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a b s t r a c t

The degree of segregation between two or more sub-populations

has been studied since the 1950s, and examples include segrega-

tion along racial and religious lines. The Dissimilarity index is a

commonly used measure to numerically quantify segregation, us-

ing population level data for a set of areal units that comprise a city

or country. However, the construction of this index usually ignores

the spatial autocorrelation present in the data, and it is also typ-

ically presented without a measure of uncertainty. Therefore we

propose a Bayesian hierarchical modelling approach for estimat-

ing the Dissimilarity index and quantifying its uncertainty, which

utilises a conditional autoregressive model to account for the spa-

tial autocorrelation in the data. This modelling approach is moti-

vated by a study of religious segregation in Northern Ireland, and

allows us to quantify whether the dissimilarity index has exhibited

a substantial change between 2001 and 2011.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the absence of legally enforced segregation, there are social processes at work that cause an un-

even distribution of households by income, race and religion. Some argue (e.g. Cheshire, 2009) that
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self-segregation is no bad thing, because it gives rise to specialised communities generating greater

neighbourhood variety in our cities. In addition, public health researchers (such as Whitley et al.,

2006) have identified evidence of ethnic density effects, suggesting that minority ethnic groups living

close together may have better health than if they integrate more with the majority population. The

counter argument is that segregation may reduce affinity and understanding between social groups,

and thereby undermine social cohesion. Whether or not segregation is rising or falling is therefore an

important empirical question. For example, the publicity surrounding concerns expressed by Trevor

Phillips (the former leader of the Commission for Racial Equality) in 2005 that Britain was sleepwalk-

ing into segregation – becoming more divided by race and religion – reflected wider anxieties about

social fragmentation. However, such claims have been challenged by Simpson (2007) and Simpson

and Finney (2010) and others Jivraj (2012), Catney (2013) and Johnston et al. (2013), who provide ev-

idence that segregation may actually be falling. Parallel debates and concerns have occurred in USA,

Europe and elsewhere, giving rise to a truly voluminous literature on the meaning and measurement

of segregation (Clark, 1986; Glaster, 1988; Ihlanfeldt and Scafidi, 2002;Musterd, 2005; Semyonov and

Glikman, 2009).

Measuring segregation numerically is an inherently difficult task, which is typically undertaken us-

ing population level data from a set of n non-overlapping areal units comprising a city or country. Typ-

ically, segregationmeasures quantify the extent to which two ormore sub-populations are integrated

and live together or are isolated and do not interact. Numerous different indices of segregation have

been proposed in the literature, and the widely cited review by Massey and Denton (1988) in 1988

categorised segregation indices into five different dimensions: (i) evenness—the level of variation in

the relative size of the minority sub-population across the n areal units; (ii) exposure—the extent of

the interaction between the minority and majority sub-populations; (iii) concentration—the relative

physical amount of space occupied by each sub-population; (iv) centralisation—the relative degrees to

which each sub-population are based in the centre of the city; and (v) clustering—the degree to which

each sub-population clusters together in geographically close areal units. Numerous extensions have

been proposed to these indices in the literature since this seminal critique in 1988, including having

more than two sub-populations (Reardon and Firebaugh, 2002; Reardon and O’Sullivan, 2004), and

addressing the modifiable areal unit problem (MAUP, Wong, 2003 and Simpson, 2007).

In this paper we consider the Dissimilarity index (Duncan and Duncan, 1955), which is one of the

most widely computed indices of residential segregation. We use this index purely to motivate the

issues and modelling approaches discussed in this paper, but are in no way attempting to justify

its use over alternative measures such as the Gini index. Rather, our view is given a desire to

compute a particular index, what are the statistical issues that should be addressed when doing so.

Specifically we focus on two such issues, which have largely been ignored by the existing segregation

literature. The first is that the index is a purely descriptive summary statistic, and is typically presented

without a corresponding measure of uncertainty. However, as argued by Leckie et al. (2012) the

quantification of its uncertaintywould enable researchers to determinewhether observed differences

in the Dissimilarity index over space or time correspond to real changes in segregation, or simply the

result of random sampling variation. A small number of papers have attempted to address this issue,

using either a bootstrapping algorithm (Brülhart and Traeger, 2005) or asymptotic theory (Cortese

et al., 1976; Winship, 1977; Inman and Bradley, 1991). However, Mulekar et al. (2008) compared a

number of these asymptotic theory approaches, and concluded that the proposals cannot be replied

upon to yield correct confidence intervals.

The second issue we consider in this paper is the impact of spatial autocorrelation on the construc-

tion of the Dissimilarity index, a problem that to our knowledge is yet to be addressed in this context.

We note that existing research has altered the algebraic form of the dissimilarity index to account for

spatial features such as boundary effects (see Morrill, 1991 and Wong, 1993), but that is not the at-

tempt of this paper. Instead, we consider the standard formula for the Dissimilarity index, and argue

that its estimation and uncertainty quantification should be adjusted to allow for the spatial autocor-

relation in the data. This is because the sample proportions used to compute the index are subject to

sampling variation and other errors, and the true unknown proportions can be better estimated by

using the spatial autocorrelation in the data to facilitate a borrowing of strength in the estimation,

which should yield more reliable inference.
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The application that motivated this paper is religious segregation in Northern Ireland and the

extent to which it has changed between 2001 and 2011, an issue that has received a great deal of

attention recently (see for example Shuttleworth and Lloyd, 2009 and Shuttleworth and Green, 2011).

Specifically, we investigate whether the apparent fall in segregation in Northern Ireland reported

in the Economist (2013) is indicative of a genuine decline in social fragmentation, or whether is it

simply the result of sampling variation caused by randomchurn in the householdmoves. TheNorthern

Ireland data we model in this paper are presented in Section 2, while Section 3 provides background

to urban segregation indices and critiques their limitations from a spatial modelling perspective.

In Section 4 of this paper we propose a solution to the spatial autocorrelation problem based on

a Bayesian hierarchical model, and illustrate how it can be used to produce posterior predictive

distributions and hence estimates and 95% credible intervals for segregation indices such as the

Dissimilarity index. Section 5 quantifies the performance of the Bayesian spatialmodel proposed here,

and compares it to the simple non-spatial estimate currently used. Section 6 presents the results of

our Northern Ireland study, while Section 7 concludes the paper by summarising our key findings and

suggesting future research avenues.

2. Northern Ireland study

Data from the 2001 and 2011 censuses were used to estimate and compare the levels of religious

segregation in Northern Ireland, and were downloaded from the Northern Ireland Neighbourhood

Information Service (NINIS)website. The religion of the head of householdwas recorded in both years.

The responses were divided into different numbers of mutually exclusive categories in each census,

but the category ‘Catholic’ was common to both years of data. The responseswere therefore converted

into the binary categories Catholic/Not Catholic to allow comparability between the censuses. The

number of heads of householdwho identified as Catholic and the total number of heads of households

were reported for the 890 super output area (SOA) that comprise Northern Ireland.

Fig. 1 displays the raw proportion of people in each SOA who are Catholic in 2001 and 2011,

and in both cases the left plot is for Northern Ireland while the right plot zooms in on Belfast. The

sample proportions visually exhibit substantial spatial autocorrelation, with areal units close together

tending to exhibit similar proportions. This is confirmed by a Moran’s I permutation test (Moran,

1950) for spatial autocorrelation based on 100,000 permutations, which yields highly significant I

statistics equal to 0.691 (p-value 0.00001) and 0.719 (p-value 0.00001) for 2001 and 2011 respectively.

The existence of this high spatial autocorrelation suggests that the estimation and uncertainty

quantification of the set of true unknown proportions in each SOA should account for the spatial

autocorrelation in the observed data.

However, Fig. 1 also suggests that the spatial autocorrelation is localised, because there are pairs

of areal units that are geographically adjacent but have very different catholic proportions. These

locations where predominately catholic and protestant populations neighbour each other violate the

assumption of spatial autocorrelation, as the spatial surface of the proportion of catholics exhibits a

step change. These step changes are known as boundaries in the related field of disease mapping (see

for example Lee andMitchell, 2012), and suggest that commonly used global spatial smoothingmodels

would be inappropriate to capture the complex spatial structure in these data. Therefore, in Section 4

we discuss a commonly used global spatial smoothingmodel, and then propose an extension that can

capture both sub-regions of localised smoothness and step changes between different communities.

However, before that we provide a brief critique of the Dissimilarity index in Section 3.

3. Dissimilarity index

Segregation indices in their most basic form are used to summarise the level of segregation or

mixing between two sub-populations, one of which is typically considered to be the minority sub-

population while the other is the majority sub-population. In this paper we focus on the Dissimilarity

index (Duncan and Duncan, 1955), which is the most commonly used index of segregation and is a

measure of the evenness of the distribution of the minority population across a city. We note that the
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Fig. 1. Maps of the sample Catholic proportions for each Super Output Area in Northern Ireland (left column) and Belfast

specifically (right column) for 2001 (top row) and 2011 (bottom row).

methodology we propose could easily be applied to other indices such as the Gini coefficient, but in

the interests of brevity we only focus on one index here. The data relate to a study region that has

been partitioned into n non-overlapping areal units, which for the Northern Ireland application are

SOAs. The data are denoted by Y = (Y1, . . . , Yn) and N = (N1, . . . ,Nn), which respectively denote

the sizes of the minority population and the total population for each of the n areal units. Letting

p = (p1, . . . , pn) denote the true minority proportion in each areal unit, the Dissimilarity index is

given by

D =

n

k=1

Nk|pk − p|

2Np(1 − p)
, (1)

where N =
n

k=1 Nk and p are the total population and minority proportion for the entire study

region. The value of D lies in the interval [0, 1], where 0 represents complete evenness (i.e. pk =
p ∀k) and 1 represents complete segregation where each pk equals zero or one. The unknown true

proportions p are typically estimated by their sample equivalents, that is p̂k = Yk/Nk and p̂ =
(
n

k=1 Yk)/(
n

k=1 Nk). This approach was used to compute D for the Northern Ireland data described

in Section 2, and values of D̂ = 0.5807 (2001) and D̂ = 0.5672 (2011) were obtained. Thus the level

of religious segregation has reduced by 0.014 on the D scale, but it is unclear if this is a statistically

significant decline in segregation over the 10 years or just due to sampling variation in the observed

data (Y,N).
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The existence of sampling variation is clear if the data (Yk,Nk) are minority and total population

counts from a survey, because they only relate to a sample of the total population in each areal unit.

For census data, as in the case of the motivating application, (Yk,Nk) relate to the entire population,

and thus in theory p̂k = pk exactly. However, we argue that it is still appropriate to consider Yk as a

random variable rather than a fixed and known constant, which means that p̂k is only an estimate

of the true unknown pk. This in turn means that D in (1) is also unknown, and that the use of

p̂k = pk is simply method of moments estimation. We distinguish between two different sources

of variation and uncertainty that affect Y. The first is due to error in the computation of Y, which

can come from participants filling out the census incorrectly, processing errors in digitising the paper

census questionnaires, and different people interpreting the census questions in different ways. In the

motivating religious segregation example some people might regard themselves as catholic if they

were brought up as Catholic even though they no longer attend church, whilst others may feel that

regular attendance is a necessary condition.

The second source of variation is temporal sampling variation, which arises because census data

represent a snapshot of the level of segregation on a single day in the year. Thus, if the census was

conducted on a different day then Y would be different due to people continually moving house,

meaning that the true average minority proportions p across the whole year are unknown. Finally,

if two areal units (j, k) exhibit the same true propensity for containing the minority population, then

the observed proportions (p̂j, p̂k) from the census on a single day would almost certainly be different

due to sampling variation. An extended discussion of this point can be found in Leckie et al. (2012). The

simple estimate p̂k based on sample proportions is both the method of moments estimator and the

maximum likelihood estimator under the model Yk ∼ Binomial(Nk, pk), which assumes the data in

each areal unit are independent. Thiswas shownnot to be true for theNorthern Ireland data presented

in Section 2 which are spatially autocorrelated, so in the next section we propose a Bayesian spatial

model for segregation data and use it to compute the posterior predictive distribution of D in (1).

4. Modelling

Spatially autocorrelated areal unit data are typically modelled in a hierarchical Bayesian setting,

with inference based on Markov chain Monte Carlo (McMC) simulation. Conditional autoregressive

(CAR) models are commonly used to model the spatial autocorrelation in these data (see for example

Banerjee et al., 2004 and Wakefield, 2007), and are a special case of a Gaussian Markov Random

Field (GMRF). We consider two distinct models here, the first assumes the true underlying probability

surface p is globally spatially smooth, while the second assumes local spatial smoothness by allowing

geographically adjacent areal units to have very similar or very different minority proportions. In

both cases an estimate and a 95% credible interval for the Dissimilarity index can be obtained, by

computing the posterior predictive distribution of D. Both models can be implemented using the

CARBayes package (Lee, 2013) in the R software environment, and an illustration on simulated data

is given in the supplementary material (see Appendix A).

4.1. A globally smooth model for p = (p1, . . . , pn)

The global smoothing model we propose for these data is a binomial generalised linear mixed

model (GLMM), where the set of random effects are spatially autocorrelated. A binomial sampling

model is used here for consistency with existing research (Goldstein and Noden, 2003; Mulekar et al.,

2008; Leckie et al., 2012), and the full model is given by:

Yk ∼ Binomial(Nk, pk), (2)

ln


pk

1 − pk


= β0 + φk,

φ ∼ N(0, τ 2Q (ρ,W )−1),

β0 ∼ N (0, 100) ,
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τ 2 ∼ Inverse-Gamma(a, b),

ρ ∼ Uniform(0, 1).

The random effects φ = (φ1, . . . , φn) are included in (2) to model the spatial autocorrelation in

the data, and are represented by a CAR prior distribution. CAR priors induce spatial autocorrelation

by means of a binary n × n adjacency matrix W = (wki), which is based on the contiguity structure

of the n areal units. Element wki = 1 if and only if areal unit k shares a border with areal unit i,

otherwise wki = 0, and also wkk = 0 ∀k. Based on this proximity matrix CAR priors take the form

of a zero-mean multivariate Gaussian distribution, where spatial autocorrelation is induced via the

precision matrix that depends on W . The first CAR prior proposed in the literature was the intrinsic

model (Besag et al., 1991) for strong spatial autocorrelation, although recently it has been shown to

induce too much spatial smoothing in certain circumstances. Therefore, the model we use here was

proposed by Leroux et al. (1999) and allows the strength of the autocorrelation to be estimated from

the data. The precision matrix for this model is given by Q (ρ,W ) = ρ(diag(W1) − W ) + (1 − ρ)I ,
where I is an n×n identitymatrix, 1 is an n×1 vector of ones, and diag(W1) is a diagonal matrix with

elements equal to the row sums of W . This matrix is proper if ρ ∈ [0, 1), and the spatial structure

amongst φ can be observed more clearly from the univariate full conditional distributions:

φk|φ−k ∼ N




ρ
n

i=1

wkiφi

ρ
n

i=1

wki + 1 − ρ

,
τ 2

ρ
n

i=1

wki + 1 − ρ


 . (3)

In the above equation, φ−k denotes the vector of random effects except for φk. From (3) it is clear

that ρ controls the spatial autocorrelation structure, with ρ = 1 corresponding to the intrinsic CAR

prior proposed by Besag et al. (1991) for strong spatial autocorrelation, while ρ = 0 corresponds to

independent randomeffectswith constantmean andvariance. The remainingparameters are assigned

weakly informative uniform, inverse-gamma or Gaussian priors, so that the data play the dominant

role in determining their values. The prior variance is assigned an inverse-gamma (a = 0.001, b =
0.001) prior, and a sensitivity analysis in Section 6 shows that changing these values has no impact

on the results.

The posterior predictive distribution for the Dissimilarity index D given by (1) can be computed

from this model using M McMC samples from the posterior distribution {2(j)}Mj=1, where 2(j) =

(φ(j), β
(j)

0 , τ 2(j)
, ρ(j)). These posterior samples are used to construct samples p(j) = (p

(j)

1 , . . . , p
(j)
n ),

using the inverse logit transform p
(j)

k = exp(β
(j)

0 + φ
(j)

k )/[1 + exp(β
(j)

0 + φ
(j)

k )]. Using these samples

the jth sample from the posterior predictive distribution of D is constructed as

D(j) =

n

k=1

Nk|p
(j)

k − p(j)|

2Np(j)(1 − p(j))
for j = 1, . . . ,M, (4)

where p(j) = (
n

k=1 Nkp
(j)

k )/(
n

k=1 Nk). Thus D can be estimated by the median of {D(1), . . . ,D(M)},
while a 95% credible interval is obtained from the [2.5, 97.5] percentiles of this distribution. We note

that (1) and (4) utilise the same algebraic form for computingD, which is an a-spatial measure applied

to spatial data. Here, (4) allows for the spatial autocorrelation in the data when estimating p, while

the standard approach of using the sample proportions to estimate p naively assumes independence.

4.2. A locally smooth model for p = (p1, . . . , pn)

Model (2) assumes the true proportions p exhibit a single global level of spatial smoothness, which

is controlled by ρ. However, as illustrated by Fig. 1 the Northern Ireland data exhibit localised rather

than global smoothness, with some pairs of geographically adjacent areal units exhibiting very similar

sample proportionswhile others exhibit very different values. The global smoothingmodel is unlikely

to be flexible enough to capture this localised autocorrelation, so here we propose an alternative
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model which allows for either a smooth transition or a large jump in the true proportions between

adjacent areal units. A number of different approaches have been proposed for extending model (2)

to allow for localised spatial smoothness, including spatially varying variances (Brewer and Nolan,

2007), treating elements in W as additional parameters to be updated (Lee and Mitchell, 2013), and

augmenting the CAR model with a non-smooth component (Lawson and Clark, 2002).

Here we follow the latter general approach, and model the probability surface p as locally smooth

by combining the randomeffects in (2)with a piecewise constant intercept surface that allows sudden

jumps in the spatial surface between geographically adjacent areal units. This piecewise constant

intercept term has q distinct values β = (β1, . . . , βq), and if adjacent units (k, i) are in different

groups their probabilities (pk, pi) may exhibit very different values. The model is given by:

Yk ∼ Binomial(Nk, pk), (5)

ln


pk

1 − pk


= βZk + φk,

Zk ∼ Multinomial(1; 1/q, . . . , 1/q),

φ ∼ N(0, τ 2Q (ρ,W )−1),

βi ∼ Uniform(βi−1, βi+1) for i = 1, . . . , q,

τ 2 ∼ Inverse-Gamma(a, b),

ρ ∼ Uniform(0, 1),

where the CAR model is as above and β0 = −∞ and βq+1 = ∞. The vector of q area specific in-

tercepts β has been constrained so that β1 < β2 < · · · < βq, which prevents the label switching

problem common in mixture models. The vector Z = (Z1, . . . , Zn) comprises a set of group or cluster

indicators, where each indicator Zk ∈ {1, . . . , q}. A multinomial prior is specified for each indicator

with equal probabilities, which specifies our prior ignorance as P(Zk = j) = 1/q for all areal units k for
j = 1, . . . , q. In terms of notation the number 1 before the semi-colon in themultinomialmodel above

indicates there is only one ‘trial’ in the multinomial distribution, as each areal unit can only have one

intercept term. We note that we do not put any spatial smoothing constraints on the indicator vector

Z, because from the data in Fig. 1 it is clear that similar minority proportions occur at opposite ends of

the study region. The piecewise constant intercept surface is thus inherently non-spatial, while spatial

autocorrelation is accounted for by the CAR prior for φ.
The model is dependent on q, the number of different groups or clusters in the piecewise constant

intercept term, which is assumed known. This is clearly unrealistic, and one approach would be to

use a reversible jump McMC algorithm (Green, 1995) to choose qwithin the model fitting procedure.

However, such algorithms can be slow to converge, so here we take the model comparison approach

adopted by Choi et al. (2012). Specifically, we fit the model with values of q = 1, . . . , 5, where q = 1

corresponds to the global spatial smoothing model with a common intercept term given by (2). Fol-

lowing Choi et al. (2012), we basemodel selection on the conditional predictive ordinate (CPO), which

for observation k is given by

CPOk = f (Yk|Y−k) =



2

f (Yk|2)f (2|Y−k)d2,

where Y−k denotes all data points except Yk and 2 = (β, Z, φ, τ 2, ρ) denotes all model parameters.

Following Congdon (2005) this can be approximated based onM McMC samples as

CPOk =


1

M

M

j=1

1

f (Yk|2
(j))

−1

,

where 2(j) is the jth posterior sample. Then a summary of the CPO for all n data points is the Log

Marginal Predictive Likelihood (LMPL), which is given by

LMPL =

n

k=1

ln(CPOk),
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and ismaximised in this paper to select q. Once the best value of q has been selected the posterior pre-

dictive distribution of the Dissimilarity index given by (4) can be computed as described in Section 4.1,

where under this model p
(j)

k = exp(β
(j)

Z
(j)
k

+ φ
(j)

k )/[1 + exp(β
(j)

Z
(j)
k

+ φ
(j)

k )].

5. Simulation study

This section presents a simulation study, which compares the three approaches described in

Sections 3 and 4 for estimating the Dissimilarity index and quantifying its uncertainty via a 95%

uncertainty interval. Model M1 is the standard approach for constructing D, which estimates pk in

(1) by p̂k = Yk/Nk, the simple method of moments estimator. A 95% confidence interval is computed

for this estimate ofD using a bootstrapping approach, similar to that proposed by Brülhart and Traeger

(2005). The interval is constructed by first creating 10,000 pseudo data sets of size n, by resampling the

n data points (Yk,Nk)with replacement. An estimate of the dissimilarity index D is then computed for

each resampled data set, and a 95% confidence interval is constructed by calculating the 2.5 and 97.5

percentiles of the set of D values. Model M2 is the global spatial smoothing model given by (2), and

constructs a point estimate and a 95% credible interval for D from its posterior predictive distribution

as outlined in Section 4.1. Finally, model M3 uses the same approach to estimation as model M2,

except that the localised spatial smoothingmodel given by (5) is used in place of the global smoothing

model (2).

5.1. Data generation and study design

Simulated segregation data are generated for the set of n = 890 SOAs that comprise Northern

Ireland, which is the study region for the motivating application described in Section 2. The true

proportions of the minority populations in each areal unit (p1, . . . , pn) are generated as described

below, and the total population sizes (N1, . . . ,Nn) are assumed known but are varied in this study

to determine their impact on model performance. From these true proportions and population totals

binomial sampling is used to generate the simulated counts (Y1, . . . , Yn), which mimics the realistic

situation where the sample proportions are subject to sampling variation. Five hundred simulated

data sets are generated under four different scenarios, each of which are summarised below.

Scenario 1—low segregation with little spatial variation: The trueminority proportions across the

n areal units are equal to 0.15 on average and exhibit low variation across the region. The

logit transform of the proportions are generated from a multivariate Gaussian distribution

with a mean of −1.73, a variance of 0.2 and an exponential correlation matrix with decay

parameter 0.02.

Scenario 2—low segregation with moderate spatial variation: The true minority proportions acr-

oss the n areal units are equal to 0.15 on average and exhibit moderate variation across the

region. The logit transform of the proportions are generated from a multivariate Gaussian

distribution with a mean of −1.73, a variance of 0.8 and an exponential correlation matrix

with decay parameter 0.04.

Scenario 3—high segregation with little spatial variation: The trueminority proportions are equal

to 0.15 in 56% of the region and 0.85 in 44% of the region on average, and exhibit lowvariation

across the region. The spatial structure for this segregation follows that observed in the

real data analysed in Section 6, and is the two-group cluster structure observed for 2011

in Fig. 3. The logit transform of the proportions are generated from a multivariate Gaussian

distribution with a mean of −1.73 (where pk = 0.15) or 1.75 (where pk = 0.85), a standard

deviation of 0.2 and an exponential correlation matrix with decay parameter 0.01.

Scenario 4—high segregation with moderate spatial variation: The true minority proportions are

equal to 0.15 in 56% of the region and 0.85 in 44% of the region on average, and exhibit

moderate variation across the region. In common with scenario 3 the spatial structure is

based on the template given in Fig. 3. The logit transform of the proportions are generated

from a multivariate Gaussian distribution with a mean of −1.73 (where pk = 0.15) or 1.75
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(where pk = 0.85), a standard deviation of 0.8 and an exponential correlation matrix with

decay parameter 0.04.

Scenarios 1 and 2 have true proportion surfaces that are equal to 0.15 on average in every areal

unit, which corresponds to an even distribution of the minority population. The difference between

these scenarios is that the level of spatial variation around that 0.15 average proportion within each

simulated data set is larger under scenario 2 than under scenario 1, but in both cases the proportion

surface evolves smoothly over space. In contrast, scenarios 3 and 4 represent segregated communities,

where the true averageminority proportions are 0.15 in 56% of areal units and 0.85 in 44% of the units.

Again, the difference between these scenarios is in the level of spatial variation around these average

proportions, which is larger for scenario 4 compared with scenario 3. Data are generated under these

scenarios for values ofNk of 100, 500 and 2500, to see howwell the estimates of theDissimilarity index

perform for data with small, medium and large population sizes. The bootstrapped 95% confidence

intervals computed to accompany model M1 are based on 10,000 bootstrap samples, while for the

Bayesian models inference is based on 10,000 McMC samples, which were collected after a burn-in

period of 10,000 samples. The local smoothing model is applied to the data with q between 2 and 5

(q = 1 corresponds to the global smoothing model), and the final model is chosen by minimising the

LMPL.

5.2. Results

The accuracy with which D is estimated is quantified by the root mean square errors (RMSE) from

the three models, while the appropriateness of the 95% uncertainty intervals are quantified by their

coverage probabilities and average widths. These results are displayed in Table 1, where the top panel

displays the root mean square error for D (as a percentage of its true value), the middle panel displays

the coverage probabilities for the 95% uncertainty intervals, while the bottom panel summarises the

meanwidths of the uncertainty intervals. The table shows thatmodelM1performs poorly throughout,

as its RMSE values are either much worse or about the same as those from model M3, while its

95% uncertainty intervals are never close to attaining their nominal coverage levels of 95%. Its RMSE

value is up to 7 times larger than that of model M3 when the population size is small (Nk = 100),

which is because the sample proportions used to estimate (1) are based on the least data. In contrast,

the spatial models suffer less from this problem, as they utilise the autocorrelation in the data to

borrow strength over neighbouring data points in the estimation. As Nk increases the performance of

modelM1 improves in terms of RMSE, and has the same values as modelM3. However, the coverage

probabilities from the data re-sampling bootstrap inModelM1 are less than 35% for 3 combinations of

scenario and population size and greater than 99% for the remaining 9 cases, which suggests that this

is not an adequate approach for constructing uncertainty intervals in this context. The bottompanel of

the table shows that the bootstrapped uncertainty intervals from model M1 are nearly always much

wider than those frommodelsM2 andM3, with intervals that are up to 4 times wider. This is because

unlikeM1, modelsM2 andM3 spatially smooth the proportion surface, which reduces the amount of

variability in its estimate and hence in (1).

In contrast, the localised spatial smoothing model M3 performs consistently well across all sce-

narios, and is the model of choice for constructing point estimates and 95% uncertainty intervals for

D. It has RMSE values that are lower or the same as those from the other models, while its coverage

probabilities are close to their nominal levels ranging between 85.2% and 97.6%. For the latter there

is a slight drop in performance when Nk is small and the data exhibit little spatial variation (scenario

1), as the coverage probabilities drop slightly below 90%. This is likely due to the small sample sizes

and the fact that the spatial model is trying to model spatial variation in the data when very little is

present. When the true proportion surface is spatially smooth (scenarios 1 and 2) modelsM2 andM3

provide similar results, which is not surprising as both can capture spatially smooth variation. How-

ever, when the true proportion surface exhibits segregation (scenarios 3 and 4) then modelM3 vastly

outperformsM2, as the latter is trying to smooth over the spatial discontinuities in the true proportion

surface which is not appropriate. This results in coverage probabilities between 0 and 90% and RMSE
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Table 1

Results of the simulation study for all three models M1, M2 and M3. The top panel displays the root mean square error for D

(as a percentage of its true value), the middle panel displays the coverages for the 95% uncertainty intervals, while the bottom

panel summarises the mean widths of the uncertainty intervals.

Scenario N = 100 N = 500 N = 2500

M1 M2 M3 M1 M2 M3 M1 M2 M3

RMSE (%)

1 32.82 4.43 4.43 7.62 1.85 1.85 1.69 0.76 0.76

2 6.73 1.64 1.64 1.52 0.66 0.68 0.38 0.29 0.33

3 0.33 1.62 0.33 0.16 0.38 0.16 0.07 0.09 0.07

4 0.46 1.24 0.44 0.16 0.28 0.16 0.07 0.09 0.08

Coverage (%)

1 0.2 85.2 85.2 31.4 86.8 86.8 99.4 92.2 92.2

2 33.2 89.4 89.4 100 93.4 93.0 100 95.6 91.4

3 100 0.0 96.5 100 42.4 94.1 100 85.9 95.3

4 100 20.0 92.4 100 73.5 97.6 100 90.0 94.1

Interval width

1 0.017 0.017 0.017 0.014 0.007 0.007 0.014 0.003 0.003

2 0.029 0.015 0.015 0.028 0.007 0.007 0.027 0.003 0.003

3 0.021 0.010 0.009 0.018 0.004 0.004 0.017 0.002 0.002

4 0.030 0.010 0.010 0.030 0.004 0.005 0.029 0.002 0.002

values that are up to 5 times larger than those from M3. In contrast model M3 does not suffer from

these problems, as the piecewise constant intercept term allows for neighbouring areas to have very

different estimated proportions. Additionally, model M2 performs worse thanM1 in these scenarios,

which is because the latter does not make inappropriate global smoothing assumptions on the true

proportion surface. An extension to this study with the proportion surfaces having 3 (low, medium

and high) rather than 1 (low as in scenarios 1 and 2) or 2 (low and high as in scenarios 3 and 4) distinct

catholic proportions is presented in the supplementary material (see Appendix A), and the results are

similar to the two group case presented here.

Finally, the LMPL statistic chose the correct value of q in modelM3 for between 92.2% and 100% of

the simulated data sets in 9 out of the 12 combinations of scenario and population size. However, it

struggled to choose the correct value of q when the population size is large (Nk = 2500) or there is

moderate levels of spatial variation in the proportion surface (Scenarios 2 and4). In these cases it chose

q correctly for between 27% and 66.8% of simulated data sets, and always chose too many rather than

too few groups (clusters). These deficiencies in the LMPL occurred when the variation in the spatial

proportion surfaces was largest, and it is thus not surprising that it choose models with overly large

values of q. However, in these cases the estimation of D and the quantification of its uncertainty were

not affected. Similar performance of the LMPL statistic was observed in the three group simulation

case in the supplementary material (see Appendix A).

6. Northern Ireland religious segregation study

We now present the results of applying models M1, M2 and M3 to the Northern Ireland religious

segregation study described in Section 2 that motivated this paper.

6.1. Estimation and inference for D

Estimates and 95% uncertainty intervals for the Dissimilarity index from all three models are

presented in Table 2, for both 2001 and 2011. The table shows that for model M3 the LMPL statistic

selects q = 2 groups in both 2001 and 2011, but that the estimates and 95% credible intervals for

D are similar for q = 2, . . . , 5 and also for model M2 which corresponds to q = 1. The estimates

of D from model M1 and the two spatial models are almost identical in 2011 but differ slightly in

2001, with the latter having D̂ = 0.5807 from M1 and D̂ = 0.6022 from M3. These similarities in
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Table 2

Estimates and uncertainty intervals for the Dissimilarity index D from models M1, M2 and M3. In addition, the log marginal

predictive likelihood (LMPL) is presented as a model comparison tool for the Bayesian spatial models.

Model 2001 data 2011 data

LMPL D LMPL D

M1 – 0.5807 (0.5594, 0.6002) – 0.5672 (0.5470, 0.5856)

M2-q = 1 −4289.5 0.6020 (0.6009, 0.6031) −4417.0 0.5669 (0.5658, 0.5680)

M3-q = 2 −4287.1 0.6022 (0.6010, 0.6034) −4414.1 0.5673 (0.5658, 0.5688)

M3-q = 3 −4306.3 0.6020 (0.6009, 0.6031) −4416.4 0.5670 (0.5658, 0.5682)

M3-q = 4 −4304.5 0.6020 (0.6009, 0.6032) −4426.1 0.5672 (0.5660, 0.5685)

M3-q = 5 −4298.5 0.6020 (0.6009, 0.6031) −4431.6 0.5669 (0.5657, 0.5681)

point estimation were also seen in the simulation study, where models M1 and M3 produced similar

RMSE values for large and segregated populations. The 95% credible intervals from the Bayesian spatial

models are much narrower than the bootstrapped 95% confidence intervals, a result that was also

observed for the simulated data. The simulation study showed that the former are more likely to

have the correct nominal coverage levels, while the latter are likely to be too conservative. Based

on this observation and model M3, religious segregation in Northern Ireland has undergone a small

but significant decline between 2001 and 2011, as the estimates of D are 0.6022 (2001) and 0.5672

(2011) and the corresponding 95% credible intervals do not overlap.

6.2. Cluster structure in the data

The piecewise constant intercept (cluster) structures (β̂1, . . . , β̂q) estimated by model M3 for

q = 2, . . . , 5 are displayed in Fig. 2, where the results are based on posterior medians. The figure

shows density estimates for the estimated proportion of people who are Catholic in each group, and

the left column is for 2001while the right column is for 2011. The number of areal units in each group

is displayed in the top right of each figure, where the groups are numbered from left to right. The

figure shows that the posterior densities for the groups rarely overlap, and when q = 2 the areal

units are partitioned into a low Catholic proportion group and amedium to high group. As q increases

the lowest Catholic proportion group always has the smallest range of values, while the groups in the

middle of the interval are typically the widest. As the number of groups increases they become more

unimodal, and with a few exceptions (such as the 5 group model in 2001) typically contain similar

numbers of observations.

Fig. 3 displays the spatial pattern in the estimated group structure for q = 2 for both 2001 and

2011, which was the structure chosen to bemost appropriate by the LMPL for both years. In the figure

the grey areas relate to the medium to high proportion Catholic areas, while the white areas are low

proportion Catholic areas. The figure shows that the groups are spatially structured, and follow the

general pattern seen in the data in Fig. 1. We note that model M3 does not enforce the groups to be

spatially structured, but does obviously allow this to occur. The spatial patterns are similar for both

years, as 93% of Super Output Areas are classified in the same group in both years. The number of

areas classified as having medium to high Catholic proportions has dropped from 50.1% in 2001 to

43.9% in 2011, which is a result of the differing thresholds shown in Fig. 2 rather than a decrease

in the proportion of Catholics between the two years. In fact the mean proportion of Catholics has

increased from 39% in 2001 to 44% in 2011.

6.3. Sensitivity analyses

A sensitivity analysis was conducted to assess the robustness of the results, by changing the

Inverse-Gamma (a = 0.001, b = 0.001) prior distribution specified for the random effects variance

τ 2. Models were fitted with (i) a = 0.01, b = 0.01, (ii) a = 0.1, b = 0.1, (iii) a = 0.5, b = 0.0005
and (iv) f (τ ) ∝ 1, and the estimates and 95% credible intervals for the Dissimilarity index changed by

less than 0.0001.
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Fig. 2. Density estimates of the group structure estimated by model M3 for 2001 (left) and 2011 (right) for q = 2, . . . , 5. The

number of areal units in each group is also displayed.
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Fig. 3. Maps of the estimated cluster structure frommodelM3with q = 2 for 2001 and 2011 for Northern Ireland (left column)

and Belfast specifically (right column). The grey areas are medium to high proportion of Catholic areas while the white ones

have low Catholic proportions.

7. Discussion

The measurement of residential segregation has been an active research topic since the 1950s,

and was born out of the desire to quantify the level of racial segregation in cities in USA. The data

used for quantifying segregation are inherently spatial, even if the Dissimilarity index commonly

used to quantify segregation is an a-spatial measure. To our knowledge this paper is the first to allow

for spatial autocorrelation in the data when estimating the true proportion surface, upon which the

Dissimilarity index is based.We note that other authors have adjusted the Dissimilarity index to allow

for the spatial nature of the data (see Morrill, 1991 and Wong, 1993), but here we have used the

standard formulation and argued that it is the estimation of the proportion surface rather than the

index that should be adjusted to account for spatial autocorrelation. This is also one of the few papers

to address the issue of uncertainty quantification for the Dissimilarity index, and builds on pioneering

work by Mulekar et al. (2008) and Leckie et al. (2012) in this regard.

The simulation study in Section 4 demonstrates that a simple bootstrap approach to calculating a

95% uncertainty interval for the Dissimilarity index is completely inappropriate, and that a locally

smooth Bayesian hierarchical modelling approach yields credible intervals which generally have

close to their nominal coverage levels. This approach also leads to either improved or identical point

estimation for D in terms of RMSE, with the biggest gains being made when the population in each
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areal unit is small. This suggests that the localised smoothing model M3 is the method of choice for

estimatingD and quantifying its uncertainty, and is likely to be applicable to other segregation indices

such as the Gini index. Finally, the simulation study has shown that modelM3 is robust to the number

of groups (q) specified, asmodel performance did not retardwhen the LMPL statistic choose thewrong

value. However, this does suggest that if the aim of the study was cluster detection, then the LMPL

statistic will not be a reliable tool for identifying the correct number of clusters.

The results from the Northern Ireland religious segregation study presented in Sections 2 and 6

show a small but clear decline in segregation between 2001 and 2011, as the Dissimilarity index

has reduced from 0.6022 in 2001 to 0.5673 in 2011, and the corresponding 95% credible intervals

frommodelM3 do not overlap. This confirms the potentially important finding reported in the media

that segregation has indeed fallen in Belfast and the surrounding areas, which is likely to be down to

a combination of factors. Two possibilities in this regard are the continuation of the peace process

and the in-migration of Polish Catholic families locating in Protestant areas of Belfast, although a

full analysis of the causes are beyond the scope of the current paper. Nevertheless, our findings will

provide some reassurance for those who view segregation as indicative of social fragmentation.

Thus there are three key conclusions resulting from our paper. The first is that the creation of

uncertainty intervals are a cornerstone of statistical inference and should be routinely constructed for

segregation measures, which at present they are not. This is an important omission because of the

uncertainty implicit in estimates of dissimilarity arising from sampling variation caused by random

churn in household moves and from potential errors in data recording and coding. Secondly, the

proportion surface upon which the dissimilarity index is based should be estimated allowing for the

spatial autocorrelation present in the data, rather than using simple method of moments estimation

based on the naïve assumption of independence. This was evident in the Northern Ireland data used in

the paper for whichMoran’s I tests confirmed the presence of spatial autocorrelation. The third is that

the simulation study presented in the paper shows that the spatial model M3 performs consistently

well in terms of both point estimation (RMSE) and uncertainty quantification (coverage probabilities)

across a range of scenarios, whereas the simpler approach commonly used does not. Thus the extra

computational cost of spatial models is clearly worth the effort here. This is the first paper to our

knowledge that uses such spatial modelling techniques in this context, andwill hopefully lead to such

methods being used in future.

For us we are working on a number of future developments, the first of which is to see whether

the Bayesian spatial modelling paradigm proposed here can be applied to other segregationmeasures

such as the Gini index. Secondly, the models developed in this paper were implemented in the

R programming environment (R Core Team, 2013), which is not easy to use for non-statisticians.

Therefore we plan to develop software with a user friendly web-based interface to allow social

scientists to apply ourmethods to their owndata. Finally, althoughnot relevant for the data considered

here, many segregation data sets are available for multiple consecutive years, which lends itself to

extending the statistical models developed here to the spatio-temporal domain.
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