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ABSTRACT	

	

The	outer	surface	of	many	Archaea	and	Bacteria	is	coated	with	a	proteinaceous	

surface	layer	(S-layer),	which	is	formed	by	the	self-assembly	of	monomeric	

proteins	into	a	regularly	spaced,	two-dimensional	array.	Bacteria	possess	

dedicated	pathways	for	the	secretion	and	anchoring	of	the	S-layer	to	the	cell	wall	

and	some	Gram-positive	species	have	large	S-layer-associated	gene	families.	S-

layers	have	important	roles	in	growth	and	survival	and	their	many	functions	

include	maintenance	of	cell	integrity,	enzyme	display	and,	in	pathogens	and	

commensals,	interaction	with	the	host	and	its	immune	system.	Here	we	review	

our	current	knowledge	of	S-layer	and	S-layer	associated	proteins	including	their	

structures,	mechanisms	of	secretion	and	anchoring	and	their	diverse	functions.		
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S-layers	are	found	on	both	Gram-positive	and	Gram-negative	bacteria	and	are	

highly	prevalent	in	the	Archaea1-3.	They	are	defined	as	a	two-dimensional	

crystalline	array	that	coats	the	entire	cell	and	they	are	thought	to	provide	

important	functional	properties.	S-layers	consist	of	one	or	more	(glyco)proteins,	

termed	S-layer	proteins	(SLPs),	that	undergo	self-assembly	to	form	a	regularly	

spaced	array	on	the	surface	of	the	cell.	As	some	of	the	most	abundant	proteins	in	

the	cell2,	their	biogenesis	must	consume	considerable	metabolic	resources,	

reflecting	their	importance	to	the	organism.	S-layers	were	first	recognized	in	the	

1950s	and	studied	in	numerous	species	during	the	following	decades,	which	

revealed	considerable	detail	of	their	structures	using	techniques	such	as	freeze-

etch	electron	microscopy	(see	BOX	1).	Such	studies1,2,4	showed	structurally	

diverse	S-layers,	with	oblique	(p1,	p2),	square	(p4)	or	hexagonal	(p6)	lattice	

symmetries.		Some	Gram-positive	species	harbour	protein	families	containing	

SLPs	and	SLP-related	proteins	that	share	a	common	cell	wall	anchoring	

mechanism.	However	it	is	not	yet	clear	if	all	family	members	contribute	

productively	to	S-layer	self-assembly.	These	proteins,	for	example	the	Bacillus	

anthracis	S-layer	associated	proteins	(BSLs)	and	the	Clostridium	difficile	cell	wall	

proteins	(CWPs)	(see	below)	are	included	in	this	Review	as	many	are	

functionally	relevant.		

	

The	lack	of	S-layers	in	the	model	organisms	Escherichia	coli	and	Bacillus	subtilis	

hindered	their	molecular	analysis	during	the	“molecular	microbiology”	era	of	the	

1980s.	Recent	advances	in	genomics	and	structural	biology	together	with	the	

development	of	new	molecular	cloning	tools	for	many	species	has	facilitated	

structural	and	functional	studies	of	SLPs.	Comprehensive	reviews	on	S-layers	
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were	written	over	a	decade	ago1,2	and	others	have	emphasized	the	exploitation	

of	SLPs	in	nanotechnology1,2,5	6.	An	excellent	review	of	the	Archaeal	cell	envelope	

was	published	recently3	which	included	the	properties	of	S-layers	in	this	domain	

of	life.	Here,	we	review	the	biology	of	bacterial	S-layer	proteins	and	highlight	

recent	discoveries	that	have	shaped	our	understanding	of	these	important	

proteins.		For	convenience,	Table	1	outlines	all	the	SLPs	described	in	this	review.	

	

Diversity	of	S-layer	genes	and	proteins	

	

S-layers	are	usually	composed	of	a	single	protein,	and	their	structural	genes	can	

be	linked	to	genes	encoding	modification	or	secretory	pathways.	Despite	the	

apparently	conserved	function	of	providing	a	two-dimensional	array	

surrounding	the	cell,	genetic	and	functional	studies	reveal	a	wide	diversity	in	

both	sequences	and	roles	for	S-layer	proteins.	

	

Genetic	Variation	

Several	bacterial	species	show	genetic	variation	in	SLP	expression,	perhaps	the	

best	example	is	Campylobacter	fetus	in	which	S-layer	variation	is	very	well	

characterized7.	In	serotype	A	strains	of	C.	fetus,	the	genome	contains	up	to	eight	

sapA	homologs	and	one	promoter	element	within	a	~65	kb	sap	island.	Usually	

only	one	sap	homolog	is	expressed	in	culture,	although	bacterial	sub-populations	

can	be	identified	that	express	additional	sap	proteins.	Sap	homologs	are	

expressed	from	a	single	sap	promoter8	and	exhibit	extensive	sequence	

homology.	Broad,	high	frequency	chromosomal	rearrangements	involving	DNA	

inversion	and	recombination	lead	to	phenotypic	switching	and	expression	of	
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alternate	sap	homologs	on	the	cell	surface,	resulting	in	an	antigenically	distinct	

S-layer8-10.	

	

The	Clostridium	difficile	S-layer	is	composed	of	two	proteins,	the	high-molecular	

weight	(HMW)	SLP	and	the	low-molecular	weight	(LMW)	SLP,	derived	by	

proteolytic	cleavage	of	the	precursor	SlpA.	The	LMW	SLP,	which	likely	faces	the	

environment,	exhibits	considerable	sequence	variability	between	strains11,12.	

This	variation	affects	recognition	by	antibodies,	which	presumably	reflects	

pressure	from	the	host	immune	response.	The	genetic	basis	of	S-layer	diversity	

in	C.	difficile	was	analyzed	using	high-throughput	genome	sequencing	of	a	panel	

of	clinically	diverse	strains,	which	revealed	the	presence	of	a	~10	kb	cassette	

encoding	slpA,	secA2	and	two		CWPs	(see	below)13.	12	divergent	cassettes	were	

identified	among	the	strains	and	the	authors	proposed	that	recombinational	

switching	occurs	in	C.	difficile	populations	to	generate	antigenic	diversity.	

Interestingly,	one	of	the	cassettes	is	substantially	larger	than	the	others	(24	kb	vs	

10	kb)	and	contains	19	extra	genes	encoding	a	putative	glycosylation	island	(see	

below).	Another	C.	difficile	S-layer	protein,	CwpV,	undergoes	phase-variable	

expression14	mediated	by	DNA	inversion	of	an	element	situated	between	the	

promoter	and	the	structural	gene15.	

	

S-layer	gene	families	

Some	Firmicutes	contain	multiple	S-layer	gene	homologs	that	exhibit	varying	

degrees	of	sequence	identity,	which	suggests	that	gene	duplication	has	led	to	a	

family	of	genes	with	functional	diversity.		
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The	best	studied	examples	of	SLP	and	associated	protein	gene	families	are	found	

in	B.	anthracis	and	C.	difficile.	Based	on	the	presence	of	three	tandem	surface	

layer	homology	(SLH)	motifs	(see	below)	within	predicted	surface	proteins,	24	

putative	BSLs	were	identified	in	B.	anthracis	Sterne16,	including	the	two	major	S-

layer	proteins,	Sap	and	EA1	(FIG.	1).	The	B.	anthracis	SLPs	are	incorporated	into	

the	S-layer	at	different	stages	of	growth;	the	Sap	S-layer	is	produced	during	the	

exponential	growth	phase	and	is	replaced	in	the	stationary	phase	by	the	EA1	S-

layer17.	Three	BSLs	are	encoded	by	plasmids:	two	by	pOX1	and	one	by	pOX2	16.	

In	each	BSL	the	three	tandemly	arranged	SLH	motifs	are	located	either	at	the	N-	

or	C-terminus	of	the	protein.	In	some	cases	the	proteins	are	considerably	larger	

than	the	~220	residues	required	for	the	SLH	domains,	the	Sap1	and	EA1	

proteins,	for	example,	are	over	800	residues	in	length.	In	some	cases	functional	

effector	domains	can	be	identified	in	these	larger	proteins,	including	domains	

encoding	leucine	rich	repeats	(LRRs),	β	lactamase	and	several	involved	in	

peptidoglycan	synthesis	and	hydrolysis.	B.	cereus,	a	close	relative	of	B.	anthracis,	

lacks	the	bslG,	bslK	and	amiA	genes	of	B.	anthracis	yet	harbors	three	unique	bsl	

genes,	bslV,	bslW,	and	bslX,	not	found	in	B.	anthracis18.	It	should	be	emphasized	

that	these	BSLs	have	not	been	shown	to	form	two-dimensional	arrays;	this	

property	is	seen	only	in	Sap	and	EA1	in	B.	anthracis.		

	

A	remarkably	similar	situation	is	found	in	C.	difficile.	A	number	of	Clostridia	use	

the	Cell	Wall	Binding	2	(CWB2)	motif	in	an	analogous	fashion	to	the	SLH	motifs	

to	anchor	the	S-layer	to	the	underlying	cell	wall	(see	below).	In	C.	difficile	we	find	

29	CWPs	each	with	three	tandem	CWB2	domains,	including	the	major	SLP,	

SlpA19.	Comparison	of	the	effector	domains	associated	with	the	B.	anthracis	BSL	
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proteins	and	the	C.	difficile	CWPs	reveal	many	similarities		including	

peptidoglycan	hydrolases,	putative	adhesins	and	LRR	proteins	(FIG.	1).	Families	

of	CWB2-containing	surface	proteins,	some	with	effector	domains,	are	also	found	

in	C.	botulinum	and	C.	tetani20,21.	

	

The	large	number	of	SLP	paralogs	in	the	Clostridia	and	Bacilli	that	carry	an	

effector	domain,	many	of	which	are	predicted	to	be	exposed	to	the	environment,	

inspires	the	idea	that	the	S-layer	functions	as	a	scaffold	to	display	proteins	or	

glycoproteins	to	the	external	environment.	In	this	way,	the	S-layer	can	impart	a	

variety	of	functions	on	its	host	(see	below),	depending	on	the	properties	of	the	

protein	or	glycoprotein	displayed.		

	

From	proteins	to	functional	S-layers		

		

SLPs	are	 transported	 to	 the	cell	 surface,	where	 they	assemble	 into	 the	ordered	

structures	of	the	S-layers.	In	addition,	to	build	a	fully	functional	S-layer,	SLPs	are	

anchored	to	the	cell	wall	and	in	some	organisms	highly	glycosylated.	

	

Secretion	of	S-layer	proteins	

Translocation	of	proteins	across	 the	 cell	 envelope	 is	 an	essential	process	 in	all	

bacteria.	Secretion	of	S-layer	proteins	presents	a	particular	problem	for	bacteria	

owing	 to	 the	 large	 quantity	 of	 protein	 required	 to	 form	 a	 contiguous	 para-

crystalline	array;	for	example,	we	estimate	that	the	C.	difficile	S-layer	contains	up	

to	500,000	subunits	requiring	 the	secretion	of	approximately	400	subunits	per	

second	 per	 cell	 during	 exponential	 growth.	 Several	 distinct	 mechanisms	 have	
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evolved	 to	 cope	 with	 this	 high	 protein	 flux	 but	 now,	 as	 S-layer	 secretion	 is	

studied	in	several	bacterial	species,	a	number	of	trends	are	emerging	(FIG.	2).	

	

In	 many	 Gram-negative	 species,	 including	 Caulobacter	 crescentus,	 Serratia	

marcescens,	and	C.	 fetus,	 S-layer	 secretion	 relies	 on	 a	 specific	 type	 I	 secretion	

system22-24	 comprising	 an	 inner	 membrane	 ABC	 transporter	 and	 an	 outer	

membrane	pore	(FIG.	2b).	In	C.	fetus	a	four-gene	operon,	adjacent	to	the	phase-

variable	S-layer	cassette,	encodes	three	proteins,	SapDEF,	with	homology	to	type	

I	secretion	systems,	and	an	additional	unique	protein,	SapC.	Mutagenesis	of	this	

operon	 blocks	 S-layer	 secretion	 and	 the	 four	 gene	 operon	 is	 sufficient	 for	 the	

secretion	of	the	S-layer	protein	SapA	in	a	heterologous	host24.	

	

In	the	fish	pathogens,	Aeromonas	hydrophila	and	Aeromonas	salmonicida,	S-layer	

secretion	appears	to	be	dependent	on	specific	type	 II	 secretion	 systems	 (FIG.	

2b).	The	SLPs	of	both	species	possess	an	amino-terminal	secretion	signal	and	in	

each	species	additional	secretion	proteins	with	homology	to	components	of	the	

prototypic	 pullulanase	 secretion	 system,	 a	 type	 II	 secretion	 system	 found	 in	

Klebsiella,	 have	 been	 identified:	Aeromonas	 hydrophila	SpsD	 is	 homologous	 to	

PulD	 and	Aeromonas	 salmonicida	ApsE	 is	 homologous	 to	 PulE.	 Mutagenesis	 of	

either	 spsD	 or	 apsE	 results	 in	 periplasmic	 accumulation	 of	 the	 SLPs25,26.	 	 A.	

salmonicida	ApsE	is	encoded	within	a	complete	type	II	secretion	cluster	adjacent	

to	the	S-layer	gene,	vapA.	The	other	genes	in	this	cluster	have	not	been	studied	in	

depth	but	it	seems	likely	that	the	encoded	type	II	secretion	system	is	responsible	

for	the	secretion	of	VapA.	
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S-layer	 secretion	 has	 been	 studied	 in	 detail	 in	 two	 Gram-positive	 bacteria,	 B.	

anthracis	 and	 C.	 difficile	 (FIG.	 2a).	 In	 both	 cases	 the	 secretion	 of	 the	 S-layer	

precursor	is	dependent	on	the	accessory	Sec	secretion	system27,28.	The	accessory	

Sec	secretion	system	was	first	identified	in	Mycobacterium	tuberculosis29	and	has	

since	 been	 characterized	 in	 a	 small	 number	 of	 Gram-positive	 species30.	

Organisms	possessing	 an	 accessory	 Sec	 system	have	 two	 copies	 of	 the	ATPase	

SecA	 (SecA1	 and	 SecA2);	 some	 bacteria,	 such	 as	 B.	 anthracis,	 also	 have	 an	

accessory	 SecY	 (SecY2).	 The	 accessory	 ATPase,	 SecA2,	 is	 responsible	 for	 the	

secretion	of	a	small	subset	of	proteins.	In	B.	anthracis	efficient	secretion	of	both	

major	 S-layer	 proteins,	 EA1	 and	 Sap,	 requires	 SecA2	 and	 the	 S-layer	 assembly	

protein,	 SlaP27.	 In	 C.	 difficile	 the	 accessory	 Sec	 system	 is	 responsible	 for	 the	

secretion	 of	 the	 S-layer	 precursor	 SlpA	 and	 the	 major	 phase-variable	 cell	 wall	

protein	CwpV28.		

	

Interestingly,	 there	 is	 a	 striking	 degree	 of	 genetic	 linkage	 between	 the	 genes	

encoding	S-layer	proteins	and	their	dedicated	secretion	systems	in	many	of	the	

organisms	 described	 above,	 including	C.	difficile,	B.	anthracis,	A.	 salmonicida,	C.	

fetus	and	C.	crescentus.	There	is	also	evidence	for	horizontal	transfer	of	the	gene	

cassette	containing	slpA	and	secA2	between	different	lineages	of	C.	difficile13.	This	

emphasizes	 the	 importance	 of	 the	 S-layer	 and	 its	 secretion	 in	 the	 life	 cycle	 of	

these	 organisms.	 As	 molecular	 characterization	 of	 S-layers	 extends	 to	 new	

species	 it	 will	 be	 fascinating	 to	 see	 if	 dedicated	 secretion	 systems	 and	 tight	

genetic	linkage	are	common	features	of	S-layer	biogenesis.	

	

Anchoring	of	S-layer	proteins	to	the	cell	surface	
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The	S-layer	is	anchored	to	the	cell	surface	via	non-covalent	interactions	with	cell	

surface	structures,	most	commonly	with	LPS	in	Gram-negative	and	with	cell	wall	

polysaccharides	in	Gram-positive	bacteria.	In	general,	S-layer	anchoring	in	Gram-

negative	 bacteria	 is	 less	 well	 characterized	 than	 in	 Gram-positive	 bacteria.	

However,	 the	 S-layers	 of	 C.	 crescentus	 and	 C.	 fetus	 have	 been	 studied	 in	 some	

detail.	In	C.	crescentus	the	N-terminal	~225	amino	acids	of	the	98	kDa	RsaA	SLP	

is	required	for	binding	to	LPS	on	the	cell	surface31,32.	The	exact	mechanism	of	this	

interaction	has	yet	to	be	characterized,	partly	because	the	exact	structure	of	the	

C.	 crescentus	 LPS	 is	 unknown,	 but	 the	 interaction	 does	 require	 an	 intact	 O-

antigen31.	 The	highly	 variable	C.	 fetus	 S-layer	 also	binds	non-covalently	 to	LPS.	

However	 C.	 fetus	 strains	 possess	 one	 of	 two	 distinct	 LPS	 serotypes	 and,	

consequently,	two	distinct	S-layer	anchoring	modules:	serotype	A	is	exclusively	

associated	 with	 a	 sapA-type	 S-layer	 and	 serotype	 B	 with	 a	 sapB-type	 S-layer.	

Each	C.	 fetus	 genome	 contains	multiple	 copies	 of	 either	 sapA	 or	 sapB,	 allowing	

high-frequency	antigenic	variation	(see	above).	All	SapA-type	homologues	have	a	

highly	 conserved	 N-terminal	 domain	 which	 is	 responsible	 for	 anchoring	 to	

serotype	 A	 LPS.	 SapB-type	 SLPs	 are	 similar	 to	 SapA	 in	 general	 but	 have	 an	

entirely	unrelated	N-terminal	domain	which	anchors	the	proteins	to	serotype	B	

LPS10,33,34.	

	

The	 anchoring	 of	 S-layers	 has	 been	 studied	 in	many	Gram-positive	 species.	 To	

date,	 two	 conserved	 Gram-positive	 S-layer	 anchoring	 modules	 have	 been	

identified,	utilizing	either	 the	SLH	domain	or	 the	CWB2	domain.	Both	modules	

employ	three	domains	which	are	located	either	at	the	N-	or	C-terminal	region	of	

the	protein.	The	SLH	domain	 is	 the	most	widely	distributed,	being	found	in	the	
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SLPs	 of	many	Bacillus	 species,	Thermus	thermophillus,	Deinococcus	radiodurans	

and	 at	 least	 one	Clostridia	 species,	C.	 thermocellum35,36-40.	 The	 two	major	 SLPs	

produced	by	B.	anthracis,	Sap	and	EA1,	each	have	three	tandem	copies	of	the	SLH	

motif	 41,42.	 These	 motifs	 fold	 as	 a	 pseudo-trimer	 (see	 BOX	 1)43	 and	 act	

cooperatively	 to	 bind	 a	 pyruvylated	 secondary	 cell	 wall	 polymer	 (SCWP).	

Pyruvylation	of	the	SCWP	relies	on	an	enzyme,	CsaB,	which	is	encoded	adjacent	

to	 Sap	 and	 EA1	 in	 the	 B.	 anthracis	 genome40.	 The	 thermophilic	 bacterium	

Geobacillus	stearothermophilus	possesses	one	of	the	most	 intensively	studied	S-

layers.	 G.	 stearothermophilus	 strains	 can	 produce	 five	 different	 S-layer	 types,	

encoded	by	sbsA-D	and	sgsE44-47	with	two	distinct	anchoring	mechanisms.	SbsB	

has	 three	 N-terminal	 copies	 of	 the	 SLH	 domain	 that	 anchor	 the	 protein	 to	 a	

pyruvylated	 SCWP	 48.	 However,	 no	 SLH	 domains	 can	 be	 identified	 in	 the	

remaining	four	Geobacillus	SLPs.	Instead,	SbsC	has	been	shown	to	interact	with	a	

N-acetylmannosaminuronic	acid–containing	SCWP49	via	the	first	240	residues	of	

the	mature	SLP50	(BOX	1).	As	these	residues	are	highly	conserved	in	SbsA,	SbsD	

and	SgsE	it	is	likely	that	these	SLPs	are	anchored	by	the	same	mechanism.	

	

The	 second	 conserved	 mechanism	 involves	 the	 CWB2	 motif,	 which	 was	 first	

identified	in	CwlB	–	an	autolysin	that	cleaves	peptidoglycan	in	the	cell	wall	of	B.	

subtilis51,52.	 B.	 subtilis	 does	 not	 produce	 an	 S-layer	 but	 the	 CWB2	 motif	 is	

necessary	for	retention	of	CwlB	in	the	cell	wall.	The	CWB2	motif	is	found	in	many	

Clostridia	species,	including	the	important	human	pathogens	C.	difficile,	C.	tetani	

and	 C.	 botulinum	 53.	 In	 C.	 difficile	 a	 family	 of	 29	 CWPs,	 including	 the	 S-layer	

precursor	SlpA	and	CwpV,	all	utilize	the	CWB2	domain	for	anchoring	to	the	cell	

wall	19.	The	cell	wall	ligand	for	this	domain	is	currently	unknown	but	is	likely	to	
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be	a	cell	surface	polysaccharide,	which	is	either	free	or	linked	to	peptidoglycan.	

We	 know	 little	 about	 the	 specificity	 of	 CWB2-polysaccharide	 interactions.	

However,	 surface	 polysaccharides	 in	 the	 Firmicutes	 show	 considerable	

diversity54,	 and	 it	 is	 possible	 that	 the	 CWB2	 motif	 recognizes	 more	 than	 one	

chemical	entity,	or	that	in	different	species	the	motif	has	evolved	to	recognize	a	

specific	 polysaccharide.	 Each	 cell	 wall	 protein	 has	 three	 tandem	 copies	 of	 the	

CWB2	motif,	analogous	to	the	arrangement	of	SLH	domains	seen	in	other	S-layer	

proteins.	As	more	structural	information	becomes	available	it	will	be	interesting	

to	see	whether	 the	pseudo-trimer	binding	arrangement	 is	also	shared	between	

SLH	 and	 CWB2	 domains,	 which	 would	 suggest	 a	 common	 or	 convergent	

evolutionary	origin.			

	

Formation	of	an	ordered	array	on	the	cell	surface	

S-layers	are	by	definition	a	 two	dimensional	array	of	a	 single	protein,	but	how	

exactly	 is	 the	array	 formed?	 It	 is	 clear	 that	SLPs	 that	 form	arrays	have	at	 least	

two	functional	domains:	an	anchoring	domain,	such	as	the	tandem	SLH	or	CWB2	

motifs,	that	attaches	the	protein	to	the	underlying	cell	wall	and	a	crystallization	

domain	 that	mediates	 SLP-SLP	 interaction.	 Crystallization	domains,	which	may	

contain	several	structural	domains,	have	been	identified	in	G.	stearothermophilus	

SbsB55	and	SbsC56	and	are	present	in	SLPs	of	other	species	including	those	of	B.	

anthracis57.	In	a	landmark	publication58,	the	three-dimensional	crystal	structure	

of	 SbsB	 was	 described,	 showing	 the	 atomic	 contacts	 between	 adjacent	 718	

residue	 SLP	 crystallization	 domains	 and	 how	 individual	 structural	 domains	

within	molecules	are	co-ordinated	by	Ca2+,	an	anion	known	to	be	essential	for	S-

layer	 formation	 in	G.	stearothermophilus	 (58	 and	see	BOX	1).	The	structure	also	
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shows	 pores	 of	 approximately	 30	Å	 diameter	 formed	 at	 the	 interface	 between	

three	adjacent	subunits,	consistent	with	a	role	in	permeability	(see	below).		

	

It	should	be	noted	that	not	all	SLPs	have	been	shown	to	 form	two-dimensional	

arrays	and	little	is	known	about	the	potential	for	self-assembly	of	the	associated	

proteins	such	as	the	B.	anthracis	BSL	and	C.	difficile	CWP	proteins.	These	proteins	

however	are	found	within	the	S-layer,	and	although	they	are	likely	held	in	place	

by	interaction	with	cell	wall	ligands,	we	cannot	rule	out	lateral	interactions	with	

the	rest	of	the	S-layer.		

	

Glycosylation	of	bacterial	S-layers	

The	first	description	of	bacterial	protein	glycosylation	was	in	the	S-layer	of	

Halobacterium	salinarium59,	and	since	then	a	large	number	of	glycosylated	S-

layer	proteins	have	been	identified	in	numerous	species	of	Bacteria	and	Archaea.	

S-layer	glycosylation	has	been	reviewed	in	excellent	detail	elsewhere60-62	and	

only	the	salient	points	will	be	discussed	here.	S-layer	glycan	modifications	

involve	sugars	commonly	found	in	glycosylated	eukaryotic	proteins,	together	

with	some	unusual	sugars	(60	and	see	below).	While	N-	and	O-linkages	have	

been	described	in	Archaeal	SLPs3,	to	date	only	O-linkages	have	been	found	in	

Bacterial	SLPs,	despite	other	Bacterial	surface	proteins	exhibiting	N-linked	

glycans63.	O-linkage	in	SLPs	of	the	Bacillaceae	can	involve	serine,	threonine	or	

tyrosine.	The	overall	structure	and	architecture	of	the	S-layer	glycan	resembles	

that	of	Gram-negative	LPS,	containing	a	linkage	unit	and	up	to	50	repeating	units,	

each	consisting	of	2-6	sugars.	This	resemblance	suggests	a	common	evolutionary	

origin	of	LPS	biosynthesis	and	S-layer	glycosylation64,	an	idea	further	
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strengthened	by	recent	descriptions	of	the	S-layer	glycan	(slg)	gene	clusters	in	G.	

stearothermophilus,	Paenibacillus	alvei,	Geobacillus	tepidamans,	Aneurinibacillus	

thermoaerophilus	and	Tannerella	forsythia	encoding	the	glycosyltransferases,	

glycan	processing	enzymes	and	membrane	transport	machinery	sufficient	for	

glycan	biosynthetic	pathways	(for	a	review,	see	60).	S-layer	glycosylation	

pathways	have	been	described	in	several	species,	including	G.	

stearothermophilus65,	P.	alvei66	and	T.	forsythia67,	leading	to	the	proposal	of	a	

biosynthetic	route	involving	transfer	of	galactose	from	the	nucleotide-activated	

sugar	UDP-α-D-Gal	to	a	lipid	carrier,	formation	of	the	linkage	unit	by	addition	of	

glycans	and	assembly	of	the	growing	repetitive	glycan	chain	onto	the	linkage	

unit.	These	reactions	occur	in	the	cytoplasm	prior	to	transport	of	the	completed	

glycan	chain	via	an	ABC-transporter	(in	the	case	of	G.	stearothermophilus)	to	the	

distal	side	of	the	membrane	where	the	glycan	is	ligated	to	the	S-layer	protein	

substrate60.	The	glycan	chains	decorating	S-layer	proteins	are	fairly	diverse:	for	

example,	in	G.	stearothermophilus	the	glycan	chain	is	a	simple	polymer	of	L-	

rhamnose,	in	P.	alvei	L-rhamnose,	N-acetylmannosamine,	D-glucose	and	D-

galactose	are	found	and	in	T.	forsythia	the	unusual	sugars	N-

acetylmannosaminuronic	acid,	5-acetimidol-7-N-glycolylpseudaminic	acid	and	

digtoxose	are	present67.	Whether	the	glycan	chain	is	co-transported	with	the	S-

layer	protein	substrate	remains	to	be	determined,	but	protein	transport	

(secretion)	is	not	dependent	on	glycosylation.		

	

Recently,	strains	of	C.	difficile	were	described	that	contain	a	putative	slg	locus	

adjacent	to	slpA13.	This	bacterium	does	not	normally	elaborate	a	glycosylated	S-

layer68	but	these	variant	strains	contain	a	distinct	S-layer	cassette	(see	above)	
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and	produce	S-layer	proteins	of	reduced	polypeptide	length12,13.	Whether	these	

strains	do	indeed	have	a	glycosylated	S-layer	and	what,	if	any,	phenotype	that	

might	confer	is	currently	unknown.	

	

Functional	heterogeneity	of	S-layers	

	

It	is	perhaps	not	surprising	that,	as	the	major	proteinaceous	surface	component	

of	the	cell,	a	variety	of	functions	have	been	described	and	proposed	for	the	S-

layer1,69	(FIG.	3).	However,	after	decades	of	research,	no	single	function	can	be	

ascribed	to	the	S-layer	and	in	many	species	the	S-layer	has	no	known	function.	

The	ability	to	form	a	two-dimensional	array	appears	to	be	the	result	of	

convergent	evolution	and	is	seen	in	proteins	of	quite	distinct	sequence.	SLPs	and	

associated	proteins	have	further	evolved	to	adopt	a	multitude	of	activities,	some	

essential	to	the	physiology	of	the	cell	and	others	facilitating	survival	in	specific	

niches.	Although	we	do	not	definitively	know	the	function	of	many	S-layers,	it	is	

clear	from	their	wide	occurrence	in	the	Bacterial	kingdom,	apparent	convergent	

evolution	and	the	enormous	metabolic	load	required	to	produce	and	maintain	

these	structures	that	they	fulfil	some	important	role	for	the	bacteria	that	

produce	them.		

	

Roles	of	the	S-layer	in	pathogenesis	and	immunity	

In	Lactobacillus	crispatus,	an	indigenous	member	of	the	human	and	chicken	gut	

microflora,	the	S-layer	CsbA	(SlpB)	has	an	N-terminal	domain	that	binds	types	I	

and	IV	collagen	and	a	C–terminal	domain	that	interacts	with	the	bacterial	cell	

wall	70.	This	collagen	binding	activity	is	thought	to	mediate	bacterial	colonization	
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of	the	gut	(FIG	3a).	Interestingly,	two	other	putative	S-layer	genes	are	present	in	

this	strain:	slpC,	located	downstream	of	csbA,	is	transcriptionally	active	and	slpA	

is	silent70-72.	

		

As	the	major	surface	antigen	of	C.	difficile,	the	S-layer	has	been	investigated	for	

its	ability	to	be	recognized	by	and	activate	the	immune	system.	The	SlpA	proteins	

(HMW	and	LMW	SLPs)	induce	release	of	pro-inflammatory	cytokines	from	

human	monocytes	and	induce	maturation	of	human	monocyte-derived	dendritic	

cells	(MDDCs)73.	Further	work	advanced	these	findings	by	showing	that	the	SLPs	

induced	maturation	of mouse bone marrow derived dendritic cells and the 

production of the cytokines IL-12, TNFα and IL-10, but not of IL-1β. Importantly, 

activation of dendritic cells was dependent	on	Toll-like	receptor	4	(TLR4)	and	

subsequently	induced	Th	responses	known	to	be	involved	in	clearance	of	

bacterial	pathogens74.	Infection	of	TLR4	knockout	mice	resulted	in	increased	

severity	of	symptoms	compared	to	wild-type	mice,	suggesting	an	important	role	

of	TLR4	in	bacterial	clearance74.	Both	the	HMW	and	LMW	SLPs	of	C.	difficile	were	

required	for	dendritic	cell	activation,	suggesting	either	the	entire	complex	is	

recognized	by	TLR4,	or	that	one	of	the	SLPs	is	the	ligand,	but	requires	to	be	seen	

in	the	context	of	the	HMW-LMW	complex	(FIG.	3a).	SlpA	has	also	been	shown	to	

bind	to	fixed	gut	enterocytes75,	which	could	be	related	to	an	immune	stimulatory	

role	and	infers	that	the	S-layer	might	function	as	an	adhesin	in	vivo	(FIG	3a).	To	

date,	the	role	of		SlpA	as	an	adhesin	has	not	been	investigated	through	

mutagenesis	as	slpA	is	an	essential	gene,	but	recent	advances	in	genetics76-78	

should	allow	creation	of	conditional	mutant	strains	that	could	be	used	in	

infection	experiments	to	test	this	hypothesis.	Finally	the	phase-variable	CwpV	
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protein	has	bacterial	auto-aggregation	activity	that	might	have	a	role	during	

infection15. 

	

In	B.	anthracis,	the	precise	role	of	Sap	and	EA1	are	unknown,	but	activities	of	

some	BSLs	have	been	elucidated.	The	BslA	protein	has	been	shown	to	mediate	

adhesion	of	encapsulated	B.	anthracis	to	HeLa	cells16.	bslA	mutants	display	

limited	dissemination	to	tissues	and	decreased	virulence	in	a	guinea	pig	model	of	

infection,	suggesting	BslA	is	a	functional	adhesin	required	for	full	virulence	of	B.	

anthracis79.	Another	S-layer	protein,	BslK,	mediates	heme	uptake	by	utilizing	a	

near	iron	transporter	(NEAT)	domain80	(FIG	3c).	In	B.	cereus,	which	has	highly	

similar	BSLs	to	B.	anthracis	but	a	very	different	capsule	composition,	a	csaB	

mutant	was	found	to	be	defective	in	retaining	Sap,	EA1	and	BslO	on	the	cell	

wall18.	The	csaB	mutant	exhibited	reduced	virulence	in	a	mouse	model	of	

infection,	implicating	one	or	more	BSLs	in	the	pathogenesis	of	anthrax.	

 

The	Gram-negative	pathogen	C.	fetus	is	a	leading	cause	of	abortions	in	sheep	and	

cattle	and	can	cause	persistent	systemic	infections	in	humans.	The	S-layer,	

composed	of	the	Sap	protein,	is	essential	for	host	colonization81.	Sap	is	

antigenically	variable	(see	above)	which	contributes	to	the	evasion	of	the	host	

immune	response82,83.	The	S-layer	is	crucial	for	pathogenesis	as	mutant	strains	

do	not	cause	disease	and	are	sensitive	to	phagocytosis	and	killing	in	serum	

mediated	by	complement	C384-86	(FIG	3a).	Antigenic	variation	occurs	during	

infection	in	humans,	as	shown	by	strains	isolated	at	early	and	late	stages	of	

infection	from	four	individuals	with	relapsing	C.	fetus	infections87.	In	three	

patients,	the	strain	had	undergone	a	switch	in	the	predominant	S-layer	
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expressed.	

	

T.	forsythia	(previously	known	as	Bacteroides	forsythus)	is	a	Gram-negative	

anaerobe	that	is	associated	with	severe	forms	of	periodontal	disease88,89.	Strains	

of	T.	forsythia	produce	two	high	molecular	weight	proteins,	each	over	200	kDa,	

that	are	concomitantly	expressed	and	constitute	the	S-layer	90-92.	The	structural	

genes	tfsA	and	tfsB	encode	proteins	of	120	and	140	kDa93,	suggesting	post-

translational	modification.	This	was	explored	in	detail	in	a	study67	that	showed	a	

complex	pattern	of	glycosylation	on	both	proteins	including	a	modified	

pseudaminic	acid	Pse5Am7Gc	not	previously	found	on	bacterial	proteins.	This	

sugar,	a	sialic	acid	derivative,	was	suggested	to	participate	in	bacterium-host	

interactions67,	based	on	the	prevalence	of	sialic	acid-like	sugars	in	Gram-

negative	structures	involved	in	pathogenesis	such	as	LPS,	capsules,	pili	and	

flagella.	In	T.	forsythia	transposon	mutants	that	exhibited	altered	biofilm	

formation	(FIG	3c),	an	operon	involved	in	exo-polysaccharide	biosynthesis	was	

identified.	Mutation	of	one	gene,	weeC,	which	encodes	a	putative	UDP-N-acetyl-

D-mannosaminuronic	acid	dehydrogenase,	increased	biofilm	formation	and	

altered	the	mobility	of	the	two	T.	forsythia	S-layer	proteins	on	SDS-PAGE,	an	

effect	consistent	with	glycosylation94.	A	proteomics	study	also	found	increased	

quantities	of	S-layer	proteins	in	Tannerella	biofilms	compared	to	planktonic	

cells95.	The	T.	forsythia	S-layer	appears	essential	for	virulence	of	this	pathogen	as	

adhesion	to	and	invasion	of	human	gingival	epithelial	cells	(Ca9-22	cells)	and	

mouth	epidermal	carcinoma	cells	(KB	cells)	were	decreased	or	abolished	in	a	

mutant	defective	in	tfsA	and	tfsB92.		

SLPs	have	also	been	demonstrated	to	have	a	role	in	protection	against	predation.	
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The	parasitic	bacterium	Bdellovibrio	bacterovirus	has	a	wide	host	range	and	

infects	and	replicates	in	the	periplasm	of	susceptible	Gram-negative	species96.	

Strains	of	Aquaspirillum	serpens	and	Caulobacter	cresentus	possess	an	S-layer	

and	are	not	normally	parasitized	by	Bdellovibrio,	but	S-layer	negative	variants	of	

both	species	were	shown	to	be	sensitive	to	predation,	indicating	that	the	S-layer	

can	provide	a	protective	coat	against	infection	with	Bdellovibrio97(FIG	3a).	In	

addition	to	this,	one	might	speculate	that	the	S-layer	would	act	as	a	receptor	for	

bacteriophage	and	bacteriocins,	but	to	our	knowledge	there	is	no	evidence	for	

such	activities.		

	

Permeability	and	biogenesis	of	the	cell	envelope		

S-layers	are	often	proposed	to	function	a	permeability	barrier	and	a	direct	role	

for	SLPs	as	barriers	has	been	investigated	in	B.	coagulans	and	other	species2,98.	

Experimentally	determined	exclusion	limits	of	isolated	sacculi	and	associated	

proteins	of	15	to	34	kDa	are	consistent	with	pore	diameters	of	20	–	60	Å	within	

the	S-layer	lattice2,98	and	the	crystal	structure	of	SbsB	reveals	pores	of	

approximately	30	Å58.	Thus	a	role	for	the	S-layer	as	a	permeability	barrier	(FIG	

3b)	is	certainly	conceivable,	but	our	knowledge	of	this	activity	would	be	

strengthened	by	genetic	analysis	and	atomic-resolution	imaging	of	alterations	in	

pore	size	in	vivo.	

	

In	Deinococcus	radiodurans,	the	S-layer,	(known	as	hexagonally	packed	

intermediate	(HPI)	layer)	is	composed	of	two	S-layer	proteins,	SlpA	and	Hpi,	in	

addition	to	lipids	and	carbohydrates.	Deletion	of	slpA	results	in	major	structural	

alterations	such	as	loss	of	the	Hpi	protein	and	surface	glycans,	which	can	be	
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visualized	by	electron	microscopy	as	layers	of	material	peeling	off	the	cell	wall99.	

This	suggests	that	SlpA	is	involved	in	the	attachment	of	Hpi	and	other	

components	to	the	underlying	cell	wall,	which	is	consistent	with	the	presence	of	

SLH	domains	within	SlpA.	Other	examples	of	a	role	for	the	S-layer	in	cell	

envelope	biogenesis	include	C.	difficile,	in	which	inhibition	of	cleavage	of	the	S-

layer	precursor	SlpA	through	inactivation	of	the	protease	Cwp84	leads	to	

incorrect	assembly	of	the	S-layer	and	shedding	of	full-length	SlpA	from	the	cell	

wall100,101	(FIG	3b).	Interestingly,	virulence	of	this	cwp84	mutant	is	not	

diminished	in	the	hamster	model	of	infection,	presumably	because	gut	proteases	

such	as	trypsin	can	cleave	SlpA	resulting	in	a	fully	functional	S-layer100.	

	

In	Bacillus	anthracis,	the	physiological	functions	of	the	Sap,	EA1	and	Bsl	proteins	

have	been	investigated.	Sap	and	EA1	both	have	a	peptidoglycan	hydrolase	

activity102,	although	they	lack	known	functional	domains	that	specify	such	an	

activity.	BslO,	which	has	putative	N-acetylglucosaminidase	activity	and	is	

localized	at	the	cell	septa,	has	a	role	in	catalyzing	cell	division	with	bslO	mutants	

exhibiting	increased	lengths	of	cell	chains103.(FIG	3c).	Elongated	chains	of	

bacteria	are	also	seen	in	a	sap	mutant,	and	this	lack	of	Sap	can	be	complemented	

by	the	addition	of	purified	BslO	protein	to	the	culture	medium,	restoring	cell	

division	and	reducing	the	chain	length.	In	wild-type	cells,	Sap	was	visualized	

predominantly	on	the	lateral	cell	wall,	away	from	the	septa,	suggesting	that	B.	

anthracis	controls	the	spatial	deposition	of	the	SLPs	in	order	to	ensure	correct	

localization	of	functional	entities	such	as	BslO	104.	In	the	C.	difficile	family	of	

CWPs/SLPs,	several	proteins	potentially	mediate	peptidoglycan	synthesis	and	

remodeling,	including	Cwp22	which	has	L,D-transpeptidase	activity105.	!
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Other	functions	of	the	S-layer	

Another	function	associated	with	the	S-layer	includes	swimming	in	the	marine	

bacterium	Synechococcus106	(FIG	3c).	This	species	is	highly	motile	but	does	not	

possess	any	obvious	flagellum	or	other	organelles	that	might	mediate	swimming,	

and	the	mechanical	basis	for	its	motility	is	largely	a	mystery.	In	mutants	

defective	for	swimming	two	surface	proteins	essential	for	this	activity	were	

identified:	SwmA	and	SwmB107.	SwmA	is	a	130	kDa	glycosylated	S-layer	protein	

and	SwmB	a	large	1.12	mDa	protein.	Other	genes	essential	for	swimming	encode	

an	ABC	transporter	and	several	glycosyltransferases108.	Although	these	results	

indicate	another	function	for	an	S-layer	and	suggest	glycosylation	of	SwmA	is	

required	for	motility	they	do	not,	unfortunately,	lead	us	much	further	in	

elucidating	this	highly	unusual	mechanism	of	swimming.		

	

Perspectives	

	

Following	their	discovery	in	the	1950s	and	after	decades	of	research,	our	

knowledge	of	Bacterial	SLPs	has	increased	considerably	in	the	last	few	years.	It	is	

clear	that	S-layers	do	not	have	one	single	function,	rather	a	diversity	of	functions	

is	apparent	and	we	expect	to	see	new	functions	revealed	as	more	species	are	

studied.	In	some	Archaea,	for	example	Sulfolobus,	the	S-layer	appears	to	be	the	

sole	non-lipid	constituent	of	the	envelope3,	suggesting	structural	integrity	might	

be	an	ancestral	function	of	SLPs.	In	some	bacterial	species,	such	as	the	Clostridia,	

the	S-layer	appears	essential	for	cell	viability,	as	unconditional	deletion	mutants	
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cannot	be	constructed.	In	these	species,	the	SLP	is	the	main	protein	component	

of	the	cell	surface	although	a	diversity	of	other	macromolecules	is	found.		

	

Increasingly	sophisticated	and	high-resolution	techniques	such	as	AFM	and	

electron	crystallography	are	being	applied	to	study	S-layer	morphology	and	

symmetry109.	Ultimately	these	techniques	will	be	combined	with	structural	

information	from	X-ray	crystallography	or	NMR	to	generate	atomic	resolution	

models	of	the	complete	S-layer.	Recently,	progress	has	been	made	with	atomic	

resolution	structures	of	several	SLPs,	and	we	look	forward	to	a	complete	

description	of	an	assembled	S-layer	structure	in	complex	with	the	ligand	

responsible	for	anchoring	to	the	cell	wall.	Only	then	will	we	be	able	to	address	

the	crucial	outstanding	questions	in	S-layer	biology:	what	is	the	biochemical	

basis	of	paracrystalline	array	self-assembly?	What	mechanisms	are	employed	to	

attach	the	S-layer	to	the	cell	surface?	And	finally,	what	is	the	structural	basis	for	

the	known	S-layer	functions?	

	

It	is	clear	that	SLPs	and	their	associated	proteins	have	evolved	specialized	

functions,	and	in	some	species	of	Firmicutes	SLPs	act	as	a	scaffold	to	display	

enzymes	on	the	cell	surface.	It	is	likely	that	many	more	SLPs	will	be	identified	

from	genome	sequencing	and	it	will	be	a	challenge	to	assign	meaningful	

functions	to	this	diverse	family	of	proteins	without	laboratory	investigation.		

Priorities	for	future	research	include	establishing	the	functions	of	S-layers	

present	in	bacterial	pathogens,	investigating	their	potential	as	therapeutic	

targets	for	antimicrobial	or	vaccine	development,	and	in	depth	structural	

analysis	of	the	interactions	between	S-layers	and	other	surface	components.	
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With	the	availability	of	increasingly	sophisticated	structural	and	imaging	tools,	

we	are	now	in	a	position	to	push	forward	Bacterial	S-layer	research	and	perhaps	

determine	the	full	contribution	of	these	fascinating	structures	to	the	growth	and	

survival	of	Bacteria	which	produce	them.		
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Table	1	|	Summary	of	SLPs	described	in	text	

Organism	 SLPs		 Features	

	

Campylobacter	fetus	 SapA	 High	frequency	antigenic	variation	of	S-
layer	through	recombinational	
switching	of	sap	homologues;	secreted	
by	a	specific	type	I	secretion	system	

	 SapB	

Clostridium	difficile	 SlpA	and	the		
CWP	family	

SlpA	essential	for	cell	growth;	S-layer	
functionalised	by	decoration	with	up	to	
28	additional	CWPs;	secreted	by	the	
accessory	Sec	system;	mediates	
interactions	with	epithelial	cells	and	
activates	dendritic	cells	

Bacillus	anthracis	 Sap,	EA1	and	the		
BSL	family	

Sap	and	EA1	are	alternate	SLPs;	S-layer	
functionalised	by	decoration	with	BSLs;	
secreted	by	the	accessory	Sec	system;	
anchored	via	interaction	with	
pyruvylated	SCWP	

Caulobacter	crescentus	 RsaA	 Secreted	by	a	specific	type	I	secretion	
system;	anchored	via	interaction	with	
LPS	

Aeromonas	salmonicida	 VapA		 Secreted	by	a	dedicated	type	II	secretion	
system	

Geobacillus	stearothermophilus	 SbsA	 Anchored	via	interaction	with	
pyruvylated	SCWP	(SbsB)	or	N-
acetylmannosaminuronic	acid	(SbsA,	C,	
D	and	SgsE);	Glycosylated	

	 SbsB	
	 SbsC	
	 SbsD	
	 SgsE	
Tannerella	forsythia	 TfsA	 Glycosylated;	S-layer	includes	both	SLPs;	

glycosylation	required	for	biofilm	
formation;	S-layer	essential	for	
virulence	

	 TfsB	

Lactobacillus	crispatus	 CsbA	 Mediates	binding	to	types	I	and	IV	
collagen	(CsbA)		 SlpA	

	 SlpC	
Deinococcus	radiodurans	 SlpA	 S-layer	includes	both	SLPs;	plays	a	role	

in	maintenance	of	envelope	integrity		 Hpi	
Synechococcus	 SwmA	 Glycosylated;	required	for	swimming	

motility	
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Figure	1	|	Clostridium	difficile	and	Bacillus	anthracis	cell	surface	protein	

families.		Domain	identification	and	organization	among	all	members	of	the	C.	

difficile	CWB2	family	and	the	B.	anthracis	SLH	family	was	determined	using	the	

Pfam	protein	families	database120	and	outlined	in	Supplementary	Table	1.	The	N-

terminal	signal	peptide,	which	is	removed	upon	translocation	through	the	Sec	

membrane	channel,	is	shown	as	a	black	box,	see	also	Figure	2a.	In	C.	difficile	the	

secretion	of	at	least	SlpA	and	CwpV	is	dependent	on	the	accessory	Sec	secretion	

system28.	In	B.	anthracis	the	two	major	S-layer	proteins,	Sap	and	EA1,	also	

require	the	accessory	Sec	system	for	secretion104.	Although	limited	data	is	

available,	it	is	possible	that	secretion	via	the	accessory	Sec	system	is	a	common	

feature	of	these	two	protein	families.	
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Figure	2	|	Secretion	of	Bacterial	S-layer	proteins.		To	date,	S-layer	secretion	

has	been	studied	in	a	small	number	of	species,	in	which	a	number	of	dedicated	

secretion	systems	have	been	identified.	a	|	In	the	Gram-positive	bacteria	

Clostridium	difficile	and	Bacillus	anthracis	secretion	of	the	S-layer	precursors	is	

mediated	by	the	accessory	Sec	secretion	system30.	The	proteins	contain	an	N-

terminal	signal	sequence	(white	box)	which	directs	the	nascent	polypeptide	to	

the	secretion	apparatus	and	is	cleaved	upon	membrane	translocation	(indicated	

with	the	black	triangle).	In	both	C.	difficile	and	B.	anthracis,	translocation	

requires	the	accessory	ATPase,	SecA227,28.	Following	recognition	by	SecA2,	the	

nascent	polypeptide	is	translocated	across	the	membrane	through	a	pore	

consisting	of	SecYEG	(C.	difficile)	or	SecY2EG	(B.	anthracis).	b	|	Secretion	of	the	S-

layer	proteins	(SLPs)	in	Aeromonas	salmonicida	and	Aeromonas	hydrophila	

requires	a	dedicated	Type	II	secretion	system25,26.	Type	II	secretion	is	a	two-step	

process:	the	unfolded	precursor	is	first	translocated	across	the	cytoplasmic	

membrane	by	the	canonical	Sec	secretion	system,	the	protein	then	folds	and	is	

transported	across	the	outer	membrane	by	a	complex	multi-protein	secretion	

apparatus	which	is	closely	related	to	type	IV	pili121.	A	complete	type	II	secretion	

system	is	encoded	alongside	vapA	in	A.	salmonicida	but	only	one	component	of	
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this	system	has	been	directly	linked	to	SLP	secretion;	A.	salmonicida	ApsE	is	

homologous	to	the	secretion	ATPase,	PulE.	A	PulD	homologue,	SpsD,	likely	

forming	an	outer	membrane	pore,	has	also	been	identified	in	A.	hydrophila.	

Further	analysis	is	required	to	confirm	whether	or	not	SpsD	and	ApsE	are	from	

the	same	conserved	secretion	system.	In	Campylobacter	fetus	the	SLPs	are	

secreted	in	a	single	step	by	a	Type	I	secretion	system	encoded	by	SapDEF24.	Type	

I	secretion	involves	an	inner	membrane	ABC	transporter,	a	membrane	fusion	

protein	and	an	outer	membrane	pore.	Where	known,	the	anchoring	domains	of	

the	SLPs	are	highlighted	as	hatched	boxes,	see	Figure	1.	
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Figure	3	|	Functions	of	S-layer	proteins.		

Probable	roles	in	infection	(panel	a)	include	adhesin	activity,	found	in	several	

species:	BslA	of	B.	anthracis	binds	to	HeLa	cells	and	mutants	are	attenuated	in	

models	of	infection79,	binding	of	SLPs	to	enteric	cells	has	been	observed	in	C.	

difficile75	and	to	defined	ligands	(types	I	and	IV	collagen)	in	Lactobacillus	

crispatus70.	In	C.	difficile,	interaction	of	SlpA	with	host	TLR4	receptors	is	linked	to	

innate	immunity74	and	in	C.	fetus,	SLPs	prevent	binding	of	complement	factor	

C3b,	protecting	the	bacterium	from	host	mediated	phagocytosis	and	serum	

killing86.	A	role	in	resistance	to	predation	has	been	demonstrated	in	Bdellovibrio	

bacteriovirus97	and	potential	roles	in	resistance	to	bacteriophage	and	

bacteriocins	are	possible	but	remain	speculative	(panel	a	,	bottom).	SLPs	have	

roles	in	maintenance	of	cell	envelope	integrity	(panel	b)	in	Deinococcus	

radiodurans	where	inactivation	of	slpA	causes	shedding	of	surface	molecules99	

and	in	C.	difficile	where	loss	of	cwp84	results	in	an	abnormal	S-layer	and	
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shedding	of	surface	proteins101.	B.	anthracis	BslO	and	the	C.	difficile	Cwp22	have	

peptidoglycan	hydrolase	activity	that	may	remodel	the	peptidoglycan.		A	role	for	

SLPs	as	a	permeability	barrier	has	been	demonstrated	in	Bacillus	coagulans	98.	A	

role	in	cell	division	has	been	found	in	B.	anthracis	(panel	c)	where	inactivation	of	

BslO,	a	putative	N-acetylglucosaminidase,	results	in	increased	lengths	of	chains	

of	bacteria103.	SLPs	have	roles	in	aggregation	(C.	difficile	CwpV15),	biofilm	

formation	(T.	forsythia94	)	and	swimming	(Synechococcus106).	Finally	BslK	from	B.	

anthracis	mediates	iron	uptake	by	scavenging	heme,	transferring	it	to	the	surface	

protein	IsdC80.	
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Box	1	

Since	the	first	reported	observation	of	an	S-layer	in	1953110	increasingly	

sophisticated	and	high-resolution	techniques	have	been	applied	to	the	study	of	

their	morphology,	symmetry	and,	ultimately,	atomic	structure.	Some	of	the	most	

striking	early	visualizations	of	S-layer	morphology	came	from	electron	

microscopy	of	negatively-stained	cell	wall	fragments	and	isolated	S-layers	and	

freeze-fracture	microscopy	of	intact	cells4,111.	S-layer	proteins	(SLPs)	

spontaneously	form	2-dimensional	crystals	in	vitro,	which	can	be	studied	using	

electron	microscopy		(panel	A	shows	the	regular	hexagonal	surface	array	of	a	

Thermoanaerobacter	thermohydrosulfuricus	cell112).	More	detailed	structural	

information	can	be	obtained	from	two-dimensional	crystals	using	electron	

crystallography	(for	example	Acetogenium	kivui,	transmission	electron	

microscopy	images	of	negatively	stained	S-layer	fragments	(panel	B,	top),	the	

resulting	electron	diffraction	patterns	(panel	B,	top,	insets),	3D	projection	map	

shown	in	panel	B	(bottom)).	The	projection	map	clearly	shows	the	p6	hexagonal	

symmetry	of	the	S-layer	and	the	6	individual	SLP	monomers	which	form	the	

ring-like	core	component	of	the	supramolecular	structure113.	In	recent	years,	

atomic	force	microscopy	(AFM)	has	been	developed	as	a	high	resolution	imaging	
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technique	to	visualize	macromolecules	and	is	particularly	well	suited	to	the	

study	of	bacterial	surfaces	114,	as	it	allows	unprecedented	resolution	on	intact	S-

layer	samples	under	native	aqueous	conditions	and,	with	functionalised	tips,	the	

ability	to	map	individual	proteins	within	the	layer.	(Panel	C,	AFM	image	of	the	

re-assembled	Lysinibacillus	sphaericus	SbpA	S-layer	showing	clear	tetragonal	

symmetry115).	Owing	to	difficulties	in	growing	3D	crystals	suitable	for	X-ray	

crystallography,	which	is	in	part	attributable	to	the	propensity	of	SLPs	to	form	

two-dimensional	crystals,	there	is	a	dearth	of	high	resolution	S-layer	structures.	

Many	groups	have	taken	a	divide	and	conquer	approach	by	crystallizing	except	

from	structures	of	recombinant	or	proteolytically-derived	fragments	of	SLPs.	

The	first	to	be	published	was	a	52	residue	coiled-coil	fragment	of	the	

tetrabrachion	SLP	from	the	extreme	thermophile	Staphylothermus	marinus116	

followed	by	two	partial	structures	of	Archaeal	SLPs	from	Methanosarcina	

spp.117,118.	One	comprises	a	novel	seven-bladed	ș	propeller	(the	YVTN	domain),	

a	polycystic	kidney	disease	superfamily	fold	domain	and	a	third,	as	yet	

unstructured,	domain	which	is	predicted	to	adopt	a	parallel	right-handed	ș	

helix	fold.	The		other	SLP	has	two	highly	related	DUF1608	domains,	one	of	which	

has	a	pair	of	linked	ș	sandwich	folds,	and	a	transmembrane	anchor118.	Partial	

structures	have	also	been	solved	for	two	of	the	Geobacillus	stearothermophilus	

SLPs	(SbsC	lacking	the	C-terminal	crystallization	domain55,	and	SbsB	lacking	the	

N-terminal	SLH	domains	58)	and	C.	difficile	LMW	SLP119.	SbsC	anchors	to	the	cell	

surface	via	non-covalent	interactions	between	domain	1	of	the	protein	(residues	

31-270)	and	a	negatively	charged	secondary	cell	wall	polymer	(SCWP)	(see	main	

text).	The	crystal	structure	of	this	domain	revealed	a	series	of	surface	exposed	
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positively	charged	residues,	with	spacing	approximating	that	of	the	negatively	

charged	ManNAcUA	groups	on	the	SCWP,	as	well	as	a	potential	carbohydrate-

binding	stack	of	aromatic	side	chains.	Further	research	will	hopefully	determine	

the	exact	contribution	of	these	residues	to	binding	the	SCWP.	SbsB	was	the	first	

SLP	to	be	crystallized	in	an	intact	form,	employing	nanobodies	to	inhibit	2D	

lattice	formation	and	allow	3D	crystallization.	The	cell	wall	binding	SLH	domains	

did	not	resolve	in	the	finished	structure	but	the	crystal	packing,	in	combination	

with	cryo-EM	and	crosslinking	studies,	allowed	the	proposal	of	a	plausible	model	

of	the	complete	2D	paracrystalline	array	(see	panel	D	and	text)58.	The	3D	

structure	of	the	SLH	domains	from	another	SLP,	the	B.	anthracis	Sap1,	has	been	

determined,	revealing	a	pseudo-trimer	with	each	SLH	domain	contributing	one	

component	of	a	three	pronged	spindle,	allowing	modelling	of	binding	of	the	SLH	

domains	to	the	SCWP43.	Panels	A,	B	and	C	are	reproduced	with	permission	from	

112,113	and	115	respectively.	Panel	D:	the	structural	coordinates	for	SbsB32–920	

(4AQ1)	58	were	downloaded	from	the	PDB	(http://www.rcsb.org/pdb)	and	the	

image	shown	was	generated	using	PyMOL.	 	
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SIDE	BARS	NOTES	

Phase-variable	expression	–	random	variation	of	gene	expression	in	a	bacterial	

population	in	which	expression	in	individual	cells	is	either	on	or	off	leading	to	

phenotypic	heterogeneity	in	the	population.	

	

Secondary	Cell	Wall	Polymers	–	carbohydrate	based	polymers	other	than	

peptidoglycan	and	anionic	polymers	present	in	the	cell	wall,	for	example	the	

pyruvylated	B.	anthracis	SCWP	that	anchors	the	SLPs	EA1	and	Sap	to	the	cell	

wall.		

	

N-	and	O-linked	glycosylation	–	linkage	of	a	sugar	to	the	nitrogen	(N)	atom	of	

asparagine	or	to	the	oxygen	(O)	atom	of	serine,	threonine	or	tyrosine.		

	

Type	I	secretion		-	a	sec-independent	protein	secretion	system	in	Gram-negative	

bacteria	consisting	of	an	inner	membrane	ABC	transporter,	a	periplasmic	

membrane	fusion	protein	and	an	outer	membrane	pore.	

	

Type	II	secretion	–	a	sec-dependent	multi-protein	secretion	system	in	Gram-

negative	bacteria	which	is	closely	related	to	type	II	pili.	

	

Sacculi	–	the	sacculus	(singular)	is	the	sac	of	polymerised	peptidoglycan	

surrounding	the	bacteria.	Isolated	from	the	bacterium,	it	retains	the	shape	of	the	

cell.		
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