ, φ ∈ {a, b, c, d}. Using

the relations

dqa =
1

4
(dq + dqi + dqj + dqk), (98)

dqb =
1

4i
(dq + dqi − dqj − dqk), (99)

dqc =
1

4j
(dq − dqi + dqj − dqk), (100)

dqd =
1

4k
(dq − dqi − dqj + dqk), (101)
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we may rewrite dfγ as follows

dfγ =
1

4
(
∂fγ
∂qa

− i
∂fγ
∂qb

− j
∂fγ
∂qc

− k
∂fγ
∂qd

)dq

+
1

4
(
∂fγ
∂qa

− i
∂fγ
∂qb

+ j
∂fγ
∂qc

+ k
∂fγ
∂qd

)dqi

+
1

4
(
∂fγ
∂qa

+ i
∂fγ
∂qb

− j
∂fγ
∂qc

+ k
∂fγ
∂qd

)dqj

+
1

4
(
∂fγ
∂qa

+ i
∂fγ
∂qb

+ j
∂fγ
∂qc

− k
∂fγ
∂qd

)dqk

which can be written as

dfγ =
1

4

∑

ν





∑

(φ,µ)

∂fγ
∂qφ

µν



 dqν (102)

where (φ, µ) ∈ {(a, 1), (b,−i), (c,−j), (d,−k)}, ν ∈
{1, i, j, k}, and µν is the ν-involution of µ. Therefore

df = dfa + idfb + jdfc + kdfd

=
1

4

∑

ν





∑

(φ,µ)

∂(fa + ifb + jfc + kfd)

∂qφ
µν



 dqν

=
1

4

∑

ν





∑

(φ,µ)

∂f

∂qφ
µν



 dqν (103)

which leads to the definitions (10-18) in the main text. Note

that, because µν and dqν are quaternions, to obtain the last

equation, we need to multiply dfb, dfc and dfd by i, j, and k
from the left.

On the other hand, we notice that the prefactors in (99-101)

may be moved to the right-hand side of the other factors, i.e.,

we may write

dqa = (dq + dqi + dqj + dqk)
1

4
, (104)

dqb = (dq + dqi − dqj − dqk)
1

4i
, (105)

dqc = (dq − dqi + dqj − dqk)
1

4j
, (106)

dqd = (dq − dqi − dqj + dqk)
1

4k
. (107)

Using these relations, we may find another expression for dfγ
following the procedure above:

dfγ =
1

4

∑

ν

dqν





∑

(φ,µ)

µν ∂fγ
∂qφ



 . (108)

The expression is different from (102), in that the differentials

dqν are on the left of µν . Therefore, we derive

df = dfa + dfbi+ dfcj + dfdk

=
1

4

∑

ν

dqν





∑

(φ,µ)

µν ∂(fa + fbi+ fcj + fdk)

∂qφ





=
1

4

∑

ν

dqν





∑

(φ,µ)

µν ∂f

∂qφ



 , (109)

which is the basis for the definitions for the right restricted

HR derivatives as given in the main text.

APPENDIX B

ADDITIONAL DETAILS FOR THE PROOF OF LEMMA 1

To prove Lemma 1, we have used the following relation

∂q−1

∂q
= −q−1R(q−1). (110)

To show this result, we note ∂(qq−1)/∂q = ∂1/∂q = 0. Thus

0 = q
∂q−1

∂q
+

1

4
(q−1 − iq−1i− jq−1j − kq−1k)

= q
∂q−1

∂q
+R(q−1), (111)

from which the result follows. We have used equation (10)

and the fact that

∂q

∂qa
= 1,

∂q

∂qb
= i,

∂q

∂qc
= j,

∂q

∂qd
= k. (112)

The proof also uses the following recurrent relation

∂q−n

∂q
= q−1

[

∂q−(n−1)

∂q
−R(q−n)

]

, (113)

which can be shown as follows: using the first product rule,

we have

∂q−n

∂q
= q−1 ∂q

−(n−1)

∂q
+

1

4

(

∂q−1

∂qa
q−(n−1) −

∂q−1

∂qb
q−(n−1)i

−
∂q−1

∂qc
q−(n−1)j −

∂q−1

∂qd
q−(n−1)k

)

. (114)

Using the fact ∂qq−1/∂qφ = 0 and the second product rule,

we can find
∂q−1

∂qφ
= −q−1 ∂q

∂qφ
q−1. (115)

Thus

∂q−n

∂q
= q−1 ∂q

−(n−1)

∂q
−

q−1

4

(

q−n − iq−ni

−jq−nj − kq−nk
)

= q−1 ∂q
−(n−1)

∂q
− q−1R(q−n). (116)

APPENDIX C

DERIVATIONS OF THE FIRST CHAIN RULE

The function f(g(q)) may be view as a function of interme-

diate variables ga, gb, gc and gd. Using the usual chain rule,

we have
∂f

∂qβ
=

∑

φ

∂f

∂gφ

∂gφ
∂qβ

, (117)

with β ∈ {a, b, c, d}, which gives

∇rf = (∇g
rf)P (118)

where P is a 4 × 4 matrix with Pφβ = ∂gφ/∂qβ . With

(∇rf)J
H = ∇qf , and ∇g

rf = 4(∇g
qf)J , the above equation

leads to

∇qf = 4(∇g
qf)JPJH , (119)

where it is easy to show that 4JPJH = M .
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