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Abstract 
 
 
Osteoprotegerin (OPG) is a secreted protein essential in bone turnover because of its role as a 

decoy receptor for the Receptor Activator of Nuclear Factor kB ligand (RANKL) in the 

osteoclasts, inhibiting their differentiation. However, there are additional ligands of OPG that 

confer multiple roles. Thus, OPG can promote cell survival, cell proliferation and facilitate 

migration through its binding to TNF-related apoptosis inducing ligand (TRAIL), 

glycosaminoglycans and proteoglycans. A large number of in vitro, in vivo and clinical 

studies provide evidences of the implication of OPG in vascular, bone, immune and tumor 

biology. This review aims to give an overview of the different ligands of OPG and their role 

in its biology.  
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Introduction 

The Tumor Necrosis Factor (TNF)/TNF receptor superfamily is composed by more than 40 

members, and controls a lot of genes essential for biological functions such as cellular 

differentiation, survival and death. Additionally TNF superfamily coordinates the 

development of numerous organs (Pfeffer 2003; Ware 2008). Among this family, 

Osteoprotegerin (OPG or TNFRSF11B according the international nomenclature) is soluble 

glycoprotein that exists as both a 60kDa monomer and a 120 kDa disulfide-linked dimer. 

OPG was originally characterized by two separate groups in 1997. Boyle and coworkers 

generated transgenic mice overexpressing various TNF receptor related cDNAs. A lineage of 

mice which over-expressed one specific cDNA developed a severe osteopetrosis due to a lack 

of osteoclasts. The protein encoded by this cDNA was therefore named osteoprotegerin, 

because it protected the bone from excessive resorption (Simonet et al. 1997). The second 

group in Japan reported a factor which was able to inhibit osteoclastogenesis (Yasuda et al. 

1998). However, it was not until 1998 that both proteins were found to be equivalent. 

Structurally, the mature form of OPG consists of 380 amino acids containing seven 

domains (Theoleyre et al. 2006; Baud'huin et al. 2007): four cysteine-rich N-terminal 

domains (domains 1-4), two death domain homologous regions (domains 5 and 6) and a C-

terminal heparin-binding domain (domain 7). Domains 1-4 are structurally related to the TNF 

receptor family and are sufficient to abolish osteoclast differentiation and domains 5 and 6 

can mediate a cytotoxic signal when they are included in a chimeric protein OPG-Fas 

(Yamaguchi et al. 1998) but their physiological functions remain unclear. The last domain 

possesses a heparin binding domain. Similar heparin binding domains has been observed in 

the structure of many other proteins such as fibroblast growth factors and their receptors in 

which it plays numerous key functions (activation, autophosphorylation, etc) (Eswarakumar et 

al. 2005; Guerrini et al. 2007). Additionally the presence of Cys-400 in the C-terminal 
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portionwithin domain 7 is essential for OPG dimerization with the formation of disulfide 

bound (Yamaguchi et al. 1998). 

As OPG belongs to the TNF receptor family, it suggests that OPG has almost one 

ligand. The historical partner of OPG is RANKL which was identified few months following 

the description of OPG by the two same groups (Lacey et al. 1998; Yasuda et al. 1998). 

RANKL was initially discovered by two groups working on TNF-related cytokines thanks by 

its ability to sustain dendritic cell survival (Anderson et al. 1997; Wong et al. 1997). OPG is 

therefore a decoy receptor for the pro-osteoclastic cytokine RANKL (Theoleyre et al. 2004; 

Baud'huin et al. 2007) with a high affinity equivalent to RANKL for its receptor RANK 

(TNFRSF11A) (Table 1). The binding of OPG to RANKL prevents the interaction of 

RANKL for RANK expressed on the cell surface of osteoclast precursors, and thus inhibits 

the formation of osteoclasts (Boyle et al. 2003). Since then, numerous ligands for OPG have 

been identified: TRAIL (Emery et al. 1998), syndecan-1 (Standal et al. 2002), 

glycosaminoglycans (GAGs) (Theoleyre et al. 2006; Lamoureux et al. 2009), von Willebrand 

Factor (Zannettino et al. 2005) and Factor VIII-von Willebrand Factor complex (Baud'huin et 

al. 2009) (Table 1). This review focuses on the multiple biological functions achieved by 

OPG through the binding to its various ligands. 
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RANKL and TRAIL: ligands from the TNF family 

RANKL is a transmembrane glycoprotein expressed on the surface of osteoblasts, stromal 

cells and T cells, however this molecule can be cleaved by proteases to give soluble RANKL 

with the same biological activity. The proteolytic cleavage is carried out by matrix 

metalloproteases or ADAMs (Georges et al. 2009). In bone, RANKL binds to its specific 

receptor RANK which is expressed on the membrane of osteoclast progenitors. 

Stoichiometrically, RANKL forms an homotrimeric protein and interacts with three 

monomers of RANK linked by disulfide bounds (Theoleyre et al. 2006). The binding of 

RANK to RANKL leads to the activation of several pathways involved in the differentiation, 

activation and survival of osteoclast. The RANK/RANKL is thus mandatory for the formation 

of mature osteoclasts. It has been shown that mice lacking Rankl did not have osteoclasts and 

suffered from severe osteopetrosis (Kong et al. 1999). 

The osteoclastogenesis is a tightly regulated process with the modulation of 

RANK/RANKL signaling by OPG which acts as a decoy receptor for RANKL. In bone, OPG 

is secreted by stromal cells and other cell types including osteoblastic lineage cells. The 

evidence showing the importance of OPG in bone biology was provided by studies based on 

genetic experiments. OPG-overexpressing mice exhibit severe osteopetrosis and a reduced 

number of mature osteoclasts (Simonet et al. 1997) on the other hand OPG-knockout mice are 

osteoporotic with a decreased bone density and a high incidence of fractures and bone 

deformities (Bucay et al. 1998; Mizuno et al. 1998). The interaction between RANKL and 

OPG consists of two anchoring points on OPG for RANKL by amino acids 68, 69, 82, and 

amino acids 88–91, 111, and 116–120 (Figure 1) (Baud'huin et al. 2009). However, it has 

been shown that the homodimeric form of OPG exhibits a much greater higher affinity for the 

homotrimeric form of RANKL (Schneeweis et al. 2005; Theoleyre et al. 2006). More 

recently, the crystal structure of the interaction between RANKL and OPG was described 
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(Luan et al. 2012). In this study, the authors showed that OPG (Domains 1 to 4) is able to 

interact with RANKL in a 1:1 ratio, and blocks the accessibilities of important biding sites of 

RANKL to RANK. 

This competitive interaction within the triad RANK/RANKL/OPG suggests that OPG 

can have also an effect in tissues other than bone where RANKL is active. In this context, the 

RANKL-RANK system influences processes in the immune system. Both RANK-/- and 

RANKL -/- mice have a defect in the maturation of T and B cells suggesting by the phenotype 

of implicating these molecules in lymphocyte and lymph node development (Dougall et al. 

1999; Kong et al. 1999). From this perspective, Yun and coworkers showed that OPG 

regulates B cell maturation and development; population of B cells was indeed increased in 

OPG-null mice. Moreover, the dendritic cells generated from these mice have an increased 

ability to stimulate T cells (Yun et al. 2001). This study suggests that OPG has a pivotal role 

in the immune response and can mediate cell survival. 

This latter function is reinforced by the fact that OPG is able to bind to TNF-related 

apoptosis inducing ligand (TRAIL) and thus block TRAIL-induced apoptosis of Jurkat cells 

(Emery et al. 1998). TRAIL is a member of the TNF superfamily produced by immune cells 

within the tumor environment. TRAIL binds to its receptors as a homotrimer form, this 

trimeric form being biologically much more active than the monomeric one (Wiley et al. 

1995). There are five TRAIL receptors described so far; two of these receptors (DR4 and 

DR5) contain death domain motifs and promote apoptosis. On the other hand, DcR1, DcR2 

and OPG are unable to induce apoptosis and function as decoy receptors. OPG is binding to 

TRAIL with a comparable affinity to that of RANKL (Table 1) and the binding sites involve 

on OPG residues (Figure 1). The direct biological consequence of the interaction of OPG with 

TRAIL is the inhibition of TRAIL-induced apoptosis in numerous cancer cells (Holen et al. 

2002; Shipman et al. 2003; Neville-Webbe et al. 2004). This mechanism could be important 
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in the release from cell death, as suggested by the production of OPG by tumor cells (Holen et 

al. 2002; Heymann 2012). 

Additional studies have been performed using bone marrow stromal cells (BMSCs) 

derived from either breast or prostate cancer patients. In both cancer types, BMSCs were 

found to produce sufficient levels of OPG to protect tumor cells from TRAIL-induced 

apoptosis. This suggests that bone-derived OPG may be involved in promoting survival of 

these tumor cell types within the bone microenvironment (Neville-Webbe et al. 2004; 

Nyambo et al. 2004). In this context, a peptide-mimetic of OPG (OP3-4) was developed to 

treat bone disease in multiple myeloma and keep the TRAIL activity. OP3-4 was able to 

inhibit osteoclastogenesis of murine blood mononuclear cells but did not inhibit TRAIL-

induced apoptosis of multiple myeloma cells (Heath et al. 2007). Moreover, recent in vivo 

experiment showed that anticancer efficacy of recombinant soluble Apo2L/TRAIL is retained 

in the bone microenvironment where biologically active OPG may be present at high 

concentrations (Zinonos et al. 2011). Taken together, OPG may have a dual function in 

tumor, promoting cancer cell survival through its binding to TRAIL and on the other hand 

limiting the tumor growth in cancer induced bone disease due to the inhibition of RANKL. 

Thus, in a model of osteosarcoma, OPG administered by gene transfer reduced tumor 

incidence and local tumor growth (Lamoureux et al. 2007). The mechanism suggested 

mentioned that OPG exerts indirect inhibitory effect on tumor progression through the 

inhibition of RANKL whose production is enhanced in bone tumor environment. 

The ability of OPG to bind both to RANKL and TRAIL gives to him the potency to 

regulate bone biology and tumor biology through direct effect on osteoclasts or cancer cells. 

However, in vascular biology, these three partners play a pivotal role which has numerous 

outcomes in the physiopathology of vascular system. OPG is largely expressed in the vascular 

tissues including the heart, arteries and veins, and is constitutively secreted by endothelial 
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cells and vascular smooth muscle cells (Chikatsu et al. 2002; Collin-Osdoby 2004; Chollet et 

al. 2010). In oncologic context, endothelial cells closely located to tumor cells strongly 

express OPG, especially in metastatic foci (Heymann et al. 2008). The presence of arterial 

calcification of the media of the aorta and the renal arteries in OPG-deficient mice suggest the 

involvement of OPG in vascular biology (Bucay et al. 1998). In accordance with these data, 

Price and co-workers showed that administration of exogenous OPG prevent vascular 

calcification induced by warfarin or high vitamin D doses (Price et al. 2001). Paradoxically, 

clinical studies suggest that high serum OPG levels correlate with the severity of vascular 

calcification, coronary artery disease and heart failure. (Ueland et al. 2005; Ziegler et al. 

2005; Helske et al. 2007). Very recently, it has been shown that OPG is more frequently 

expressed in atheromatous carotid plaques than femoral specimens, and correlates with the 

abundance of macrophages in the lesions (Heymann et al. 2012). These clinical findings are 

controversial with in vitro data. Indeed the inhibitory effect of OPG on vascular calcification 

in animal models could be passive or cellular. As mentioned above, OPG exerts an anti-

apoptotic effect towards TRAIL and decreases in consequence the number of apoptotic bodies 

that may serve as nucleation sites for passive mineralization (Fleishman et al. 1990; 

Benslimane-Ahmim et al. 2011). Several studies have shown also that recombinant OPG can 

promote the survival/proliferation of mature vascular endothelial cells (Malyankar et al. 2000; 

Pritzker et al. 2004; Cross et al. 2006; Kobayashi-Sakamoto et al. 2006; McGonigle et al. 

2009). Similarly, Lawrie et al showed OPG promotes the proliferation and the migration of 

pulmonary artery smooth muscle cell, and thus evidenced an important role of OPG in the 

pathogenesis of pulmonary arterial hypertension (Lawrie et al. 2008). However, the precise 

mechanism remains unclear and seems to involve multipartners. One study although suggests 

that OPG is blocking the apoptosis induced by TRAIL (Pritzker et al. 2004). It has been 

clearly demonstrated that OPG is able to stimulate endothelial colony-forming cells and thus 
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leads to the formation of new blood vessels in vivo (Benslimane-Ahmim et al. 2011). These 

findings confirmed the work of McGonigle and collaborators who described that OPG 

increases angiogenesis (McGonigle et al. 2009) but interestingly they suggest that OPG exerts 

its effect through the inhibition of the binding RANK/RANKL. This capacity of OPG to 

induce new blood vessels formation gives to OPG a potential proangiogenic role in tumors as 

suggested by different studies (Cross et al. 2006; Secchiero et al. 2008). More recently, 

Benslimane-Ahmin et al. (in press) revealed using proteomic approaches that the 

proangiogenic properties of OPG appeared to be mediated by the proteoglycan syndecan-1, 

although OPG 1-194 lacking its heparin-binding domain still had pro-vasculogenic effects in 

vitro and in vivo. All these effects were significantly attenuated by endothelial colony-forming 

cells incubation with the CXCR4 antagonist AMD-3100, and by prior heparan sulphate 

proteoglycan disruption. Taken together, these data suggest a central role of OPG in vascular 

biology. The mechanism of action remains unclear and seems to involve RANKL and TRAIL 

but the interplay between these molecules is not sufficient to explain the different functions of 

OPG in vasculature.  

 

Glycoaminoglycans and proteoglycans : ligands from the extracellular matrix. 

Glycoaminoglycans (GAGs) are linear polymers of repeated disaccharidic units, bearing 

sulfate residues. The number and the position of sulfation are extremely variable, depending 

on the tissue, cell and metabolic context, ensuring structural variability in these 

polysaccharides (Bernfield et al. 1999). GAGs have an extended diversity of functions and are 

implicated in various biological processes such as morphogenesis, tissue structuring and 

organization, blood clotting. All GAGs, apart from hyaluronic acid (cartilage, vitreous humor) 

and heparin (mast cells), are present in the body as proteoglycans (PGs), covalently attached 
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to a core protein. PGs are present in many tissues, in the extracellular matrix or associated to 

the cell membrane. 

The full length OPG binds to a wide variety of GAGs through its heparin binding 

domain in contrast to OPG-Fc in which the heparin-binding domain is lacking (Theoleyre et 

al. 2006; Lamoureux et al. 2009). The capacity of GAGs to bind to OPG can be evaluated by 

BIAcore analysis (Figure 2). Among the different GAGs, heparin presents the highest affinity 

for OPG (Kd: 1.3.10-10M for heparin, see Table 1).The dissociation constant is higher 

(hundred fold) for dermatan sulfate (DS) and chondroitin sulfate (CS) (3.7.10-8 and 2.10-8 M 

respectively, Table1). This lower affinity is mainly due to the degree of sulfation as recently 

confirmed by Robinson et al. and by Salbach et al. (Robinson et al. 2012; Salbach et al. 

2012). Heparin, indeed, is the most sulfated GAGs compared to CS and DS (Velasco et al. 

2010). Moreover, a highly sulfated exopoly-saccharide derived from Altermonasinfernus 

(Velasco et al. 2011) has a binding affinity comparable to heparin (2.10-10 M, Table 1). The 

length of GAGs is another property of GAGs that govern their binding to OPG. As shown in 

Figure 2 and Table 1, oligosaccharide made of 4 sugar units (dp4) is much less affine for OPG 

than an oligosaccharide made of 18 sugar units (dp18) (Kd of 7.10-7 and 2.8.10-8 M 

respectively). As represented in Figure 2F, heparin is able to shift the binding of OPG to 

heparin immobilized on the sensorchip. The other GAGs studied are also able to shift the 

binding but a concentration 100 fold greater is required. This competition binding confirmed 

the importance of sulfation and size of GAGs for their biological activities. Thus, we have 

recently showed that GAGs act directly on osteoclastogenesis (Baud'huin et al. 2011). We 

found that heparin and others GAGs are able to inhibit the differentiation of osteoclast 

precursors into osteoclasts through an inhibition of cell adhesion. Our study confirmed also 

that the length and the sulfation are critical parameters in the inhibition of osteoclastogenesis. 

On the contrary, Irie and co-workers (Irie et al. 2007) showed that GAGs by binding to OPG 



 11 

prevent OPG-mediated inhibition of osteoclastic differentiation, and therefore enhance bone 

resorption. Furthermore, Lamoureux et al. showed that GAGs inhibit full length OPG binding 

to TRAIL or to RANKL but not OPG truncated form lacking its heparin binding domain 

(Lamoureux et al. 2009). Thus, GAGs may represent potent regulators of OPG availability 

and anti-tumor activity in bone tumor microenvironment (Lamoureux et al. 2008). 

The binding of OPG with GAGs implies also activities through interaction with PGs. 

The first role of the OPG heparin-binding domain has been revealed by Standal (Standal et al. 

2002) who demonstrated that myeloma cells internalize and degrade OPG through its binding 

to syndecan-1 and consequently increase the local RANKL concentration andso induce 

osteolysis in patients. Moreover, OPG induces osteopontin expression via syndecan-1 and 

activates phosphoinositol 3-kinase/Akt in human periodontal ligament cells (Yongchaitrakul 

et al. 2009). PGs are also involved in OPG-induced chemotaxis of monocytes (Mosheimer et 

al. 2005). Indeed, OPG can interact with syndecan-1 expressed by monocytes (potential 

osteoclast precursors) and can stimulate the cell migration. In this context, OPG is a 

chemotactic factor for monocytes which can be recruited in inflammatory context or during 

osteolysis process.OPG seems also to modulate cell adhesion. Indeed, OPG stimulates the 

expression of the cell adhesion molecule angiopoietin-2 in TNF-Į activated cells (Mangan et 

al. 2007), increases leucocyte adhesion to endothelial cells (Zauli et al. 2007) and stimulates 

proliferation and migration of human microvascular endothelial cells (Kobayashi-Sakamoto et 

al. 2008). Proteoglycans and GAGs have been suspected to initiate these OPG activities. 

Taken together, these data show that PGs and GAGs are key partners for biological 

activities of OPG (inhibition of osteoclastogenesis in vitro, bioavailability of OPG and 

monocyte chemotaxis in favour of pro-osteolytic activity). In this context, we investigate the 

role of OPG on human monocytes adhesion and its control by GAGs. After 5 days of culture, 

human CD14+ cells cultured in the presence of human OPG (100 ng/mL) strongly adhere to 

http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed/19602124?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed/19602124?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
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the plastic, whereas very few cells adhere in culture medium alone (0.3% of the initial 

monocytes number) (Figure3A). This is confirmed by the cell counting, OPG increased by 25 

fold the number of adherent monocytes (Figure 3B). When 125 µg/mL of heparin was added 

to the OPG-containing culture medium, the effect of OPG on CD14+ cell adhesion was 

completely abolished (Figure 3A, p < 0.001). The sulfation and the size of the GAGs chains 

are involved in this inhibition of OPG-mediated adhesion. Thud, DS and dp18 added to the 

culture are able to inhibit OPG effect with the same intensity as heparin (99% of inhibition, 

Figure 3C). On the contrary, the OPG-induced CD14+ cell adhesion was inhibited by 50%in 

the presence of dp4 and chondroitin sulfate (Figure 3C).We then investigated the signaling 

pathway involved in the adhesion of CD14+ cells induced by OPG. We found that OPG is 

able to activate the PI3k / Akt pathway. As shown in Figure 2D, OPG induces 

phosphorylation of Akt after 10 minutes which is maintained at 45 minutes. The induction of 

phosphorylation was inhibited by heparin. Our data suggest that OPG could promote 

monocyte adhesion through an Akt/PI3-Kinase signaling pathway and recruit monocytes 

where OPG is produced (bone, endothelial cells). However, this phenomenon is a long 

process during around 5 days, compare to the ability of OPG to induce leucocyte adhesion to 

endothelial cells in 5 to 15 minutes (Zauli et al. 2007). This data suggests that OPG facilitates 

the recruitment of monocytes where OPG is produced, such as bone microenvironment, 

vasculature and tumor context. 

 

von Willebrand factor/factor VIII complex : ligand from the vascular compartment 

Factor VIII (FVIII) associated with the von Willebrand factor (vWF) is a key protagonist of 

the coagulation process as evidenced in patients suffering from hemophilia A (Bolton-Maggs 

et al. 2003). vWF enables the recruitment of platelets while factor VIII acts as a catalysor of 
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the blood clotting. In the circulation, FVIII is non-covalently complexed with vWF to form 

the FVIII/vWF complex. 

In 2005, Zannettino and co-workers demonstrated that vWF is associated with OPG in 

Weibel Palade bodies of endothelial cells (Zannettino et al. 2005). More recently, it has been 

shown that OPG is also colocalised with vWF in alpha granules of platelets and 

megakaryocytes (Chollet et al. 2010). OPG interacts with the A1 domain of vWF and remains 

associated after secretion from endothelial cells (Shahbazi et al. 2007). The binding site of 

OPG to vWF has common domain with the binding site of GP1Ba protein to vWF which 

facilitates initial platelet adhesion (Figure 4). The binding affinity of vWF for OPG (3,5.10-9 

M) is comparable with that of OPG for RANKL as mentioned in Table 1. Taken together, 

these data support a possible role of vWF-OPG complex in regulation of endothelial cells 

survival, osteoclast differentiation, vascular injury and inflammation such as thrombus 

formation (Zannettino et al. 2005; Lenting et al. 2010). 

The complex FVIII/vWF is also able to bind to OPG (Kd = 7,2.10-8 M, Table 1), 

blocking the interaction of OPG with TRAIL suggesting a potential function ofFVIII/vWF 

complex in cancer development (Baud'huin et al. 2009). Moreover, the binding of OPG to 

FVIII/vWF complex reinforces the OPG-inhibition of RANKL-induced osteoclastogenesis 

making a direct link between vascular and bone biology (Baud'huin et al. 2009). Recently, 

Melchiorre et al. showed that the synovium in hemophilic arthropathy highly expressed 

RANK and RANKL in contrast to OPG which decreased suggesting an activation of the 

resorptive process. They concluded that low tissue expression of OPG paralleled its serum 

levels and the severity of hemophilic arthropathy (Melchiorre et al., 2012). .These data are 

consistent with a randomized study showing that the prophylaxis with recombinant Factor 

VIII prevents joint damages in young haemophilic patients (Manco-Johnson et al. 2007), 

possibly through a decrease in osteoclastogenesis.  

http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed?term=Melchiorre%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22753650
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Conclusions 

OPG has mainly been described as an anti-resorptive cytokine, as the first ligand reported was 

RANKL. However since that time, numerous ligands were described and studied in the last 

fifteen years giving to OPG an important role in vascular, tumor and immune biology (Figure 

5). Clinical outcomes confirm that OPG is an active cytokine in a wide range of pathologies 

(osteoporosis, arthritis, vascular calcification, cancer bone-related disease) and can be 

considered as a biological marker or/and therapeutic targets for these pathologies. But the 

mechanisms by which OPG and its multiple partners act together and/or sequentially remain 

uncertain and need further investigation.  

 

Acknowledgments: 

This work was supported by the Région des Pays de la Loire [Program entitled “Ciblage 

Moléculaire et Applications Thérapeutique” (CIMATH)].  

 



 15 

Figure legends 

 

Figure 1: Structure of OPG in interaction with RANKL or TRAIL. OPG (red, model as 

described previously (Baud'huin et al. 2009)), was superposed on RANK (PDB id:3ME2, 

(Liu et al. 2010)) or DR5 (PDB id: 1D0G, (Hymowitz et al. 1999)) to conserve the receptor 

orientation observed in the crystallographic structures and the position of their respective 

ligands RANKL (green) or TRAIL (blue). Monomers only are presented for clarity. All 

proteins are represented with a transparent van der Walls surface and their secondary structure 

formed by an anti-parallel beta-sheets scaffold for RANKL and TRAIL or successive anti-

parallel beta sheets regrouped in cystein-rich domains (CRD) for OPG are displayed in 

ribbon. The superposition was made using Discovery Studio 3.1 (Accelrys Inc., San Diego, 

USA) and the final rendering using POV-Ray (http://www.povray.org) and The GIMP 

(http://www.gimp.org). 

 

Figure 2: GAGs bind to OPG with various affinities. Full-length human OPG (1 µg/mL in 5 

mM maleate, pH 6.0) was covalently immobilized to dextran matrix of a CM5 sensor chip 

(BIAcore) at a flow rate of 5 ȝl/min. Immobilisation level of 4000 RU was then obtained. 

Binding assays were performed at 25°C in 10 mMHepes buffer, pH 7.4, containing 0.15 M 

NaCl and 0.005% P20 surfactant (HBS-P buffer, BIAcore). Increasing concentrations of (A) 

heparin (rage from 0.5 nM to 20 nM), (B) dermatan sulphate, (C) chondroitin sulphate (range 

from 100 nM to 3200 nM), (D) dp 4 (range from 1.6 µM to 12.8 µM) or (E) dp 18 (range 

from 100 nM to 3200 nM) were injected over the immobilized OPG at a flow rate of 60 

ȝl/min, with 1 min association and 8 min dissociation. Kds of OPG for GAGs were determined 

using single cycle kinetics by ½ dilutions. The resulting sensorgrams were fitted using BiaEval 

4.1 software (BIAcore). All experiments were performed at 25˚C. (F ) Biotinylated heparin 
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was immobilized on a SA chip, and OPG was incubated for 2 hours with different GAGs at 

several concentrations. The couple OPG-GAGs was then injected on the immobilized heparin 

and the fixation of OPG to heparin was measured. 

 

Figure 3: OPG induced adhesion of human CD14+cells which is reversed by GAGs.106 

cells were seeded in 6-wells plate, and cultured for 3 days in the presence or the absence of 

full length- OPG (100 ng/mL) and/or heparin (125 µg/mL) (A,B) or different 

glycosaminoglycans (C) (5 µM). After 3 days, cells were washedwith PBS, and observed 

under light microscope (Leica DM IRB, Camera: Olympus D70, Analysis software: Olympus 

DP controller/Manager) (original magnification x100) (A), then detached by trypsin-EDTA 

dissociation and counted (B) or after washing, 50 µL of Į-MEM supplemented with 10% FCS 

was added as well as 50µL of XTT and OD was read at 490nm after 4h incubation at 

37°C(C). Experiments were performed three times in triplicate. ### P<0.001 compared to the 

control; *** P<0.001 compared to OPG.CD14+ cells were stimulated for 10 or 45 min with 

100 ng/mL OPG, in presence or not of 125 µg/mL heparin and (D) western blot analysis was 

performed on cell lysates to determine the level of Akt phosphorylation. Actin informed about 

equal loading charge Experiments were performed three times, and a representative blot is 

shown. 

 

Figure 4: Binding modes comparison of various vWF partners. Top left: amino acids 

involved in OPG recognition (green). Top middle: amino acids involved in heparin 

recognition (Adachi et al. 2006). Top right: amino acids involved in GPIba recognition 

(orange, PDB id: 1SQ0, (Dumas et al. 2004)). On the opposite face of the A1 domain, 

bitiscetin (cyan, PDB id: 1UEX, (Maita et al. 2003)) and botrocetin (purple, PDB id: 1IJK, 
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(Fukuda et al. 2002)) binding domains. N-terminal (brown) and C-terminal (blue) ends of the 

A1 vWFdomain are in tube representation. 

 

Figure 5: Schematic representation of the involvement of OPG in vascular, bone and 

cancer biology. OPG is biological active on several tissues mainly as a decoy receptor for 

ligands thus blocking their activity. As a result, OPG is inhibiting activities of RANKL and 

TRAIL in bone, vascular, tumor and immune biology. However, OPG can acts directly on 

cells by interacting with syndecans and promoting adhesion or migration 
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