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Essentials: 

• Patients with cirrhosis have hemostatic changes, which may contribute to a risk of 

thrombosis. 

• This in vitro study compares clot formation and structure between patients and healthy 

subjects. 

• Clot formation is delayed in patients; ultimately, however, clot permeability is decreased.   

•  The thrombogenic structure of fibrin clots may contribute to the thrombotic risk in cirrhosis. 

 

Abstract 

Background & Aims: Patients with cirrhosis can be at risk of thrombotic complications due to an 

imbalance between hemostatic components. However, little is known on how the disease affects 

clot generation or how alterations in structure of fibrin clots may affect the hemostatic function of 

these patients.  

 

Methods: We investigated the formation and structure of clots generated with plasma and purified 

fibrinogen of 42 patients with cirrhosis. Clots generated with plasma and fibrinogen of 29 healthy 

volunteers were studied for comparison. Clot formation and structure were assessed by turbidity, 

permeation studies, confocal laser and SEM. The extent of fibrinogen oxidation was assessed by 

measuring carbonyl content of purified fibrinogen samples.  

 

Results: Tissue factor and thrombin-induced clotting of plasma was delayed in patients. The clotting 

rate was also decreased, but change in turbidity, fibrin density and fiber thickness were largely 

comparable to healthy volunteers. Conversely, clot permeability was significantly decreased in 

patients. When clots were generated with purified fibrinogen, similar differences in clot formation 

and structure were found as in plasma. The carbonyl content was increased in patient fibrinogen and 

correlated with disease severity and clot permeability.  
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Conclusions: Delayed clot formation in cirrhosis ultimately results in decreased clot permeability. 

Similar alterations in clots generated with purified fibrinogen suggest that modifications of the 

molecule are (partly) responsible. Taken together, these findings are indicative of hypercoagulable 

features of clots of patients with cirrhosis, which may explain the increased risk of thrombosis 

associated with the condition. 

 

Keywords: fibrinogen, hemostasis, liver cirrhosis, oxidative stress, thrombosis. 

Introduction 

The clinical consequences of hemostatic disorders in patients with chronic and acute liver diseases 

can vary significantly from bleeding to thrombosis, and the conceptual understanding of the 

underlying mechanisms have changed considerably over the last decade. The latest proposed 

paradigm is that the combined effects of the hemostatic changes in cirrhosis produce a rebalanced, 

yet precarious hemostatic system, which may easily tip toward either a bleeding diathesis or a 

thrombotic tendency [1,2]. It has now been well established that patients with cirrhosis and 

abnormal routine coagulation tests do not necessarily have a bleeding tendency, and that 

thrombotic complications may occur in these patients [3]. In addition, an increasing number of 

studies suggest a link between thrombosis and progression of liver disease [4,5]. Probably the most 

striking example is a recent prospective, randomized study demonstrating that low molecular weight 

heparin therapy, aimed at preventing portal vein thrombosis, also reduced hepatic decompensation 

and mortality in a cohort of patients suffering from moderate-to-severe cirrhosis [6]. 

  

   The clinical concept of thrombosis as an important complicating factor of cirrhosis is 

supported by evidence from the laboratory. In vitro studies have demonstrated a disease stage-

dependent decrease in the capacity of plasma of cirrhotic patients to regulate thrombin generation 

[7,8]. In further studies, high levels of the platelet-binding protein Von Willebrand factor were found 

to result in a supranormal primary hemostatic function in these often thrombocytopenic patients 
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[9,10]. Recent studies have highlighted abnormal fibrin clot structure and function as a potential risk 

factor for thrombosis. Acquired or inherited changes in fibrin structure have been associated with 

venous and arterial thromboembolic events [11-15]. Interestingly, in spite of current advancements 

in our understanding of the net effects of the changes in primary and secondary hemostasis in 

chronic liver failure, little is known on the generation and structure of fibrin clots in these patients.  

Studies published more than three decades ago suggested qualitative defects in the fibrin 

clot in patients with cirrhosis, specifically, increased glycosylation of fibrinogen. This hypersialated 

fibrinogen displayed delayed fibrin polymerization [16,17]. However, in studies conducted by our 

group [18,19] a normal capacity to generate fibrin clots was found when using plasma of cirrhotic 

patients indicating that, under more physiological circumstances, qualitative defects in fibrinogen 

may not necessarily translate to a reduced clot function.  

 

To elucidate the net effect of changes in fibrinogen in cirrhosis, we studied the clot 

generation process as well the structural properties of clots from a cohort of patients with cirrhosis 

of various severity and etiology. We examined clots made with plasma as well as with fibrinogen 

purified from the patients to determine whether changes in plasma composition or in fibrinogen 

itself underpin any alterations in fibrin function and structure. Finally, we investigated oxidative 

modifications of fibrinogen, which were recently shown to alter both the structure and function of 

the molecule [20]. Indeed, as fibrinogen is one of the most abundant plasma proteins, it is a likely 

target for oxidative stress [21], one of the hallmarks of chronic liver disease [22-25]. 

 

Patients and Methods 

Patients 

Forty-two patients with a clinical diagnosis of cirrhosis were recruited from the Hepatology 

outpatient clinic or ward of the University Medical Center Groningen between August 2012 and April 

2013. These patients were classified according to the Child-Pugh classification [26]. Exclusion criteria 
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were a documented history of congenital coagulation disorders, recent viral infection (<2 weeks), 

use of anticoagulant drugs in the past 10 days, pregnancy, HIV positivity, and transfusion with blood 

products within past 7 days. Plasma samples from 29 healthy volunteers from our laboratory (nine 

males and twenty females, mean age 34 ±12 years, and two current smokers) were used to establish 

reference values. Exclusion criteria for the volunteer group were documented history of congenital 

coagulation disorders, documented history of hepatic disease, recent viral infection (<2 weeks), use 

of anticoagulant drugs in the past 10 days, pregnancy, and HIV positivity. The study protocol 

conformed with the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the 

medical ethics committee of the University Medical Center Groningen, Groningen, The Netherlands. 

Written informed consent was obtained from each subject before inclusion. Details of blood sample 

withdrawal and processing have been described previously [27]. 

 

Fibrinogen levels  

Fibrinogen levels in plasma of patients and healthy volunteers were determined on an ACL TOP 300 

analyzer using reagents from Instrumentation Laboratory (Breda, The Netherlands) according to the 

manufacturer�s instructions. 

 

Purification of Fibrinogen and addition of Factor XIII 

Fibrinogen was purified from the plasma of patients and volunteers as described [28]. In short, 

fibrinogen was purified from plasma using IF-1 (calcium dependent antibody) affinity 

chromatography, during which contaminating proteins were eliminated from the fibrinogen with 

washing buffers containing 0.3 and 1M NaCl respectively, prior to elution with EDTA. We have 

previously shown that this method effectively eliminates any Factor (F) XIII bound to the fibrinogen 

[29], and hence the purified fibrinogen preparations were FXIII-free prior to addition of exogenous 

FXIII at the controlled concentration of 7.3 µg/ml. Purity of the fibrinogen samples was examined by 

reducing sodium dodecyl sulfate�polyacrylamide gel electrophoresis using a Mini-Protean system 
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with 4-20% Bis-Tris gradient TGX gels (Bio-Rad, Hercules, CA). Gels were run at 80 V for 10 min and 

then at 150V for 1 h 15 min in MES buffer (Life Tech., Carlsbad, CA), stained with coomassie blue 

solution and scanned using a CanoScan 8800 F (Canon, Tokyo, Japan).  

 

Turbidity assays 

Fibrin clot formation in plasma or purified fibrinogen was studied by turbidity analysis as described 

[30]. Investigated parameters were clotting time (time to ½ max OD in min), clotting rate (mOD/min 

at ½ max OD), and change in turbidity of the clot defined as the difference between the OD at the 

start and maximum OD. Triplicates were measured for each sample and averaged.  

 

Thrombin generation assay 

Thrombomodulin-modified thrombin generation tests were performed by calibrated automated 

thrombography as previously described  [27].  

 

Clot lysis assay 

Lysis of a tissue factor�induced clot by exogenous t-PA was studied by monitoring changes in 

turbidity during clot formation and subsequent lysis essentially as described previously [31].  

 

Clot Permeation 

Plasma and purified fibrinogen clotting mixtures for permeation measurements were prepared as 

described [28,32]. Immediately after mixing, 100 µL of the clotting mixture was carefully transferred 

to a 4.5 cm plastic tip with a roughened interior surface, which was cut off from a 1 ml Costar 

pipette tip. The clot mixture was left to consolidate in a humidified chamber at room temperature 

for 2 h. The plastic tip was then connected through a flexible silicon tube to a syringe containing TBS 

with a 4-cm pressure drop. Upon connection, TBS was left to permeate through the fibrin clot 

network for 1.5 h to wash any other, non-fibrin, plasma components, such as albumin. Then, 
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measurements were performed in duplicate by collecting drops passing through the clot in a pre-

weighed eppendorf tube and weighing the total volume of liquid in the tube every 30 minutes for 

two hours. These measurements were averaged. Clot permeability was ultimately determined by 

calculating the Darcy�s constant (Ks), which is a measure of the pore size of the fibrin network 

through which liquid may pass, as described [33].  

 

Laser scanning confocal microscopy  

Plasma and purified fibrinogen (1 mg/mL) clots for laser scanning confocal microscopy were 

generated as described [34]. To visualize the clots, AlexaFluor488 FITC labeled fibrinogen (Life Tech, 

Carlsbad, CA; 50 µg/mL final concentration in plasma and 25 µg/mL in purified experiments) was 

added during clot formation. Clots were left to form at room temperature in a dark humidified 

chamber for 1 h. Laser scanning confocal microscopy (LSCM) was then performed using an upright 

Zeiss LSM-510 META Axioplan2 confocal microscope (Carl Zeiss Ltd, Welwyn Garden City, UK) fitted 

with a x63 numerical aperture 1.4 oil immersion objective. The scan format was 512x512 pixels with 

the pinhole set to one Airy unit to obtain maximum resolution in the z-plane. Single optical sections 

of 230/230µm (x/y) were taken at three different areas throughout the clot to visualize the fibrin 

network. Fiber density of the clot was analyzed using ImageJ software (National Institute of Health, 

Bethesda, MD). Fiber density was determined by an in-house designed macro plug-in, which places a 

10 x 10 lines grid on individual images and computes the number of fibers intersecting these lines. 

Fiber densities of three different micrographs per sample were averaged.  

 

Scanning electron microscopy 

Plasma clots from 5 patients (3 Child score A and 2 Child B) and 5 healthy individuals were generated 

and prepared for scanning electron microscopy as described [35]. Subjects were chosen based on 

clot permeability values closest to the median of their respective groups. Each clot was imaged in 

five different areas at 20 x 10
3
 magnification using a FEI Quanta 200 FEGSEM (FEI, Hillsboro, OR). 
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Average fiber diameters were measured from 50 random fibers in each sample using ImageJ 

software.  

 

Fibrinogen ɶ� levels in plasma 

Fibrinogen ɶ� antigen levels were measured using an in-house ELISA based on the method of Uitte de 

Willige [36].  

 

Fibrinogen carbonyl content and plasma malondialdehyde levels   

Carbonylation of purified fibrinogen samples was quantified using a commercially available ELISA kit 

(Enzo Life Sciences, Farmingdale, NY) following the manufacturer�s instructions. Malondialdehyde 

(MDA) levels were estimated in plasma as an indication of lipid peroxidation by measuring 

thiobarbituric acid reactive substances (TBARS) as described [37].  

 

Statistical Analysis  

Statistical analysis was performed with the Graphpad InStat (San Diego, CA) software package. 

Continuous variables are expressed as the mean±SD or median and range. Categorical data are 

expressed as numbers and percentage. Continuous data were tested for normality and analyzed by 

Unpaired t-test or the Mann-Whitney U test, as appropriate, for comparison between two groups, 

and by ANOVA with Dunnett�s post-test or by Kruskal-Wallis test with Dunn�s post-test for multiple 

group comparisons. In these analyses, values were compared with healthy volunteers' values. 

Correlations were examined by calculating Pearson�s Rho. A P value less than .05 was considered 

statistically significant. 
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Results 

Demographic, laboratory, and clinical characteristics of patients with cirrhosis and healthy 

individuals. Patient demographics, including clinical data and laboratory test results are presented in 

Table 1. Median fibrinogen levels were 2.7 g/L in patients with Child A, 1.8 g/L in Child B and 1.7 g/L 

in Child C cirrhosis. Median fibrinogen levels were 2.6 g/L in healthy individuals. 

    

Prolonged clotting time and decreased clotting rate, but normal optical density of clots generated 

with plasma of patients with cirrhosis. Turbidimetric analysis was used to determine fibrin 

polymerization. As shown in Fig. 1A and 1B, the time to generate a fibrin clot was overall longer 

when using plasma of patients with cirrhosis (6.1 min [4.5-9.5] (median [range]) when activated with 

TF and 1.4 min [1.1-2.2] for thrombin-mediated activation) when compared with the reference (5.1 

min [3.9-7.3] and 1.2 min [0.9-1.4]). Clotting times in patients or healthy volunteers did not correlate 

with fibrinogen levels (data not shown). The clotting rate was decreased in patient plasma (median 

rate 0.3 mOD/min [0.2-0.9] for TF and 0.2 mOD/min [0.1-0.2] for thrombin-mediated activation) 

when compared to the healthy volunteer group in which the clotting rate was 0.4 mOD/min [0.2-0.7] 

(p<0.01) and 0.3 mOD/min [0.1-0.4] (p<0.05) for TF and thrombin-mediated activation, respectively 

(Figs. 1C and 1D). The generally decreased clotting rate appeared largely the result of significant 

decreases in the Child B and C subgroups. Clotting rates correlated well with fibrinogen levels within 

patients (r=0.86, p<0.01 for TF, and r=0.35, p<0.05 for thrombin-mediated activation) and volunteers 

(r=0.9, p<0.01 for TF and r=0.58, p<0.01, for thrombin). Thrombin generation assay (TGA) 

parameters on the other hand did not correlate with turbidity parameters in cirrhosis (p>0.05 for 

every correlation coefficient). In Figs. 1E and 1F, it is demonstrated that, on average, the change in 

absorbance after fibrin polymerization was comparable between patients and healthy volunteers 

regardless of the mode of activation, although the change in absorbance was slightly lower than 

volunteers in the Child B and C groups.  
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Decreased permeability of clots generated with plasma of patients with cirrhosis. We tested the 

permeability of clots generated with thrombin. Clots were perfused with TBS and the total volume of 

fluid passing through the clot in a given time period was measured. A less permeable clot allows less 

liquid to pass through, resulting in a lower permeability coefficient Ks. As shown in Fig. 2, clots 

generated with plasma of patients were significantly less permeable (median Ks 6.5x10
-9  

[1.9x10
-9

-

1.5x10
-8

]) when compared to clots from healthy volunteers (median Ks 9.6x10
-9

 [6.0x10
-9

-2.4x10
-8

] 

(p<0.01). Clot permeability negatively correlated with fibrinogen levels in patients, albeit moderately 

(r=-0.56, p<0.01). Clot permeability also negatively correlated with clot lysis time in patients (-0.53, 

p<0.01). TGA parameters did not correlate with clot permeability in cirrhosis (r=0.18 for Endogenous 

Thrombin Potential (ETP); r=-0.04 for Velocity index; r=-0.14 for Lag time; r=-0,14 for time-to-peak 

(p>0.05 for every correlation coefficient)). 

 

Normal Fibrinogen ɶ� levels in plasma of patients with cirrhosis. Previous studies have shown that 

the proportion of fibrinogen ɶ� can influence fibrin clot structure in vitro and in plasma [38,39]. In Fig 

3A, it is shown that fibrinogen ɶ� are decreased in cirrhosis, however, when adjusted for fibrinogen 

levels as shown in Fig 3B, the proportion of fibrinogen ɶ� in plasma was comparable between 

patients and healthy volunteers (139 ʅg per mg fibrinogen [50-453] versus 171 ʅg/mg [87-341] 

(p>0.05)). These data suggest that the observed changes in permeability and clot structure are not 

caused by any changes in fibrinogen ɶ� in this study. 

   

Normal fibrin density and fiber diameter within clots generated with plasma of patients with 

cirrhosis. Fibrin fiber density and diameter was examined by laser scanning confocal microscopy 

(LSCM) and scanning electron microscopy (SEM), respectively. A representative LSCM image of a 

section of a fibrin clot generated with plasma of patient with Child B cirrhosis is shown in Fig. 4A. It 

indicates a normal fiber density in comparison with a representative healthy volunteer clot (Fig. 4B). 

Fiber density was quantified in Fig. 4C and demonstrated similar median fiber densities in patients 
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and healthy volunteers, although the fiber density appeared increased in the Child A cirrhosis group 

(2.45 Fiber/10µm [0.97-8.18] vs. 1.86 [0.66-8.14] in volunteers (p>0.05). The fiber diameter also 

appeared similar in both groups with an average diameter of ~140 nm per fiber, as demonstrated in 

Fig. 4D. Figs. 4E and 4F show comparable SEM images from individual fibrin fibers within sections of 

clots of a patient with Child B cirrhosis and a healthy volunteer, respectively.  

 

Prolonged clotting time, but normal clotting rate and optical density of clots generated with 

fibrinogen purified from patients with cirrhosis. As shown in Fig. 5A, the clotting time at equal 

fibrinogen concentration was prolonged in the patient group (2.8 min [2.3-3.7] when compared with 

healthy individuals in which the median was (2.5 min [2.3-3.1] (p<0.01). On the other hand, clotting 

rates as well as changes in absorbance during clotting were similar between patients and healthy 

volunteers, as demonstrated in Figs. 5B and 5C, respectively.  

   

Decreased permeability, but normal fiber density of clots generated with fibrinogen purified from 

plasma of patients with cirrhosis. In Fig. 5D, it is shown that clots generated at an equal 

concentration of fibrinogen were significantly less permeable in the patient group (median Ks 

6.1x10
-9 

[1.7x10
-9

-1.1x10
-8

]) when compared to clots of healthy volunteers (median Ks 8.1x10
-9

 

[4.9x10
-9

-1.4x10
-8

] (p<0.01). On the other hand, Fig. 5E indicates a normal fiber density of clots 

generated with fibrinogen of patients in comparison with volunteers. This is visualized in Fig. 5F with 

representative LSCM images of the fibrin mesh in clots of a patient and a healthy volunteer, 

respectively.   

 

Increased carbonyl content of fibrinogen purified from plasma of patients with cirrhosis. Fig. 6 

shows a significantly increased carbonyl content of fibrinogen isolated from patients when 

compared with healthy volunteers (median 2.2 nmol/mg [1.4-4.3] versus 1.5 nmol/mg [1.3-2.6], 

respectively (p<0.01). The extent of carbonylation in patients was associated with disease severity 
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and inversely correlated with clot permeability. The correlation coefficient was r=-0.46; p<0.05 for 

patients combined, r=-0.69 for the Child A group (p<0.01), r=-0.65 for Child B (p<0.01) and -0.14 for 

Child C (p>0.05). In addition, it positively correlated with serum MDA levels (r=0.35, p<0.5).  

Smoking or co-morbidities in the patient group are not associated with changes in clot 

permeability. We explored possible relationships between the permeability of clots generated with 

plasma and smoking, co morbidities and complications in the patient group. We found no 

differences in clot permeability between smokers and non-smokers or between patients with and 

without significant co-morbidity (data not shown). Also, no correlation was found between smoking 

frequency and MDA levels or carbonyl content of fibrinogen (r=-0.05, p>0.05 and r=0.04, p>0.05, 

respectively).  A relationship between clot permeability and thrombosis could not be demonstrated 

as only three events of thrombotic complications were recorded. Clot permeability in patients with a 

history of bleeding (mostly variceal bleeds) was not different from patients who had not experienced 

a bleeding event (Ks 6.5x10
-9 

[2.0x10
-9

-1.2 x10
-8

 vs. 6.7x10
-9 

[1.2x10
-9

-1.5x10
-8

] (p>0.05; data not 

shown). 
 

 

Discussion  

This study of fibrin clot structure in patients with cirrhosis shows alterations in clotting kinetics and 

fibrin structure. We found that although the kinetics of clot formation were decreased in cirrhosis, 

the clots were ultimately less permeable. This implies that decreased levels or functional defects in 

fibrinogen in cirrhosis do not necessarily translate into a reduced clot function promoting a risk of 

bleeding. On the contrary, a decrease in clot permeability may rather indicate an increased risk for 

thrombosis. Indeed, previous studies have shown decreased fibrin clot permeability to be associated 

with both arterial and thrombotic diseases [11-15]. In turn, this study supports a potential 

prothrombotic role of fibrin clots in patients with acute and chronic liver failure opposing the effects 

of reduced production of coagulation factors [40]. The prolonged clotting times and decreased clot 

permeability in both plasma and samples of purified fibrinogen suggest that structural alterations of 
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the fibrinogen molecule itself underpin the changes in fibrin structure. We detected an increase in 

the carbonyl content of fibrinogen isolated from patients indicating that oxidative modifications of 

the protein may be responsible for the prolonged clotting time and reduced clot permeability. 

  

We and others are systematically studying consequences of hemostatic defects in patients 

with cirrhosis. These studies have shown that primary and secondary hemostasis remain functional, 

and are perhaps even hyperreactive. We first demonstrated that elevated levels of the platelet 

adhesive protein von Willebrand factor (over)compensate for abnormalities in platelet number and 

function in patients with cirrhosis [9]. Others have subsequently demonstrated that the thrombin 

generating capacity in cirrhosis was intact, despite prolongations in routine laboratory tests of 

coagulation such as the prothrombin time (PT) or international normalized ratio (INR) and activated 

partial thromboplastin time (APTT) [41]. The data presented here suggest that the final stage of 

blood coagulation, the formation of a fibrin clot, is also in a rebalanced, perhaps overcompensated 

state. Despite reduced fibrinogen levels, the fibrin clot is less permeable (and therefore more 

resistant to permeation of fibrinolytic enzymes into the clot) compared with healthy individuals. The 

delayed clot formation is in agreement with previous studies in cirrhosis demonstrating that 

increased fibrinogen glycosylation results in defects in fibrin polymerization [16,17]. Alternatively, 

slower fibrin polymerization may result from oxidative modifications of the fibrinogen molecule [42-

44] and since fibrinogen oxidation can also promote a less permeable fibrin structure [44] it is a 

potential mechanism to explain our findings.  

  

Fibrin network production is essential for hemostasis. During the course of fibrin 

polymerization, fibrinogen molecules assimilate to form a 3-dimentional fibrin network. Clot stability 

is determined by the structure of the network, which is characterized by the density and diameter of 

fibers, number and nature of the branch points, and number and size of pores [45]. In turn, these 

structural features may vary depending on a myriad of factors controlling the clot generation 
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process. These include fibrinogen structure and concentration, available concentrations of pro- and 

anticoagulants, which in turn dictate the thrombin generation potential, and local cellular effects 

[46]. By breaking down the process in individual steps we provided insight into how clotting 

dynamics are affected in cirrhosis. First, we observed that clotting rates of turbidity assays triggered 

with tissue factor or thrombin are sensitive to the level of fibrinogen in cirrhosis, but less so in the 

thrombin triggered turbidity assays. This may be explained by the fact that the effects of fibrinogen 

on thrombin generation [47] are effectively by-passed in the latter and the effect of fibrinogen 

concentration on clotting rates becomes less dominant. Secondly, we observed increased clotting 

times when the plasma of patients was activated with either tissue factor or thrombin, independent 

of the level of fibrinogen. This demonstrated that the complex alterations in coagulation factors 

associated with cirrhosis were not the only determinant affecting clot generation, and suggested the 

presence of a defect in the fibrinogen to fibrin conversion step. This was subsequently confirmed 

when the clotting time remained abnormal when using fibrinogen isolated from patients. As 

fibrinogen, Factor XIII and thrombin had been adjusted to equal levels between patients and healthy 

volunteers, the most likely explanation for the rate-limiting step in fibrin polymerization was an 

alteration in one or more structural properties of fibrinogen.   

 

A recent review on oxidative modifications of fibrinogen revealed different, even opposing effects, 

depending on the modified site [20]. Here we demonstrated a defect in clot formation kinetics 

resulting in less permeable clots ultimately, which correlated with an increase in fibrinogen carbonyl 

content. Interestingly, apart from the changes in clot permeability, other investigated structural 

parameters were normal (i.e., change in absorbance, fibrin density and fiber diameter) suggesting 

that the changes in the fibrinogen molecule in patients with cirrhosis only affect fibrin metastructure 

by reducing pore size or number. This is in contrast with results of turbidity studies conducted by 

Paton et al. [48], who demonstrated a negative association between fibrinogen carbonyl content 

and change in absorbance and which may be explained by different experimental conditions, the 
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most prominent being the lack of added calcium, while fibrinogen is well known to contain 

functional calcium binding sites.  
The lack of association between permeability and other structural parameters, such as fibrin 

density, may be explained by the fact that it is a combination of modest structural changes that 

accounts for changes in metastructure, the sum of which leads to a significantly decreased clot 

permeability. Furthermore, the relationship between permeation and fiber diameter may be 

influenced by changes in the intrafibrillar composition of fibrin fibers such as protofibril packing [49]. 

Also, permeability may be governed by more than just structure. Alterations such as oxidation and 

sialyation might lead to reduced permeability (e.g. by charge/hydrophobicity effects), but not to 

changes in structure. A similar study using a larger cohort will shed more light on this apparent 

discrepancy between permeability and other structural parameters in cirrhosis. A limitation of the 

study is that we cannot rule out that other structural modifications of fibrinogen also may have 

contributed to a certain extent in the remodeling of the fibrin metastructure, although we did not 

find increased fibrinogen gamma prime levels in our patients which are thought to prompt the 

formation of more thrombogenic clots [50]. Nonetheless, the similarly decreased permeability of 

clots generated with plasma and purified fibrinogen shows that the procoagulant effects associated 

with changes in fibrinogen structure persist under more physiological conditions and therefore 

probably translate to the in vivo situation.  

 

In recent years, there has been a major shift in our understanding of the clinical 

consequences of cirrhosis-associated coagulopathy. Expert opinion suggests that bleeding in many 

(surgical) cases is more likely due to hemodynamic changes in patients with chronic liver disease 

than to an underlying hemostatic disorder [51]. It also suggests that patients with cirrhosis are not 

�auto-anticoagulated�: they are not protected from thrombotic events even when routine tests of 

coagulation including PT or INR and APTT are prolonged, or when platelet numbers are low [52]. In 
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fact, it is increasingly recognized that thrombosis can be a major complicating factor in cirrhosis and 

may even contribute to disease progression [53,54]. We propose that, similarly to cohorts of 

smokers, patients with venous thromboembolism and patients with cardiovascular diseases who 

show comparable changes in fibrinogen and fibrin clot structure [55-58], enhanced fibrinogen 

carbonylation in patients with cirrhosis prompts the formation of clots with a procoagulant 

structure. In turn, this contributes to the thrombotic risk in these patients. The mechanism involved 

in an increased thrombotic risk in patients with less permeable clots may be a reduced disposition of 

clots to lysis as evidenced by the negative correlation between permeability and clot lysis time 

demonstrated here. This is the result of both an increased stability of clot structure and reduced 

capacity of fibrinolytic enzymes to penetrate through the clot [14,59,60]. Ultimately, this may 

facilitate the development of dangerous thrombi in the (micro)vasculature. Interestingly, clot 

permeability was not linked to bleeding in the present study. Larger studies will be needed to 

demonstrate associations with thrombotic events.  

 

In conclusion, the dysfibrinogenemia associated with liver disease has been functionally 

characterized by an increased clotting time due to impaired fibrin polymerization and was 

traditionally associated with a risk of bleeding. For the first time, we have shown that impaired clot 

formation in cirrhosis does not necessarily translate in a decreased hemostatic capacity as clots of 

patients have thrombogenic features evidenced by reduced permeability. We have attributed this to 

procoagulant changes in fibrin metastructure resulting from excessive carbonylation of fibrinogen 

and which appears to compensate for a decrease in fibrinogen level. This study provides further 

evidence of a rebalanced hemostatic function in patients with cirrhosis and adds to an increasing 

number of epidemiological, clinical and in vitro studies of the presence of an elevated thrombotic 

risk as a consequence of the condition.   
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 Characteristics Child A (n=20) Child B (n=15) Child C (n=7) Patients combined (n=42) Healthy individuals (n=29)

Value Value Value Value Value

 Age, years 54 (11) 49 (13) 49 (14) 51 (12) 32 (9)

 Male sex 8 {40} 9 {60} 5 {71} 22 {52} 12 {41}

 BMI, kg/m2 25 (4) 29 (5) 30 (6) 27 (5) 23 (3)

 Smokers 12 {60} 2 {13} 2 {29} 16 {38} 1 {3}

 Cigarettes/day 5 (5) 2 (5) 2 (4) 3 (5) 2

 Etiology

Alcohol abuse 9 {45} 4 {27} 6 {86} 19 {45}

NAFLD 2 {10} 3 {20} 0 5 {12}

PSC 3 [15} 1 {6} 0 4 {10}

AIH 2 {10} 2 {8} 0 4 {10}

Combination 2 {10} 1 {6} 0 3 {7}

HCV 0 2 {13} 0 2 {5}

Indeterminate 0 1 {7} 1 {14} 2 {5}

Hemochromatosis 0 1 {7} 0 1 {2}

Wilson's disease 1 {5} 0 0 1 {2}

PBC 1 {5} 0 0 1 {2}

 Laboratory blood tests

AST, U/L 48 [36-70] 63 [48-96]  70 [46-81] 56 [43-80]

ALT, U/L 36 [28-64] 32 [26-60] 29 [19-42] 34 [26-59]

ALP, U/L 133 [76-191] 112 [92-212] 108 [88-146] 118 [90-172]

GGT, U/L 112 [56-216] 94 [52-215] 46 [23-91] 93 [48-197]

LDH, U/L 180 [152-247] 205 (182-235) 220 (200-353) 199 [165-249]

Total bilirubin, ʅmol/L 21 [8-26] 46 [25-51] 70 [36-121] 26 [16-51]

Albumin, g/L 36 [31-43] 33 [31-35] 28 [26-31] 33 [30-41]

Fibrinogen, g/L 2.7 [2.1-3.7] 1.8 [1.6-2.6] 1.7 [1.5-2.3] 2.2 [1.6-3.0] 2.6 [1.7-3.6]

INR 1.1 (0.2) 1.3 (0.2) 1.5 (0.2) 1.3 [0.2]

Platelet count, x109/L 121 [93-205] 76 [48-133] 75 [44-114] 104 [58-159]

Hemoglobin 8.1 (1.0) 7.4 (1.0) 6.3 (1.1) 7.6 (1.2)

WBC, x109/L 7.2 (3.3) 4.6 (2.5) 7.3 (3.5) 6.3 (3.2)

CRP, mg/L <5 [<5-15] <5 [<5-14] 7 [<5-18] 6 [<5-15]

Sodium, mmol/L 138 (3) 139 (3) 132 (2) 137 (4)

Potassium, mmol/L 3.6 (0.4) 4.0 (0.5) 4.1 (0.5) 4.0 (0.4)

Creatinine, ʅmol/L 58 [50-79] 68 [62-91] 85 [47-118] 68 [54-84]

Urea, mmol/L 4.7 [3.8-6.4] 5.5 [3.5-9.0] 4.5 [4.4-9.4] 5.0 [3.8-7.5]

Glucose, mmol/L 7.6 (3.2) 6.4 (2.2) 5.6 (0.6) 6.7 (2.5)

MDA 3.5 [1.8-8.9] 4.5 [3.0-6.8] 5.9 [3.5-10.7] 4.3 [1.8-10.7] 2.8 [2.1-4.8]

Hemostasis tests

Clot lysis time, min 56 [40-105] 37 [30-65] 40 [30-52] 48 [30-105] 55 [42-72]

TGA, ETP 780 [460-1683] 906 [607-1111] 838 [838-1030] 884 [460-1683] 816 [579-1262]

TGA, Vel Index 63 [26-121] 85 [69-121] 77 [41-97] 61 [26-121] 77 [26-136]

TGA, Lag time 1.7 [1.2-2] 1.3 [1.3-2.0] 1.4 [1.1-5] 1,7 [1.1-2.0] 1.6 [1.3-2.0]

 TGA, Peak time 145 [97-248] 182 [139-251] 144 [101-174] 167 [97-248] 162 [102-241]

 Complications

Ascites 5 {25} 9 {81} 7 {100} 21 {50}

Encephalopathy 2 {10} 1 {6} 5 {71} 8 {19}

Thrombosis 1 {5} 1 {6} 1 {14} 3 {7}

Bleeding (mostly variceal) 5 {25} 5 {30} 2 {29} 12 {29}

 Co-morbidities

Hypertension  4 {20} 4 {27} 0 8 {19}

AP 1 {5} 1 {6} 0 2 {5}

DM II 6 {30} 2 {13} 1 {14} 9 {21}

Chronic kidney disease 1 {5} 1 {6} 0 2 {5}

Chronic lung disease 2 {10} 0 0 2 {5}

Chronic bowel disease 2 {10} 1 {6} 0 3 {7}

Malignancy 1 {5} 2 {13} 0 3 {7}

Abbreviations: AIH, autoimmune hepatitis; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AP, angina pectoris; AST, aspartate aminotransferase; 

BMI, body mass index; CRP, C-reactive protein; DM II, diabetes mellitus II; ETP, endogenous thrombin potential; GGT, gamma-glutamyl transpeptidase; HCV, 

hepatitis C virus; INR, international normalized ratio; LDH, lactate dehydrogenase; MDA, malondialdehyde; PBC, primary biliary cirrhosis; PSC, primary 

sclerosing cholangitis; TGA, thromboelastography. Data are presented as mean (SD), numbers {percentages} or medians [IQR].
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Table 1. Demographic, Laboratory, and Clinical Characteristics of the Study Cohorts.   
Figure 1. Turbidity parameters of clots generated from plasma of patients with cirrhosis and healthy 

volunteers. (A) Clotting time upon activation with 5pM TF, and (B) 0.5 IU/ml thrombin. (C) Clotting rate 

upon activation with TF and (D) thrombin. (E) Changes in optical density of clots upon activation with TF and 

(F) thrombin. Horizontal bars represent medians. Asterisks indicate significant differences in comparison 

with healthy volunteer values.  *P<0.05; **P<0.01.   
Figure 2. Permeability of clots generated with plasma of patients with cirrhosis and healthy volunteers.  The 

permeability coefficient Ks was calculated following Darcy�s Law. Horizontal bars represent medians. 

Asterisks indicate significant differences in comparison with healthy volunteer values. **P<0.01.   
Figure 3. Fibrinogen ɶ� levels in plasma of patients with chronic liver disease and healthy volunteers. (A) 

Absolute Fibrinogen ɶ� levels and (B) Fibrinogen ɶ� levels relative to total fibrinogen. Levels are expressed in 

microgram per milliter and per milligram fibrinogen. Horizontal bars represent medians.   

 
Figure 4. Representative images of sections of clots generated with plasma of patients with cirrhosis and 

healthy volunteers. (A) Fibrin mesh in clot of a patient with Child B cirrhosis and (B) of a healthy volunteer 

clot visualized by laser scanning confocal microscopy (original magnification x630). (C) Fiber density in the 

fibrin mesh was quantified by counting the number of fibers crossing an arbitrary line drawn through the 

section. Density is expressed as the number of fibers per 10 ʅm. (D) Fibrin fiber thickness was quantified by 

measuring the diameter of individual fibers. The diameter is expressed in nanometers. Horizontal bars 

represent medians. (E) Fibrin mesh in a clot of a patient with Child B cirrhosis and (F) of a healthy volunteer 

clot visualized by SEM (original magnification x20.000).  

 
Figure 5. Functional and structural parameters of clots generated with fibrinogen purified from plasma of 

patients with cirrhosis and healthy volunteers. (A) Clotting time, (B) Clotting rate and (C) Changes in optical 

density of clots. (D) Permeability and (E) fiber density of clots. For turbidity studies, clotting was initiated 
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with 0.5 IU/mL thrombin at equal fibrinogen concentrations (1 mg/mL). For permeability and density 

studies, clotting was initiated with 0.5 IU/mL thrombin at equal fibrinogen and FXIII concentrations (1 

mg/mL and 7.3 µg/mL, resp.). (F) Representative LSCM image of fibrin mesh within a clot of a patient with 

Child B cirrhosis (left panel) and within a healthy volunteer clot (right panel) generated with purified 

fibrinogen (original magnification x630). Horizontal bars represent medians. Asterisks indicate significant 

differences in comparison with healthy volunteer values. *P<0.05; **P<0.01. 

 
Figure 6. Carbonyl content of fibrinogen purified from patients with cirrhosis and healthy volunteers. 

Protein carbonyl content was measured at equal fibrinogen concentrations (20 ʅg/mL). Horizontal bars 

represent medians. Asterisks indicate significant differences in comparison with healthy volunteer values. 

*P<0.05; **P<0.01. 
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