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Sedimented hydrothermal vents, where hot, mineral-rich water flows through sediment,

are poorly understood globally, both in their distribution and the ecology of individual vent

fields. We explored macrofaunal community ecology at a sediment-hosted hydrothermal

vent in the Southern Ocean. This is the first such study of these ecosystems outside

of the Pacific and the furthest south (62◦S) of any vent system studied. Sedimentary

fauna were sampled in four areas of the Bransfield Strait (Southern Ocean), with the

aim of contrasting community structure between vent and non-vent sites. Macrofaunal

assemblages were clearly distinct between vent and non-vent sites, and diversity,

richness, and density declined toward maximum hydrothermal activity. This variation

is in contrast to observations from similar systems in the Pacific and demonstrates

the influence of factors other than chemosynthetic primary productivity in structuring

infauna at deep-sea vent communities. Vent endemic fauna had limited abundance

and were represented by a single siboglinid species at hydrothermally active areas,

meaning that that the majority of local biota were those also found in other areas. Several

taxa occupied all sampling stations but there were large differences in their relative

abundances, suggesting communities were structured by niche variation rather than

dispersal ability.

Keywords: chemosynthetic, Southern Ocean, environmental distance, deep-sea, ecology, sedimented

INTRODUCTION

Deep-sea hydrothermal vent fields are under imminent threat from mineral extraction (Petersen
et al., 2004; Van Dover, 2010), creating an imperative to understand these environments so
that their inhabitants may be effectively conserved. Size, distribution, and faunal composition
of sediment-hosted hydrothermal vents (SHVs) in particular are poorly understood globally. At
SHVs, and in some diffuse venting areas around high-temperature vents, hydrothermal fluid mixes
with ambient seawater beneath the seafloor (Bemis et al., 2012) and, in terms of oceanic heat flux,
may be more significant than high temperature vents (Larson et al., 2015). The mixing of the
hydrothermal fluid with ambient seawater means that it cools too slowly to precipitate mineral
structures, creating an environment comprised of hot (generally 10–100◦C above ambient), high
porosity sediment, typically with high levels of hydrogen sulfide, methane, and reducedmetals, such
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as iron and manganese (Levin et al., 2009; Bernardino et al.,
2012; Aquilina et al., 2013; Urich et al., 2014). The vast
majority of deep-sea hydrothermal vent research has focused on
high-temperature vents, which are typically dominated by vent
endemic species (e.g., Rogers et al., 2012). In contrast, there
have been only a handful of ecological studies at SHVs (Grassle
et al., 1985; Grassle and Petrecca, 1994; Kharlamenko et al.,
1995; Levin et al., 2009, 2012; Sweetman et al., 2013) and none
from the Southern Ocean. Hydrothermal sites in the Bransfield
Strait (Southern Ocean) potentially provide a stepping stone
between chemosynthetic communities in the Atlantic, Indian,
and Pacific Oceans (Rogers et al., 2012; Roterman et al., 2013) as
well as providing an interesting site to explore how ambient deep
Southern Ocean benthos respond to reducing environments.

Sediment-hosted vents support communities of
chemosynthetic primary producers; free-living, colonial or
symbiotic. SHVs thus have direct implications for the wider
faunal community, through both in situ organic matter
production and the environmental toxicity associated with
hydrothermalism (Levin et al., 2009; Bernardino et al., 2012).
The relative physical similarity of SHV (compared with high-
temperature vents) to non-hydrothermal environments allows
more scope for opportunistic interactions between vent endemic
fauna and more common deep-sea fauna with profound impacts
upon community structure in both macro- and meiofaunal
species (Zeppilli et al., 2011, 2015; Bernardino et al., 2012).
Bernardino et al. (2012) proposed a conceptual model of how
macrofaunal community characteristics (such as abundance
and diversity) respond to gradients in environmental toxicity
and organic matter (OM) availability at SHVs. These models
are consistent with models of non-chemosynthetic macrofaunal
response to gradients in pollution and organic enrichment
(Pearson and Rosenberg, 1978) and the intermediate disturbance
hypothesis (Connell, 1978). Maximum biodiversity is predicted
at intermediate levels of toxicity and productivity (Connell,
1978), where higher niche or environmental diversity potentially
facilitates higher diversity (Bernardino et al., 2012; Gollner et al.,
2015; McClain and Schlacher, 2015). However, high species
dominance/low diversity in deep-sea macrofauna is generally
rare (McClain and Schlacher, 2015), and often characteristic of
reducing or highly disturbed environments (Netto et al., 2009).
The models further suggest that the proportion of background
fauna generally declines toward a community dominated by
vent-endemic species (Bernardino et al., 2012). These changes
emulate a distance-decay model (Nekola and White, 1999;
McClain et al., 2011, 2012), but one accelerated by the rapid
change in environmental conditions (sub-km scale), where
dispersal limitations are superseded by habitat selection.

Toward the region of greatest hydrothermal flux, it was also
hypothesized that increased supply of chemosynthetic substrates
would support larger populations of vent endemic species and
greater OM production rates, in turn enhancing local abundance
or biomass (Bernardino et al., 2012). However, there is conflicting
evidence as to whether SHV enrich macrofaunal abundance,
suggesting that other factors (e.g., supply of other sources of
OM or environmental stress) may also be important (Grassle
et al., 1985; Grassle and Petrecca, 1994; Levin et al., 2009).

The importance of local environmental factors in structuring
communities of SHVs remains a key unknown, particularly
for non-Pacific SHVs that have not previously been studied
quantitatively. The lack of quantitative ecology from SHVs
outside the Pacific severely limits our understanding of these
ecosystems.

Sedimented hydrothermal systems have been identified in the
Bransfield Strait, but ecological investigations have not yet been
reported. The only other hydrothermal vent system reported in
the Southern Ocean is a high-temperature, hard substratum vent
(Rogers et al., 2012), which are not directly comparable to the
Bransfield Strait SHVs. The Strait (Figure 1) harbors deep (1050
m) sediment-hosted vents (Klinkhammer et al., 2001; Aquilina
et al., 2013) as well as episodic shallow water venting around
Deception Island (Somoza et al., 2004). In spite of the wide ranges
in temperature in recent geological history (Clarke and Crame,
1992, 2010), some Southern Ocean biota are sensitive to small
(ca. 2–3◦C) temperature perturbations (Barnes and Peck, 2008;
Clarke et al., 2009). Typical seafloor temperature in the Bransfield
Strait is around −1.5◦C (Bohrmann et al., 1998; Clarke et al.,
2009), compared with estimates of 25–50◦C at hydrothermally
active areas (Dählmann et al., 2001; Klinkhammer et al., 2001;
Aquilina et al., 2013). This raises questions as to the ability
of Southern Ocean benthos to colonize areas of hydrothermal
activity and suggests that it may be crucial to species distribution
in the Bransfield Strait.

The aim of the present study is to show how hydrothermalism
influences infaunal communities in the Bransfield Strait. We
present macrofaunal assemblage data and critically evaluate
conceptual models of SHV ecology, (Bernardino et al., 2012)
adding perspectives from high-latitude SHVs. The following
hypotheses were explored: (1) Hydrothermally active sites will
support a greater macrofaunal density than background sites due
to increased OM availability (2) Macrofaunal diversity will be
different between areas with or without active hydrothermalism;
(3) Abundance of vent endemic species (Sclerolinum contortum
Georgieva et al., 2015) will be highest in areas of moderate
hydrothermal activity, as suggested by Sahling et al. (2005).
We also explore the influence of environmental gradients upon
community composition and results are quantitatively compared
to Bernardino et al. (2012)’s conceptual models of abundance,
diversity and proportions of vent endemic fauna, using ameasure
of environmental distance.

MATERIALS AND METHODS

Ethics Statement
In accordance with the Antarctic Act (1994) and the Antarctic
Regulations (1995), necessary permits (S5-4/2010) were
acquired from the South Georgia and South Sandwich Islands
Government.

Sample Collection and Processing
The Bransfield Strait is located between the West Antarctic
Peninsula and the South Shetland Islands. Two subaerial
volcanoes (Deception and Bridgeman Islands) divide the Strait
into three sub-basins, the central of which hosts several volcanic
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FIGURE 1 | Bathymetric charts of the Bransfield Strait (30 arc-s grids constructed using GEBCO bathymetry) showing sampling locations during

JC055. Latitude and longitude given as degrees and decimal minutes.

edifices: Hook Ridge; the Three Sisters, and the Axe (Whiticar
and Suess, 1990; Bohrmann et al., 1998; Dählmann et al., 2001;
Klinkhammer et al., 2001; Aquilina et al., 2013; Figure 1). At
Hook Ridge, remnants of a high temperature mineral chimney
venting shimmering water were seen during a video survey
(Aquilina et al., 2013) and hot, sulphidic sediments have been
recovered (Dählmann et al., 2001; Klinkhammer et al., 2001). Of
the four study areas visited in the Bransfield Strait during RRS
James Cook cruise 55 (Figure 1) only Hook Ridge was found
to be hydrothermally active and cores from different areas of
the ridge were subject to fluid advection rates of 9–34 cm yr−1

(Aquilina et al., 2013). Sediments from the off-vent site, the Three
Sisters and the Axe showed no signatures consistent with active
hydrothermalism.

Samples were collected in January 2011, aboard RRS James
Cook cruise 55 (Tyler et al., 2011). Following bathymetric and
water column surveys to identify the source of venting (see
Aquilina et al., 2013), replicate corer deployments were made
(3–6 per site except at the Axe). All samples were collected
using a Bowers and Connelly dampened megacorer (Gage and
Bett, 2005), from each of the three raised edifices in the
central basin, and one off-axis/ off-vent control site (Figure 1;
Table 1). A single deployment was made at the Axe, owing to
shallow sediment coverage and the absence of water column
signals indicative of hydrothermal activity (Aquilina et al., 2013).
From each deployment, multiple 10 cm diameter sediment cores
were collected. Samples from individual cores from the same
deployment were pooled into single samples, as cores from the
same deployment are pseudoreplicates.

Cores were sliced into upper (0–5 cm) and lower (5–10 cm)
partitions and were passed through a 300µm sieve to extract

macrofauna (e.g., Levin et al., 2009). Differences between upper
and lower core partitions were only analyzed where there were
measureable hydrothermal differences between each partition.
Fauna were preserved in either 80% ethanol or 10% buffered
formalin in seawater. In the laboratory, macrofauna were
sorted to highest possible taxonomic level using a dissecting
microscope. All annelid and bivalve specimens were sorted to
species or morphospecies level, with other taxa sorted to family
or higher. Incomplete specimens (those without heads) were
not counted, to prevent over-estimating their density. Feeding
modes were determined by morphology, and validated against
taxonomic keys (Fauchald, 1977; Fauchald and Jumars, 1979;
Barnard and Karaman, 1991; Beesley et al., 2000; Smirnov,
2000; Poore, 2001; Kilgallen, 2007; Keuning et al., 2011; Reed
et al., 2013; Jumars et al., 2015), the Ocean Biogeographic
Information System (OBIS) and studies from similar areas/
environments that have conducted stable isotope analyses
(Fauchald and Jumars, 1979; Mincks et al., 2008; Levin et al.,
2009).

Samples of freeze-dried sediment were acidified (6M HCl)
to remove inorganic carbon and then analyzed for carbon
content. Samples were analyzed at EK using a continuous
flow isotope ratio mass spectrometer using a Vario-Pyro Cube
elemental analyser (Elementar), coupled with a Delta plusXP
mass spectrometer (Thermo Electron).

Statistical Analyses
The lack of replicates taken from the Axe and TS1 meant
that it was excluded from any permutational analyses aimed at
discriminating differences by site. Abundance per deployment
was standardized to give abundance per m2. Unless otherwise
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TABLE 1 | List of sampling locations and # of deployments.

Hydrothermally Site Site # of replicate Sample # Sample # Latitude Longitude Depth (m)

Active? code deployments (Macrofauna cores) (Geochemistry cores)

No Control Site (off-vent) BOV 4 12, 13, 14, 15 12, 13 −62.3842 −57.2440 1150

Yes (9 cm yr−1) Hook Ridge Site 1 HR1 6 19, 20, 21, 22, 24, 25 18 −62.1969 −57.2975 1174

Yes (34 cm yr−1) Hook Ridge Site 2 HR2 6 31, 32, 33, 34, 35, 81 30 −62.1924 −57.2783 1054

No Three Sisters Site 1 TS1 1 49 N/A −62.6539 −59.0326 1121

No Three Sisters Site 2 TS2 2 50, 51 50 −62.6552 −59.0502 1311

No The Axe AXE 1 77 78 −62.7866 −59.7616 1024

Position reported as degrees and decimal minutes. Geochemical data and hydrothermal flux rates from published literature (Aquilina et al., 2013, 2014).

specified, all subsequent analyses were conducted in the R
environment (R Core Team, 2013).

Species Diversity and Richness
Calculations of diversity and richness were made from species-
level discriminated fauna only (annelids and bivalves only).
Shannon-Wiener diversity (H′) was calculated in VEGAN (v2.0-
8) (Oksanen et al., 2013) for whole deployments and individual
vertical core partitions. Species-accumulation curves and shared
species were calculated using EstimateS (v9.1.0; Gotelli and
Colwell, 2001; Colwell et al., 2012; Colwell, 2013). Individual-
based species-accumulation curves (999 permutations) were
constructed from species level data for each of the sites (n =

100). Pairwise shared species were calculated from abundance
data summed by site using the abundance-based Chao-Sørenson
index (Chao et al., 2005) to reduce under-sampling bias
given the inconsistent number of replicate deployments per
site.

Community Structure
Untransformed community composition data were used to
create a Bray-Curtis similarity matrix and visualized using
the metaMDS method in VEGAN (Oksanen et al., 2013).
Significant structure within the data was tested with a similarity
profile routine (SIMPROF, 10 000 permutations, average linkage)
using the clustsig package (v1.0) (Clarke et al., 2006, 2008;
Whitaker and Christmann, 2013). Similarity between sites was
compared using permutational ANOVA (PERMANOVA, 999
permutations; Anderson, 2001), using site as a factor. The validity
of PERMANOVA was checked using the PERMDISP test for
homogeneity of variance (betadisper and anova in Vegan), since
PERMANOVA is sensitive to multivariate dispersion (Anderson,
2001). No differences between sites were observed (ANOVA:
F-value; 0.535, df = 16; P > 0.05).

Environmental Variables
To compare the relative influence of hydrothermal fluids at
different sites, and to test the theoretical model suggested by
Bernardino et al. (2012), a proxy index for hydrothermal activity
(the Hydrothermal Index – HI) was developed. Sites with
comparable levels of relevant environmental parameters were
considered to be likely to be more similar in faunal characteristics
than those with greater differences (Bernardino et al., 2012;
McClain et al., 2012; Gollner et al., 2015). This approach is

analogous to the “Glaciality index” (Brown et al., 2010) and
“benthic index” (Robertson et al., 2015) that have shown how
various biological trends in separate systems can be explained by
collating environmental parameters.

A single core profile from each site (except TS1) of
geochemical data were available and initial selection criteria
were based upon results of an envfit visualization (Oksanen
et al., 2013) that identified influential (e.g., H2S) and co-linear
species (e.g., Cl− and SO4

2−). Environmental data were not
available from every site used for ecological analyses, hence
more conventional ordination techniques (e.g., CCA) were not
possible, which would also not have permitted comparisons
with conceptual models as presented here. Temperature profiles
were not available for inclusion. Biologically and hydrothermally
relevant parameters were selected for the index, comprised of
two chemosynthetic substrates (H2S and CH4), and an indicator
of temperature changes and hydrothermal flux (Cl−). Low
chlorinity (relative to seawater) is characteristic of hydrothermal
fluid and so the reciprocal for Cl− concentration was given as
a proxy for hydrothermal fluid input (Ginsburg et al., 1999;
Aquilina et al., 2013; Larson et al., 2015).

Down core geochemical profiles from pore fluid data
(Aquilina et al., 2013) were split into upper and lower
partitions, as per the faunal samples (Data Sheet S3). Pore
fluid concentrations of H2S, CH4 and Cl− were averaged
into 0–5 and 5–10 cm below seafloor (b.s.f.) sections.
Concentrations of each were then normalized to the mean
value (i.e., mean = zero) for each component (thus each
was equally weighted) and the sum for each site was given
as the HI (two values per site, one per partition). Initially,
faunal variation between upper and lower core partitions
at non-hydrothermally active sites contributed the majority
of the residual error, although relationships between HI
and abundance and diversity were still significant (GLM,
df = 1, p < 0.05). Since the hydrothermal index focuses
upon the relationship between faunal characteristics and
hydrothermalism, variation between upper and lower partitions
of non-hydrothermally active sites was excluded from subsequent
analyses.

Three statistical models were developed to determine the
extent that HI could explain patterns in diversity, density,
and species richness. Data (mean values for each site) were
fitted to generalized linear models using the glm and Anova
functions in the CAR package (v2.0-18) (Fox et al., 2013).
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Normality tests (Shapiro-wilk) were run on each of the responses
and used to inform selection of distribution for the models.
Diversity data were fitted to a Gaussian model. Count data
(abundance and species richness) were fitted to Poisson models
but residual deviance exceeded degrees of freedom, indicating
over-dispersion, so the models were corrected using a quasi-
Poisson dispersion factor (Dobson, 1990; Dobson and Barnett,
2008).

RESULTS

Abundance and Community Composition
A total of 2320 individuals (73–780 ind. per site), of 81
macrofaunal taxa (25–50 per site) were collected. Fifty-one

FIGURE 2 | Multidimensional scaling ordination with ordinal hulls.

Ordinal hulls based on Manhattan distance computed during cluster analysis.

Hulls indicate areas of <0.7 dissimilarity (green), <0.5 (blue), and <0.3 (red).

2-D stress = 0.13. Site numbers refer to deployments (Table 1), using whole

core data.

polychaete species, from 32 families represented the most
abundant taxon (981 individuals). Peracarid crustaceans were
the second most abundant taxon (755 ind. from 18 families),
followed by oligochaetes (402 ind. from two families). Sites
were dominated numerically by polychaetes (41–56% by
abundance), except at Hook Ridge and the Axe where peracarids,
mostly isopods, dominated (41–55%; Figure 2; Data Sheet S1).
Oligochaetes were very abundant at the control site (37% of
abundance) and relatively rare elsewhere (6–18%). The dominant
feeding group (Figure 2) was generally comprised of carnivores/
scavengers at Hook Ridge (44–56%) and motile deposit feeders
dominated at non-Hook Ridge sites (42–78%). Functional
composition of taxa varied significantly (Pearson’s χ

2 = 178.37,
p < 0.01) and was dissimilar between all pairwise comparisons
(p < 0.05).

The most abundant morphospecies groups present in the
Bransfield strait were idoteid isopods at Hook Ridge 1 (2022
ind. m2 S.E. ± 752) and Limnodriloides sp. B (Oligochaeta:
Naididae) at the control site (1958 ind. m2 S.E. ± 510)
although the dominance of the Isopoda may have reflected the
coarser taxonomic resolution used (Data Sheet S1). The most
abundant polychaete species in the Bransfield strait was Aricidea
antarctica (Paraonidae, Hartmann-Schröder and Rosenfeldt,
1988), comprising 23% of total macrofaunal density at the control
site (1313 ind. m2 S.E. ± 269) but generally occurring in low
relative abundances of 1–5% elsewhere.

Community composition was significantly different between
all sites (PERMANOVA, F = 3.359, df = 4, p < 0.01;
Figure 3) and clearly distinguished the Hook Ridge sites from
the other, non-hydrothermally-active areas (SIMPROF, p =

0.05). Relative abundances of annelid and peracarid taxa were
the main discriminators in assemblage structure between vent
and non-vent conditions. Deployment 81 at Hook Ridge 2
was significantly different to other Hook Ridge sites (Figure 2;
SIMPROF, p = 0.05) and reflected the relative lack of
terebellids (Polychaeta) and isopods and increased abundance

FIGURE 3 | Comparative density (ind. m−2) of (A) major taxa and (B) functional groups by site for whole core data.
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of naidid oligochaetes at HR2 81, giving it an assemblage more
characteristic non Hook-Ridge sites, particularly the control site
were naidids were highly abundant.

Hook Ridge 1 and the control site had the greatest mean
macrofaunal density (Table 2). At Hook Ridge, macrofaunal
density ranged widely, including the most (deployment 25: 14324
ind. m2) and least (deployment 35: 1061 ind. m2) densely
populated sites across the whole Strait. Whilst elevated faunal
density was observed in the immediate vicinity of a patch of
siboglinids (deployment 25), mean density was similar between
non-hydrothermally active sites (5180 ind. m2, S.E. ± 580, n =

12) and Hook Ridge (4150 ind. m2, S.E. ± 1077, n = 9)
(Wilcoxon rank sum test,W = 25, p = 0.08) (Figure 3).

Species Richness and Diversity
Individual-based estimates of species richness, grouped by site,
showed that the Three Sisters and the Axe were the most species
rich sites and that Hook Ridge 1 was the least species rich
(Table 2). The Hook Ridge sites had the lowest mean diversity,
consistent with a higher proportion of endemic species and a
more reducing environment. Mean shared species between sites
was 53% with the highest being between the two Hook Ridge
sites (82%). The non-Hook Ridge sites shared between 18–77% of
their species with the lowest shared species between the control
site BOV and Three Sisters 1 (18%).

Vent Endemic Species
Siboglinid polychaetes were found at Hook Ridge 1 (S.
contortum) and the control site, Three Sisters and the Axe
(Siboglinum sp.). Complete specimens of both siboglinid species
never co-occurred (Data Sheet S1) but fragments (sections of
tube, with or without body tissue fragments) of S. contortumwere
found at all sites. Siboglinids occurred in low abundances (0–
71 individuals with heads per deployment) and were never the
dominant functional group at any site (0–14% of total abundance
per site; Figure 2). Complete specimens of S. contortum were
counted in two deployments from Hook Ridge 1 only (HR1: 21
and 25, 1 and 70 ind., respectively) and ranged in abundance
between 32 and 4520 ind. m2, comprising 14% of total faunal
abundance at Hook Ridge 1. Owing to the high proportion of S.

contortum at Hook Ridge 1 deployment 25 (31% of abundance
compared with 0–1% elsewhere), this deployment was distinct
from all others (SIMPROF, p = 0.05) (Figure 3). The patchy or
limited distribution of S. contortum meant that replicates within
the same site showed considerable variation in proportions of
vent endemic species. Siboglinum sp. occurred in its highest
abundance at the control site (2% of fauna, 64–159 ind. m2).

Environmental Drivers of Community
Composition
The HI was elevated at both Hook Ridge sites (particularly site
2), relative to other areas of the Bransfield Strait (Table 3). HI
was highest in downcore sections (5–10 cm below seafloor (b.s.f))
from Hook Ridge (0.44–4.02) and was always higher than in
upper cores (0–5 cm b.s.f.;Table 3). HI was greater at Hook Ridge
2 than Hook Ridge 1 and Hook Ridge 1 upper partition had
comparable levels of HI to off-vent sites. Mean diversity, species
richness and density was fitted to values of HI for each site (1 or
2 partitions per site, Table 4), using generalized linear models.
Mean diversity, species richness and density all significantly
declined with increasing HI (GLM: p < 0.05, R2 0.38– 0.52;
Figure 2, 4, Table 4). Ecological distance was also consistent with
environmental distance (PERMANOVA: p < 0.001).

DISCUSSION

Controls on Faunal Diversity
Diversity was lower at hydrothermally active sites and declined
exponentially toward the greatest levels of HI (Figure 4;
Table 4), owing to the increased environmental toxicity creating
unfavorable conditions for the majority of local fauna and the
general absence of vent-endemic species. Whilst diversity was
influenced by environmental distance (p < 0.05, Table 4), the
relationship observed differed from the Bernardino et al. (2012)
model in that it was maximal under background conditions
and decreased toward greater hydrothermal influence, rather
than maximal diversity occurring in areas of intermediate
hydrothermal activity (Figure 4). The conceptual model of
Bernardino et al. (2012) does not encompass the high biodiversity

TABLE 2 | Species diversity and mean and estimated richness (for species-level discriminated fauna only), total density and organic carbon levels in the

Bransfield Strait.

Site

BOV HR1 HR2 TS1 TS2 AXE

Replicates 4 6 6 1 2 1

Total no. of individuals 777 780 317 73 241 132

Total no. of species 50 33 34 25 40 34

Diversity (H’) (± S.E.) 2.15 (± 0.07) 1.33 (± 0.06) 1.49 (± 0.26) 2.50 2.24 (± 0.13) 2.89

Mean species richness (± S.E.) 22.75 (± 1.49) 6.83 (± 1.01) 5.67 (± 1.20) 17 20 (± 3.00) 26

Est. Species Richness (n = 100) (±S.D.) 20.71 (± 3.56) 16.43 (±2.45) 20.38 (± 2.52) 33.91 (± 3.77) 25.46 (± 3.45) 31.06 (± 3.02)

Mean Density (ind. m2) (± S.E.) 6438 (± 425) 6474 (± 1698) 1826 (± 241) 2953 4456 (± 1120) 3820

Organic Carbon (weight %) 1.35 1.35 0.97 n.d. 1.40 n.d.

BOV, Bransfield Off-Vent; HR1, Hook Ridge 1; HR2, Hook Ridge 2; TS1, Three Sisters; TS2, Three Sisters 2; AXE, The Axe.
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TABLE 3 | Mean concentrations of four geochemical parameters (binned into upper and lower partitions) used to calculate the hydrothermal index (Data

from Aquilina et al., 2013, 2014).

Sites Geochemical parameter (± S.E.) Hydrothermal Index (±S. E.)

H2S (µmol L−1) CH4 (µmol L−1) Cl−(mmol L−1)

BOV 0–5 cm 0.00 0.00 545.0 (± 0.58) –1.33 (± 0.33)

5–10 cm 0.00 0.00 547.7 (± 1.86) Omitted

HR1 0–5 cm 0.00 0.29 (± 0.03) 546.1 (± 0.77) –1.05 (± 0.24)

5–10 cm 0.00 1.65 (± 1.67) 540.3 (± 1.31) 0.44 (± 0.24)

HR2 0–5 cm 0.71 (± 0.45) 1.72 (± 0.48) 515.6 (± 4.70) 0.94 (± 0.15)

5–10 cm 0.85 (± 0.79) 4.64 (± 1.43) 498.6 (± 0.97) 4.02 (± 0.40)

TS2 0–5 cm 0.00 0.00 561.1 (± 5.51) –1.40 (± 0.26)

5–10 cm 0.00 0.00 550.0 (± 3.22) Omitted

AXE 0–5 cm 0.21 (± 0.35) 0.00 543.8 (± 2.61) –1.11 (± 0.25)

5–10 cm 0.00 0.00 542.8 (± 0.30) Omitted

BOV, Bransfield Off-Vent Control; HR1, Hook Ridge 1; HR2, Hook Ridge 2; TS2, Three Sisters 2 (No data for TS1); AXE, The Axe. See accompanying papers (Aquilina et al., 2013,

2014) for full downcore profiles.

TABLE 4 | Results of generalized linear models for various biotic measures with hydrothermal index (HI).

Response GLM family p L-Ratio adj. R2

Diversity (H’) Gaussian (link = “identity”) < 0.05 4.65 0.38

Species Richness Quasi-Poisson (link = “log”) < 0.01 10.55 0.43

Density Quasi-Poisson (link = “log”) < 0.001 15.02 0.52

typical of deep-sea macrofauna, resulting in a disagreement with
our observations (Figure 5). Therefore we accept hypothesis 2
and suggest that the proposed increase and subsequent decrease
of diversity (Figure 5) with increasing hydrothermal influence
(Bernardino et al., 2012) does not capture the high background
biodiversity common in the deep-sea (Rex and Etter, 2010;
Chown, 2012; Figure 5).

Species accumulation curves from the Bransfield Strait,
elsewhere in the Southern Ocean and Pacific SHV (Grassle
and Petrecca, 1994; Flach and Heip, 1996; Levin et al., 2009;
Neal et al., 2011) show that species richness was higher in
background/ inactive sediments than at active vents (Figure 6),
which is consistent with lower diversity at active vents (Figure 6).
The Bransfield Strait SHV was generally more species rich
than vents from the Manus Basin and comparable to NE
Pacific vents at Middle Valley (Figure 6; Levin et al., 2009).
The SHV at Middle Valley (2406–2411 m) is notably deeper
than either the Bransfield vents (1054–1320 m) or the Manus
Basin (1430–1634 m), suggesting that depth does not exert a
consistent effect upon species richness, or abundance (Levin
et al., 2009). Around the high temperature vents at the East
Pacific Rise however, macrofaunal species richness peaked at
intermediate levels of environmental stress (Gollner et al.,
2015). This suggests that relationships between environmental
gradients and macrofaunal communities may differ between
different types of hydrothermal vent. At high temperature vents,
meiofaunal taxa showed a similar pattern in species richness to
that present here (Gollner et al., 2015), illustrating differences
between taxa and environmental settings. Species richness was

also generally lower in the Bransfield strait when compared
with the West Antarctic shelf seas (Figure 6; Neal et al., 2011)
although it should be noted that these samples were from
sites ∼500m shallower and measure only polychaete species
richness.

Controls on Faunal Density
Macrofaunal density declined toward areas of highest
hydrothermal advection (Figures 4, 6). Thus our data did
not support our hypothesis that hydrothermal vents support
increased faunal density in the Bransfield Strait (hypothesis 1).
Mean density was higher at non-hydrothermally active sites
in the Bransfield Strait than at Hook Ridge (Figure 3), driven
mainly by the low faunal density at Hook Ridge 2, the site
with the highest fluid advection rates (Aquilina et al., 2013).
Environmental stress at Hook Ridge 2 may explain the low
faunal abundance (Sahling et al., 2005), presumably reflecting
the increased stress associated with elevated temperature or
environmental toxicity (Figure 4). Bacterial mats were present at
Hook Ridge 2 (Aquilina et al., 2013) but no complete specimens
of vent endemic species were found.

It is likely that the relationship in density between SHV and
local background areas depends upon toxicity at the vents (Levin
et al., 2013), the amount of in-situ primary productivity and
the availability of other sources of OM. In previous studies of
comparable systems, macrofaunal density was not consistently
enriched by the presence of hydrothermal flux, and has been
observed to be both higher and lower than nearby inactive or
background sediments (Grassle et al., 1985; Levin et al., 2009;
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FIGURE 4 | Comparison of “hydrothermal index” with mean diversity, abundance (m2), and species richness (using data from partitioned cores).

Higher HI indicates greater levels of hydrothermal activity. Error bars denote ± 1 S.E.

Frontiers in Marine Science | www.frontiersin.org 8 March 2016 | Volume 3 | Article 32

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Bell et al. Bransfield Strait Hydrothermal Vents

FIGURE 5 | Schematic of four faunal trends in diffuse hydrothermal

vents, adapted from Bernardino et al. (2012) (solid lines) to include

Southern Ocean data (dashed lines). Axes labels refer to three distinct

regions of the Bransfield Strait identified by this study with reference to

previous work (Sahling et al., 2005; Aquilina et al., 2013): 1 = No hydrothermal

activity (i.e., Control, Three Sisters and the Axe), 2 = Moderate hydrothermal

activity (i.e., Hook Ridge 1, optimal S. contortum habitat), and 3 = Higher

hydrothermal activity, unsuitable for most fauna.

Figure 7). Temperate or Polar latitude deep-sea SHV (a.k.a. “Hot
muds”) with relatively high surface primary productivity (SPP)
(Middle Valley or Bransfield Strait) tend to have lower densities
than in nearby background sediments (Grassle et al., 1985; Levin
et al., 2009), but where SPP is lower (e.g., Manus basin), density
may be higher at SHV (Grassle et al., 1985; Levin et al., 2009;
Figure 7). Export production and surface primary productivity is
high in the Bransfield Strait (Wefer and Fischer, 1991; Kim et al.,
2005), thus any extra chemosynthetic OM productionmay not be
as significant to local fauna compared with deeper vents, or vents
in less productive seas (Tarasov et al., 2005; Levin et al., 2009).

Whilst these data do not fit Bernardino et al. (2012)’s model
(Figure 5), we suggest that trends in density are much more
dependent upon regional factors [e.g., export production or
temperature sensitivity of local benthos (Clarke et al., 2009)].
The scope for regional variation means that for other systems,
where SPP is lower (e.g., Manus Basin) or in-situ production
higher (e.g., Middle Valley Clam beds), the existing model applies
(Levin et al., 2009; Bernardino et al., 2012). Local OM production
rates are also clearly important and areas of dense populations
of vent-endemic megafauna (e.g., Clam beds at Middle Valley)
can also enrich local macrofaunal density (Levin et al., 2009) but
such habitats were not observed in the Bransfield Strait. At the
basin scale, our observations do not agree with the model of
increasing macrofaunal abundance toward vent (Figure 5), but
at small scales (i.e., between Hook Ridge 1 replicates) there is a
potential increase in faunal abundance and biomass associated
with moderate levels of hydrothermal activity.

Deployment 25, from Hook Ridge 1, had both the highest
vent-endemic and total faunal density. This suggests that
chemosynthetic trophic support may have been enhancing local

density and biomass, particularly for scavengers like crustaceans.
However, the effect was clearly quite spatially limited as other
sites at Hook Ridge had a much lower faunal abundance,
suggesting that in situ OM production was patchily distributed
at a scale of 10 s of meters (the estimated likely seabed
separation of replicate deployments). This is consistent with
sediment-hosted vents in the Arctic Ocean, which found limited
macrofaunal utilization of chemosynthetically-derived OM, even
within sediment-hosted vent fields (Sweetman et al., 2013). This
kind of fine scale structuring of communities is consistent with
other SHV (Bernardino et al., 2012). Elsewhere at Hook Ridge
(particularly Hook Ridge 2), abundance per deployment was
lower or similar to non-vent sites (Table 3), leading to the
increase in abundance observed (Figure 4).

Levels of organic carbon in surface sediment measured from
Bransfield Strait sites (Yoon et al., 1994; Aquilina et al., 2014;
Table 2) showed that Hook Ridge (0.25–1.35 wt% organic C)
was comparable, to the control site (0.75–1.35 wt% organic
C) and the Three Sisters (1.40 wt% organic C, Table 2),
which suggests that chemosynthetic activity was not augmenting
available organic matter. It is possible that the relatively high
density of scavengers at Hook Ridge 1 increased turnover rates of
available organic matter (Rowe et al., 1990), potentially masking
local OM production. However, this should have resulted in
increased macrofaunal biomass at Hook Ridge, which was not
observed in either annelids or peracarids (Data Sheet S2). It is
also possible that additional organic carbon produced at Hook
Ridge 1 is largely retained in Sclerolinum tissue rather than
being released into the sediment. It might be expected that the
local OM production at SHV could enrich biomass, through
increased food availability (Bernardino et al., 2012). However,
in the Bransfield Strait, it seems that environmental conditions
at active vents deter background fauna or that local production
of chemosynthetically derived organic matter is insufficient to
encourage interaction between endemic and background species
(or both). Bottom water temperature in the Bransfield Strait is
around −1.5◦C (Clarke et al., 2009), compared with estimates
of temperature at Hook Ridge [∼24–48◦C (Dählmann et al.,
2001; Petersen et al., 2011)] This may indicate that temperature
variation at Southern Ocean SHVs is more significant than in
other areas of the deep-sea. Another factor that may structure
Bransfield vent communities is the relative isolation of the
Southern ocean caused by the Antarctic Circumpolar Current
(ACC; Clarke et al., 2009; Neal et al., 2011). The ACC may
have resulted in an impoverished community of vent-obligate
or vent-tolerant fauna, relative to other SHVs where high
temperature vents are in close proximity (e.g., Guaymas or
Middle Valley).

Siboglinid Autecology
Although Hook Ridge 2 had the greatest hydrothermal advection
rates (Aquilina et al., 2013), available sulfide was probably too
low to support populations of S. contortum (Sahling et al., 2005)
and was much lower than at Hook Ridge 1 [0–6 and 0–160µmol
L−1 respectively, (Aquilina et al., 2013)]. Sulfide concentrations at
both sites were low for the typical range of sulfide concentrations
expected at sediment-hosted vents [1.5–8mM (Bernardino et al.,
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FIGURE 6 | Comparative individual-based species accumulation curves between Bransfield Strait sites (this study) and literature values for other

diffuse hydrothermal vents (Grassle et al., 1985; Levin et al., 2009) and typical bathyal sediments of the West Antarctic Peninsula (Neal et al., 2011).

Data from the West Antarctic Peninsula are for polychaete species richness only.

2012)]. Patterns in S. contortum density is consistent with
Sahling et al. (2005) who concluded that S. contortum favored
areas of sulfide concentration of around 100–150µmol L−1,
relatively low for SHV, and that in areas of higher hydrothermal
influence, higher temperatures or the formation of siliceous
surface crusts (Dählmann et al., 2001; Klinkhammer et al., 2001)
made conditions unsuitable. There were no complete specimens
(i.e., specimens with heads) of S. contortum or any other vent
endemic species at Hook Ridge 2, but there were densities of
S. contortum fragments similar to those at Hook Ridge 1 (0–
1401 ind. m2). Video imagery also revealed patches of bacterial
mat across Hook Ridge suggesting that there was at least patchy
chemosynthetic activity across a wide area (Aquilina et al., 2013;
Georgieva et al., 2015). It is probable that the differences in
density of S. contortum between the two sites is either driven by
sulfide availability (Aquilina et al., 2013), or temperature (Sahling
et al., 2005), or both.

Ecological and geochemical (Aquilina et al., 2013)
observations from across the Bransfield Strait support dividing
the basin into three sub-regions, previously identified around
Hook Ridge by Sahling et al. (2005) based on differences
in S. contortum density, hydrothermal advection and sulfide
availability, in support of hypothesis 3 (Figure 5): (1) background
areas of no hydrothermal activity (e.g., Control); (2) areas of
moderate hydrothermal activity supporting populations of S.
contortum (Hook Ridge 1); and (3) areas of higher hydrothermal

activity with no vent endemic fauna (Hook Ridge 2). Siliceous
crusts were observed in areas of higher hydrothermal advection
at Hook Ridge (Sahling et al., 2005; Aquilina et al., 2013)
corresponding to, or possibly resulting in, areas of absence of S.
contortum (Sahling et al., 2005, This Study). However, sulfide
availability was quite variable at areas of siliceous crust, ranging
between ∼120 and 330µmol L−1 (Sahling et al., 2005) and 0–
6µmol L−1 (Aquilina et al., 2013). Sulfide may either have been
limiting (Aquilina et al., 2013) or prohibitively toxic (Sahling
et al., 2005) in areas of higher hydrothermal activity and is likely
crucial in structuring S. contortum populations. The apparently
limited habitat niche favored by S. contortum, and the lack of any
other vent endemic species (e.g., vesicomyid clams) conflicts with
the Bernardino et al. model suggestion (Bernardino et al., 2012)
that the proportion of vent endemic species should increase
toward venting sites (Figure 5). This likely reflects a combination
between the physiological constraints of S. contortum and the
absence of a wider diversity of vent endemic species, illustrating
the oceanographic and physiological restrictions that underpin
communities of Southern Ocean benthos (Clarke et al., 2009;
Chown, 2012).

Based on previous estimates of S. contortum density at Hook
Ridge of up to 800 ind. m2 (Sahling et al., 2005), it was
suggested that S. contortum tubes act as conduits, significantly
increasing supply of dissolved iron and manganese to overlying
waters by allowing them to bypass oxic sediment and thus avoid
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FIGURE 7 | Comparative macrofaunal densities between Bransfield Strait sites (this study) and literature values for other diffuse hydrothermal vents

(Grassle et al., 1985; Levin et al., 2009) and typical bathyal sediments of the West Antarctic Peninsula (polychaetes only; Neal et al., 2011) and Goban

spur, NE Atlantic (Flach and Heip, 1996). Error bars denote ± 1 S.E.

precipitation (Aquilina et al., 2014). S. contortum density in this
study (up to 4520 ind. m2) was much higher than previous
estimates (Sahling et al., 2005), demonstrating that population
size varies widely in time and or space. Our observations suggest
that the capacity of S. contortum to support pore fluid to bottom
water exchange of dissolved metals may be more than originally
estimated (Aquilina et al., 2014). Empty tubes may also facilitate
transfer as suggested (Aquilina et al., 2014), and these were
certainly far more numerous than complete specimens (up to
19 226 frag. m2). However, empty tubes commonly contained
tissue fragments or sediment or weremuch shorter than complete
specimens, potentially reducing their capacity to support fluid
exchange. It is also unclear how long these fragments last or how
quickly they are produced.

The presence of Siboglinum sp. at the non-Hook Ridge
sites may suggest that these areas could have hosted some
chemosynthetic activity (Juniper et al., 1992; Dando et al., 1994;
Thornhill et al., 2008). Siboglinum fjordicum shows a similar
endosymbiont composition to that of Oligobrachia mashikoi, a
putative methanotroph (Thornhill et al., 2008; Cordes et al.,
2010). However, Siboglinum spp. are also known from non-
chemosynthetic sediments, potentially subsisting on dissolved
organic matter (George, 1976; Southward et al., 1979; Shields
and Blanco-Perez, 2013) and so are not necessarily indicative
of active chemosynthesis. Methane was detected in sediment
cores from the control site [deeper than 10cm b.s.f. (Aquilina
et al., 2013)], which had the greatest abundance of Siboglinum
and was not hydrothermally influenced. It is therefore suggested
that Siboglinum sp. at the control site were utilizing thermogenic
hydrocarbons, such as those observed elsewhere in Bransfield
Strait sediments (Whiticar and Suess, 1990). It is likely that

the production rate of these hydrocarbons is increased by the
heat flux associated with hydrothermal activity (Whiticar and
Suess, 1990), illustrating a potential indirect dependence upon
hydrothermalism amongst some fauna. However, methane was
not detected at the Three Sisters, which also hosted a small
Siboglinum sp. population, suggesting that other OM sources are
also possible.

Hydrothermal Activity
The hydrothermal index echoed geochemical variability
(Aquilina et al., 2013, 2014) and treated environmental
variability as coherent, rather than a series of isolated parameters
(Sahling et al., 2005) permitting quantitative assessment of
faunal responses (Dauwe and Middelburg, 1998; Brown et al.,
2010). Ordination techniques were used to select model
parameters but the spatial resolution of the environmental
data was limited and did not facilitate the use of more
established ordination analysis (e.g., BIO-ENV Clarke and
Ainsworth, 1993). However, given the ship-time cost and
pressure for large-scale environmental surveys of the deep sea
to establish reference baselines to monitor anthropogenic and
climate related changes in community composition, applied
analytical techniques need to be developed where concurrent
environmental sampling is poor. We propose that this approach,
which can be adapted to any marine or aquatic habitat, can
provide and support insights into establishing the influence
of environmental gradients on faunal distribution. Here, we
use it to test the conceptual models of Bernardino et al. (2012)
and identify previously unknown trends in abundance and
diversity that may be subject to regional as well as environmental
factors.
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One parameter missing from HI is temperature, for which
data were unavailable. In the Southern Ocean, where benthos
are relatively sensitive to temperature fluctuations (Barnes and
Peck, 2008; Clarke et al., 2009), it is likely that the relatively hot
conditions presented by SHVs represented a significant deterrent
to background fauna. However, in Guaymas basin macrofaunal
assemblages, concentrations of sulfide and methane were found
to be drivers of compositional differences and temperature was
not a significant factor (Portail et al., 2015). In the absence
of temperature data, chlorinity profiles were used. Chloride
depletion has been previously used as a proxy for the relative
amounts of hydrothermal fluid present (Aquilina et al., 2013)
and was considered proportional to temperature (Ginsburg et al.,
1999). There are estimates of seafloor temperature at Hook
Ridge from previous studies, of 25–48.5◦C (Bohrmann et al.,
1998; Dählmann et al., 2001) but downcore temperature profiles
have not been measured. Although chlorinity is believed an
acceptable proxy (Ginsburg et al., 1999; Aquilina et al., 2013),
future multi-parameter indices for hydrothermal activity in SHV
should consider incorporating temperature if possible.

Controls on Faunal Distribution and
Community Structure
Environmental distance, represented by the changing influence
of hydrothermal activity (Aquilina et al., 2013), clearly influenced
assemblage structure. Diversity, abundance, and species richness
all declined (GLM: p < 0.05; < 0.001; < 0.01, respectively)
toward the area of highest hydrothermal flux (Figure 4; Table 4).
This demonstrates a clear response of faunal assemblages to
environmental stress and habitat partitioning, beingmore similar
in regions of similar environmental conditions (Bernardino et al.,
2012), rather than simple structuring in response to dispersal
ability.

Since non-hydrothermally active sites did not exhibit strong
variation in the selected geochemical parameters between upper
and lower partitions, faunal variation downcore at non-vent sites
was not relevant to the amount of hydrothermal flux. Therefore,
to separate the influence of hydrothermalism from expected
downcore variability, only data for upper partitions were used
from non-vent sites (Table 3). It should be noted however that
expected gradients, particularly in abundance, between upper
and lower partitions will have contributed some of the model fit
in amanner consistent with non-hydrothermally influenced sites.

The relatively rapid changes at HI levels of < 0 (indicated by
the increased gradient, Figure 4) suggests a fairly narrow
transition zone between background or vent-tolerant
assemblages and those that favor hydrothermal conditions
(Figure 4), with relatively little overlap in dominant taxa
(Figure 2). Zonation in faunal distribution at hydrothermal vents
is common, often associated with competition, environmental
distance and availability of biogenic habitat (Levin et al., 2009,
2012; Bernardino et al., 2012; Marsh et al., 2012) and is analogous
to more general disturbance gradients (Pearson and Rosenberg,
1978).

Proportions of different functional groups varied significantly
between sites suggesting that niche variation, rather than

geographical separation, was the dominant driver in the
compositional differences observed (Nekola and White, 1999;
McClain et al., 2012). For example, the motile deposit feeder
Aricidea antarctica (Annelida, Paraonidae) occurred at all sites
and was highly abundant at the control site but only minimally
abundant elsewhere. Similarly, sessile deposit feeding terebellids
(Polycirrus sp.) occurred in much higher relative density at Hook
Ridge 2 (15% of abundance) than elsewhere in the Strait (0–
5%). Polycirrus medusa (Annelida, Terebellidae, Grube, 1850) is
known from a sediment-hosted vent in the Arctic (Sweetman
et al., 2013), and “Ampharetid beds” are not uncommon in
vent or seep environments (Bernardino et al., 2012), consistent
with the relatively high density and biomass of terebellids
at Hook Ridge 2. Patterns in terebellomorph polychaete at
SHVs may represent similar mechanisms driving assemblage
structure and habitat selection such as competition or tolerance
to toxic environments. The majority (81%) of peracarids were
found at Hook Ridge, demonstrating a clear preference to
hydrothermally active sites, in comparison to annelids, for
which only 19% of individuals counted were found at Hook
Ridge sites. Hydrothermally-influenced sites were more suitable
for scavengers and sessile deposit feeders, whilst sites without
hydrothermal influence were more favored by motile deposit
feeders.

The fact that many of the more numerous taxa were found
at all sites demonstrates that their distribution was not limited by
dispersal ability. Communities in the Bransfield Strait had amuch
higher proportion of species conserved across the basin than in
other bathyal settings. For example, macroinvertebrates from the
Monterey Canyon (McClain et al., 2011) experienced a reduction
in shared species of 50% over ∼7.5 km, compared to around
100 km in this study (classic Sørenson distance, presence-absence
data). The relatively high conservation of species throughout the
basin coupled with the changes in community structure observed
between sites, further suggests that functional diversity, rather
than dispersal ability, was very important in structuring local
assemblages.

Overall, Pacific and Southern Ocean sedimented vents share
a number of higher taxa (e.g., percarids isopods and tanaids)
and polychaetes (terebellomorph and nereidid) (Grassle et al.,
1985; Levin et al., 2009), but their relative abundances are
quite variable. Pacific vent communities are distinct between
eastern and western sites (Bernardino et al., 2012), in part
reflecting geographic isolation. Eastern Pacific vents had a
comparatively low abundance of peracarid crustaceans (relative
to western Pacific and Bransfield Strait SHV) and tended to be
more dominated by polychaete species characteristic of reducing
environments (e.g., dorvilleids; Grassle et al., 1985; Grassle
and Petrecca, 1994; Levin et al., 2009). Vent endemic fauna
at sediment-hosted vents at the Chile Triple Junction (CTJ)
(Thurber et al., unpublished data, cited in Levin et al., 2012)
were also only represented by siboglinid polychaetes, as with
the Bransfield Strait vents and it is likely, given their proximity,
that the Bransfield vents are most similar to vents at the CTJ.
Macrofauna from shallower sites around the South Shetland
Islands were also numerically dominated by polychaetes, as with
non-Hook Ridge areas of the Bransfield Strait, and structured in
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part by habitat (substratum) availability (Arnaud et al., 1998).
These observations are semi-quantitative however, and include a
wider range of size classes than analyzed here so were not directly
comparable.

CONCLUSIONS

In this first community-ecology study of a sediment-hosted
hydrothermal vent in the Southern Ocean we have shown that
sediment-hosted hydrothermalism strongly influences infaunal
communities in the deep Bransfield Strait. We assessed variation
in macrofaunal communities along environmental distance
gradients. Populations of vent endemic fauna, represented
by a single species, had limited distribution but changes in
macrofaunal community structure were still clearly evident
between active vent and background sediments. The distribution
of S. contortum, relative to sediment geochemistry, was consistent
with previous observations (Sahling et al., 2005), supporting our
hypothesis. Diversity, species richness, and density were all lower
at hydrothermally active sites than in background sediments,
confirming hypothesis two but rejecting hypothesis one we have
identified several ways in which faunal trends for Bransfield
Strait SHVs differ from generalized trends derived from other
SHVs (Bernardino et al., 2012). Potential factors driving these
differences include: physiological stress (Levin et al., 2013); other
sources of OM (Wefer and Fischer, 1991; Palmer and Totterdell,
2001; Kim et al., 2005) undermining the significance of locally-
produced OM, and sensitivity to environmental conditions of
Southern Ocean benthos (Barnes and Peck, 2008).
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