
This is a repository copy of Dynamic Antarctic ice sheet during the early to mid-Miocene..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/96977/

Version: Accepted Version

Article:

Gasson, E., DeConto, R.M., Pollard, D. et al. (1 more author) (2016) Dynamic Antarctic ice
sheet during the early to mid-Miocene. Proceedings of the National Academy of Sciences, 
113 (13). 

https://doi.org/10.1073/pnas.1516130113

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Submission PDF

A dynamic Antarctic Ice Sheet during the early to
middle Miocene
Edward Gasson1, Robert DeConto1, David Pollard2, Richard Levy3

1Climate System Research Center, University of Massachusetts, Amherst, MA, 01003, USA 2Earth and Environmental Systems Institute, Pennsylvania State
University, State College, PA, 16802, USA 3GNS Science, Avalon, Lower Hutt 5011, New Zealand

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Geological data indicate that there were major variations in
Antarctic ice sheet volume and extent during the early to middle
Miocene. Simulating such large-scale changes is problematic be-
cause of a strong hysteresis effect, which results in stable ice sheets
once they have reached continental size. A relatively narrow range
of atmospheric CO2 concentrations indicated by proxy records
exacerbates this problem. Here we are able to simulate large-scale
variability of the Miocene Antarctic ice sheet for the first time due
to three developments in our modeling approach: 1. We use a new
climate-ice sheet coupling method using a high-resolution atmo-
spheric component, to account for ice sheet-climate feedbacks 2.
The ice sheet model includes recently proposed mechanisms for
retreat into deep subglacial basins caused by ice-cliff failure and
ice-shelf hydrofracture 3. We account for changes in the oxygen
isotopic composition of the ice sheet by using isotope enabled
climate and ice sheet models. We compare our modeling results
with new ice-proximal records emerging from a sedimentological
drill core from the Ross Sea (Andrill-2A) that is presented in
a companion paper. The variability in Antarctic ice volume we
simulate is equivalent to a seawater oxygen isotope signal of
0.52ದ0.66 ಽ, or a sea level equivalent change of 30ದ36 m, for a
range of atmospheric CO2 between 280ದ500 ppm and a changing
astronomical configuration. This result represents a substantial
advance in resolving the long-standing model-data conflict of
Miocene Antarctic ice sheet and sea level variability.

Miocene | Antarctic ice sheet | oxygen isotopes | sea level

Both direct and indirect evidence indicates that the Antarctic
ice sheet exhibited major variation in volume and extent during
the early to middle Miocene (23ದ14 million years ago, Ma).
Indirect evidence for a change in Antarctic ice volume comes
from ˡ18O records of benthic foraminifera [1ದ5] and sea-level
indicators [6ದ8]. Although the benthic ˡ18O record contains a
mixed signal of ice volume and ocean temperature, attempts to
isolate the ice volume component show variability equivalent to
the loss of between 30% [2,3] and 80% [4,5,9] of the modern
Antarctic ice sheet. A similar magnitude of variability is indicated
by sea level estimates [6ದ8]. This may represent periods of ice
advance with volumes greater thanmodern and periods of retreat
with significant (but not complete) loss of ice.

Direct evidence of the Miocene Antarctic environment can
be found in ocean sediments drilled at sites proximal to the ice
sheet, such as the Andrill 2A (AND-2A) drill core in the southern
McMurdo Sound region of the Ross Sea (see companion paper).
These records show warmer conditions in the Ross Sea region
during the middle Miocene climatic optimum, with summer at-
mospheric temperatures of ฏ10 əC and annual mean sea-surface
temperatures between 0ದ11.5 əC [10,11]. During these warmer
intervals the ice sheet margins retreated inland [12,13] and tundra
vegetation grew on ice-free terrain [10,14]. During cold intervals
the ice sheet expanded, with grounded ice extending into theRoss
Sea basins, beyond the AND-2A drill site [12].

Importantly, proxy reconstructions of atmospheric CO2 con-
centrations through this interval imply that this variability oc-
curred in a relatively narrow range from close to, or slightly below,

preindustrial levels [15ದ18] to maximum concentrations of only
ฏ500 ppm [15,16,18,19].

Simulating such large-scale variability of the Antarctic ice
sheet with this narrow range of atmospheric CO2 has proved
problematic [20,21]. This is due to a strong hysteresis, which limits
retreat from a fully glaciated state until surface temperatures
have increased by 15ದ20 əC [22] or atmospheric CO2 has reached
1000ದ2500 ppm [20, 23]; see also Supporting Information. This
hysteresis occurs because of surface elevation-mass balance feed-
back as a result of the atmospheric lapse rate [24], and is further
strengthened by albedo feedback [20] and possibly the cooling
effect of the ice sheet on the surrounding Southern Ocean [56].

Recent efforts at resolving the Antarctic hysteresis problem
have focused on the marine-based regions of the ice sheets
[23,25]. This work has been stimulated in part by evidence for
major retreat into the Wilkes Subglacial Basin during warmer
intervals of the middle Pliocene [26] and the need to explain
the, albeit uncertain, 20 ±10 m middle Pliocene sea level high-
stand [27,28]. Additionally, the marine-based ice sheet regions
are thought to be more sensitive to climate changes than the
terrestrial-based regions because of instability mechanisms that
act only on marine-based ice, particularly where the ice sits
on reverse-sloped beds [23,29,30]. However, only a third of the
modern Antarctic ice sheet is marine-based [31], which suggests
that the variability during the Miocene also included changes in
terrestrial ice sheet extent.

Evidence of grounded ice in the western Ross Sea during
the Miocene provides another modeling challenge. Simulating a
large, grounded West Antarctic ice sheet typically requires Last
Glacial Maximum-like conditions, with low atmospheric CO2
of ∼180 ppm, cold ocean temperatures, and lowered sea level

Significance

Atmospheric concentrations of carbon dioxide are projected
to exceed 500 ppm in the coming decades. It is likely that
the last time such levels of atmospheric CO2 were reached
was during the Miocene, for which there is geologic data
for large-scale advance and retreat of the Antarctic ice sheet.
This is something that ice sheet models have struggled to
replicate because of a strong hysteresis effect. Here a number
of developments in our modeling approach mean that we are
able to simulate large-scale variability of the Miocene Antarctic
ice sheet for the first time. Our results are also consistent with
a recently recovered sedimentological record from the Ross Sea
presented in a companion paper.
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Fig. 1. Schematic of model coupling procedure, showing variables passed
between models and timestep of couplings.

allowing grounding lines to advance seaward to the continental
shelf break. Such low atmospheric CO2 is below the glacial thresh-
old for major Northern Hemisphere glaciation [33], but there is
limited evidence for such major Northern Hemisphere glaciation
during the Miocene [16], making the conditions for simulating
grounded ice in the western Ross Sea problematic.

Periods with grounded ice are identified in the AND-2A
record as disconformities, when the advancing ice sheet eroded
material at the site. Four such episodes occurred during the
early to middle Miocene and correlate with benthic ˡ18O and
sea level records supporting increased ice volume. Additionally,
these ice advances correlate with lows in atmospheric CO2 and
decreasing bottom water temperatures. Regional seismic data
provide supporting evidence that theWest Antarctic ice sheet was
periodically grounded towards the Ross Sea shelf edge during the
middle Miocene [51].

In the companion paper different environmental motifs are
identified from the AND-2A sediment core, here we attempt
to simulate these different environmental motifs. In addition we
attempt to simulate themagnitude of ice volume variability that is
suggested from indirect proxy evidence whilst using appropriate
Miocene boundary conditions.

Results
Changes in ice sheet extent can affect the surface climate, be-
cause of changes in elevation, surface albedo and large-scale
circulation changes [50,67]. Various methods for accounting for
these feedbacks are discussed in [50] and briefly in the Supporting
Information. Here, to account for ice sheet-climate feedbacks
caused by albedo changes, changes in vegetation, and atmo-
spheric circulation changes, we use a high resolution climate
forcing from an asynchronously coupled Regional ClimateModel
(RCM) embedded in a GCM (Figure 1). The GCM is oxygen
isotope enabled and includes a vegetation model to account
for vegetation-albedo feedbacks. Simulations are also performed
without climate feedbacks, to determine the impact of including
these feedbacks on the results (see Methods and Materials).

Miocene colder interval simulations. End-member climate-
ice sheet simulations were performed for Miocene ಫcolderಬ and
ಫwarmerಬ climate intervals. The colder climate forcing has at-
mospheric CO2 concentrations of 280 ppm and an astronomical
configuration favorable for Antarctic glaciation (low obliquity,
high eccentricity, perihelion during boreal summer).

The bedrock topography is an important model boundary
condition that affects ice sheet stability because of marine insta-
bilities and ice-cliff failure [23,49]. However, Antarctic bedrock
topography is poorly constrained for the Miocene. The Antarctic
bedrock topography has changed through time, due in part to
tectonics, dynamic topography, continental shelf progradation,
and glacial erosion following continental glaciation across the
Eocene-Oligocene transition [34,61]. The amount of material

removed from the continent can be loosely constrained by vol-
umes of Oligocene and younger sediments deposited offshore
of the continent; Wilson et al. [34] used this as a basis for their
topographic reconstruction for the Eocene-Oligocene transition.

As, to our knowledge, no reconstructed topography for the
Miocene currently exists, we created a middle Miocene topogra-
phy by scaling between the earlier Eocene-Oligocene topography
[34] and the isostatically rebounded (ice-free) modern topogra-
phy [41], assuming constant rates of landscape evolution from
34 Ma to today. An alternative view is that the Antarctic ice
sheet had stabilized by 14 Ma [35], implying that the majority of
glacial erosion had already occurred by this time [64] and that the
bedrock topography may have been similar to modern after the
middle Miocene. Experiments were performed for two bedrock
topography scenarios, one is the modern bedrock topography
(Scenario A) and the second is an approximation of the Miocene
bedrock topography (Scenario B). The differences in bathymetry
are shown in Fig. 2, with topographic maps and sensitivity tests
for a range of other topographies in Supporting Information.

For the colder climate simulations, the different bedrock
topographies have a large impact on the resulting ice sheet (see
Fig. 2 C and D and Table 1). Total ice volumes vary between
26.7ದ35.5 ×106 km3 for Scenario A and B, respectively, or 58ದ78
m sea level equivalent (msl). The shallower bathymetry in the
West Antarctic for Scenario B allows a large terrestrial ice sheet
to form (15 msl), which supports the further expansion of the
East Antarctic ice sheet. Only Scenario B has grounded ice at the
site of AND-2A and extending to the continental shelf break. For
Scenario A there are ice shelves in theRoss Sea and the grounding
line is very close to its modern position, several hundred km from
the AND-2A site.

Miocene warmer interval simulations. For the warmer cli-
mate simulations atmospheric CO2 concentrations are increased
to 500 ppm and an astronomical configuration favorable for
Antarctic deglaciation is used (high obliquity, high eccentricity,
perihelion during austral summer). Although Miocene atmo-
spheric CO2 appears poorly constrained if all published estimates
and proxymethods are considered, some of thesemethods and es-
timates have been subsequently discredited [63]. Additionally, the
low temporal resolution of the majority of these records may not
fully capture astronomically paced changes in atmospheric CO2
[18], which may be indicated by high temporal resolution carbon
isotope records [62]. Whilst acknowledging these uncertainties,
there is a growing consensus that atmospheric CO2 varied be-
tween 280ಧ500 ppm during the Miocene [15,16,18,19]. Because
there is at least one estimate of mid-Miocene CO2 as high as
∼840 ppm [36], we perform an additional high CO2 simulation
with atmospheric CO2 of 840 ppm.

In addition to changes in atmospheric CO2 concentrations
and the astronomical configuration, the warmer climate simula-
tions have 2 əC of imposed ocean-warming relative to modern.
This ocean warming is conservatively based on the lower end
of reconstructed temperatures at AND-2A in the companion
paper. The warmer interval ice sheet simulations were performed
starting from a fully glaciated state (from the end of the colder
climate simulations) in order to investigate ice sheet hysteresis.
Like the colder interval simulations, warmer interval simulations
were also performed on two different bedrock topographies. For
Scenario A, using modern bedrock topography, there is major
retreat into the subglacial basins on East Antarctica (Fig. 2E).
The Miocene bedrock topography used for Scenario B has much
shallowermarine basins. As a result there is much reduced retreat
into the East Antarctic basins for Scenario B, with only modest
retreat into the Recovery Glacier and theWilkes Subglacial Basin
(Fig. 2F).

The strong sensitivity shown by the ice sheet model to these
differences in bedrock topography is mainly a result of two mech-
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Fig. 2. Ice sheet thickness, in response to different climate forcing. The top row (Scenario A) uses the modern Bedmap2 bedrock topography, the
lower row (Scenario B) uses approximate mid Miocene bedrock topography. The differences in bathymetry between these two scenarios are shown, will
detailed topographic maps included in Supporting Information. Miocene colder interval simulations have atmospheric CO2 of 280 ppm and an astronomical
configuration favorable for Antarctic glaciation (low obliquity, high eccentricity, perihelion during boreal summer). Miocene warmer interval simulations
have atmospheric CO2 of 500 ppm and an astronomical configuration favorable for Antarctic deglaciation (high obliquity, high eccentricity, perihelion during
austral summer) and 2 əC of ocean warming. High CO2 simulations are as the warmer climate simulations but with atmospheric CO2 raised to 840 ppm. All
simulations include climate-ice sheet feedbacks. The red stars mark the location of the AND-2A core site.
Table 1. Ice volume, sea level equivalence and oxygen isotopes. Scenario A uses modern topography, Scenario B uses approximate mid
Miocene topography, high eccentricity (0.05) is used for all simulations. Sea levels are calculated for ice above floatation. Peak Sea
Surface Temperatures (SST) and peak Land Air Temperatures (LAT) are the mean of the 3 warmest months at the site of, or land
proximal to, AND-2A. Cooler climate simulations do not have open-water at site of AND-2A or proximal ice-free land.

Scenario A Scenario B

experiment colder climate warmer climate high CO2 colder climate warmer climate high CO2
CO2, ppm 280 500 840 280 500 840
precession, ə 90 270 270 90 270 270
obliquity, ə 22.5 24.5 24.5 22.5 24.5 24.5

ice volume, km3 26.7 11.5 8.8 35.5 17.2 14.1
sea level, m 57.9 28.4 21.8 78.3 42.2 34.5
ˡ18Oice,ಽ -46.1 -39.4 -39.3 -47.9 -42.3 -41.6
ˡ18Osw,ಽ 0.82 0.3 0.23 1.14 0.48 0.38
ˡ18Osw / 100m 1.24 1.05 1.04 1.29 1.12 1.10
peak SST, əC - 6.3 9.6 - 6.0 9.6
peak LAT, əC - 8.5 12.0 - 7.5 12.4

anisms. At the grounding line, ice flow is strongly dependent on
ice thickness [30], meaning that run-away retreat can occur if the
bed deepens upstream of the grounding line [30,39]. Additionally,
the ice sheet model includes a mechanism for the structural

failure of large ice cliffs that are not supported by ice shelves
[23]. Vulnerable ice cliffs can form because of the removal of
ice shelves in warmer climate simulations as a result of ice shelf
hydrofracture. In the model, ice cliff failure can only occur when
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Fig. 3. Timeseries of ice sheet response to warmer
climate forcing, shown as sea level equivalent values,
for Scenarios A and B. Blue lines are for 500 ppm CO2

simulation, red lines are for 840 ppm CO2 simulation.
Dashed lines are without climate feedback. Gray dots
show GCM simulation and black circles show RCM sim-
ulations and subsequent coupling to ice sheet model.

the ice cliff height reaches ฏ100m, in water depths of ฏ800m [23].
This follows earlier work on themaximumheight that ice cliffs can
reach before failing structurally [55]. For theMiocene topography
with shallower marine basins in East Antarctica, this condition
is rarely reached. As the Miocene bedrock topography is highly
uncertain we test a variety of different reconstructed bedrock
topographies in Supporting Information. Although locations of
retreat differ between the different topographies, the total ice
volume change between the cold and warmer climate simulations
is similar (Fig. 3), because of a larger initial West Antarctic ice
sheet compensating for reduced retreat of the East Antarctic
ice sheet. We also perform tests to determine the importance
of ice cliff failure and ice shelf hydrofracture, by repeating the
simulations without these mechanisms enabled in the model (see
Supporting Information).

We next consider how changes in ice sheet ˡ18O (ˡ18Oice)
due to changing climate and ice sheet geometry may affect our
interpretation of the benthic ˡ18O record [48]. We use an isotope
enabled version of the GCM [46] to determine the ˡ18O of
precipitation falling over the ice sheet, which is then tracked
within the ice sheet to determine the ice sheetಬs average isotopic
composition [58]. For the warmer climate simulations the oxygen
isotope composition of precipitation is heavier than for the colder
climate simulations (Supporting Information). This results in a
mean ice sheet ˡ18Oice of -39 and -42 ಽ, for Scenarios A and B,
compared with isotopically lighter values of -46 and -48 ಽ for
the colder climate simulations. The difference in seawater ˡ18O
(ˡ18Osw) between the colder and warmer climate simulations is
0.52 ಽ for Scenario A and 0.66 ಽ for Scenario B, because of a
combined change in ice volume andmean ˡ18Oice of the ice sheet.
The ˡ18Osw signal modeled here is greater than if the commonly
used factor of 0.01 ಽ per 1 msl were used [48]. Therefore the
ice volume change required to explain the oxygen isotope record
from benthic foraminifera is lower than previous estimates [4,5,9].
This same reasoning has been used to suggest a reduced ice
volume change for the mid-Pliocene [60].

A high CO2 simulation was also performed, with atmospheric
CO2 of 840 ppm, which is higher than most proxy estimates of
atmospheric CO2 during the Miocene. The high CO2 simulation
may also account for the potential impact of non-CO2 radia-
tive forcing during past warmer intervals, because of increased
methane concentrations or other chemical feedbacks [37], which
are not changed from preindustrial in our simulations. For ex-
ample, the equivalent radiative forcing of 840 ppm CO2 (5.9
Wm-2) can be achieved with atmospheric CO2 of 720ದ780 ppm
and methane concentrations of 2000ದ3000 ppb. This elevated

radiative forcing is also necessary to produce the warm high-
latitude temperatures shown by proxy reconstructions for the
mid-Miocene climatic optimum when using a modern astronom-
ical configuration (Supporting Information); similar results were
found in an earlier GCM study of the mid-Miocene [38]. How-
ever, high-latitude Southern Hemisphere temperatures that are
consistent with proxy records can also be achieved with lower CO2
of 500 ppm if there is a slight increase in the Southern Ocean heat
flux [23] and a warm austral astronomical configuration is used.

With this increased range of Miocene CO2 (280ದ840 ppm),
the total Antarctic ice sheet variability increases to 36 and 44 msl,
for Scenarios A and B, respectively. This variability is equivalent
to a change in ˡ18Osw of between 0.59 and 0.76 ಽ. The bedrock
topography is again important in determining the magnitude of
East Antarctic ice sheet retreat for the high CO2 experiments
(Fig. 2G and H).

The impact of including sheet-climate feedbacks through the
asynchronous RCM climate coupling can be seen by comparing
simulations without these feedbacks (Fig. 3). Without climate
feedback retreat only occurs in the subglacial basins, with retreat
of the terrestrial ice sheet restricted by the strong hysteresis. In-
cluding climate feedbacks produces some additional retreat at the
margins of the terrestrial ice sheet. The asynchronous coupling
has a larger effect on ice sheet area compared with volume. This is
because increased precipitation in the asynchronous simulations
produces a thicker ice sheet interior that cancels some of the
increased retreat at the ice sheet margin.

Discussion
We simulate large-scale variability of the early to middleMiocene
Antarctic ice sheet of 30ದ36msl. Using the output from an isotope
enabled GCM and ice sheet model, our simulated ˡ18Osw signal
is 0.52ದ0.66 ಽ. The largest ˡ18O shift during the Miocene was
the 0.88 ±0.04 ಽ increase across the middle Miocene climate
transition [47]. This event was also associated with a deep-sea
cooling of 1.5 ±0.5 əC, leaving an ice volume signal of ˡ18Osw 0.53
±0.13ಽ [5,47]. Thismagnitude of variability is consistent with our
modeled estimates.

We have presented two different scenarios for Antarctic ice
sheet variability during the Miocene. One scenario is driven
by large-scale retreat into East Antarctic subglacial basins, the
second has limited retreat of the East Antarctic ice sheet with
variability a result of the expansion of a large terrestrial West
Antarctic ice sheet. As both of these scenarios satisfy indirect
constraints on ice volume variability during the Miocene indi-
cated by the proxy record [2, 3, 5, 7, 18], we next focus on direct
evidence for changes in ice extent as seen in the AND-2A record
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(companion paper) to attempt to determine which scenario is the
more likely. Data are available from other sectors of Antarctica
indicating changes in ice sheet extent during the Miocene, such
as the Lambert Glacier region [65,66] and those emerging from
a recent Integrated Ocean Drilling Program expedition toWilkes
Land. However, here we focus on the Ross Sea sector, because
this is an area that is significantly different between our two
modeled scenarios. Future work will focus on other sectors of
Antarctica.

The disconformities identified by analysis of the AND-2A
drill core in the companion paper indicate that there were in-
tervals during the Miocene with grounded ice in the McMurdo
Sound region of the Ross Sea (Environmental Motif I). Only
Scenario B has grounded ice in this region, because of the shal-
lower topography in the Ross Sea region compared with modern.
This requirement for grounded ice at the site of AND-2A may
indicate, at least for the Ross Sea region, that Scenario B is more
appropriate. Our simulations support the interpretation from
AND-2A that this glaciation is a result of an expanded continental
ice sheet, rather than being a result of local outlet glaciers from
the Transantarctic Mountains. A grounded West Antarctic ice
sheet extending onto the continental shelf is also consistent with
seismic data from the Ross Sea [51].

The transitional environmental motifs interpreted to repre-
sent periods with ice shelves (Motif II) or open-water conditions
with material delivered by ice-rafting (Motif III) occur in our
simulations during the transition from a colder to warmer climate.
The final environmental motif, under the warmest climate con-
figuration, assumes open-water conditions in the Ross Sea and
ice-free land proximal to the core site (Motif IV). Regardless of
the choice of bedrock topography scenario, both of our warmer
climate conditions with atmospheric CO2 of 500 ppm and a
warm austral astronomical configuration satisfy these conditions.
Simulated sea surface temperatures for these warmer climate
simulations are consistent with proxy records [10,11]; the high
CO2 simulations produce temperatures that are greater than
indicated by the proxy records (Table 1). The output from the
BIOME4 vegetation model embedded within the GCM agrees
with geological evidence of Tundra vegetation in proximal areas
of exposed ice-free land [10,14].

Even at high atmospheric CO2 (840 ppm), we do not sim-
ulate complete collapse of the East Antarctic ice sheet, with
the smallest ice sheet simulated having a volume of 9 ×106 km
(22 msl). Because this high radiative forcing experiment uses
higher greenhouse gas concentrations than required for Antarctic
glaciation (using the same climate model) [52], it indicates that a
hysteresis does still apply to at least part of theAntarctic ice sheet.
It is therefore likely that complete deglaciation of the Antarctic
ice sheet would not occur until atmospheric CO2 has reached the
threshold suggested by earlier studies (1000ಧ2500 ppm) [20,22].
This supports the idea that there was a core of stable ice on
Antarctica throughout the warm intervals of the early to middle
Miocene [18].

Conclusions
The asynchronously coupled climate-ice sheet simulations pre-
sented here satisfy the magnitude of Miocene ice sheet variability
required by oxygen isotope and sea level records. This magnitude
of variability is achieved by a combination of new ice sheet insta-
bility mechanisms, an asynchronous GCM-RCM climate forcing
and accounting for changes in the mean ˡ18O of the ice sheet.
This largely resolves the discrepancy between geological records
and ice sheet models that had previously existed. Two different
scenarios are presented, due to differences in the bedrock topog-
raphy, both of which satisfy these indirect constraints. Additional
data from other parts of the Antarctic are required to determine
which of these two scenarios is more likely in addition to a

detailed synthesis of existing and emerging data. A requirement
for grounded ice in the Ross Sea during the middle Miocene is
only satisfied by Scenario B, which suggests that the Ross Sea
continental shelf may have been shallower during the Miocene.
The results also support the geological inferences of the AND-
2A record indicating that the sedimentological changes at the drill
site record large-scale shifts in the ice sheet margin and not just
changes in local outlet glaciers. The different scenarios presented
here have implications for the suitability of the Miocene as an
analog for future Antarctic ice sheet dynamics [57]. If an enlarged
and dynamicWest Antarctic ice sheet on bedrock bathymetrically
higher than today drove Miocene ice volume variability, it is a
system that may have less relevance to the future. Alternatively,
if retreat was centered on the subglacial basins of the East
Antarctic, the East Antarctic ice sheet could have contributed
10s of metres in sea level equivalence with atmospheric CO2
concentrations similar to that which are projected in the coming
decades.

Materials and Methods
The ice sheet model used is a hybrid shallow ice / shallow shelf approximation
model, with a parameterization for ice flow across the grounding line based
on [30]. Recent developments in the ice sheet model include new mechanisms
for ice shelf hydrofracture because of meltwater and precipitation draining
into surface crevasses. An additional mechanism is included for the breakup
of large ice cliffs that can form in warmer climate simulations following the
removal of ice shelves. Failure occurs when ice cliffs are sufficiently large
(ฏ100 m), which occurs in subglacial basins with water depths of at least
ฏ800 m [23]. We perform tests without these new mechanisms in Supporting
Information. Simulations were performed using a resolution of 10 × 10 km.
The ice sheet model is fully documented in [23] and [40] and all parameters
are as in [23] unless otherwise stated.

Experiments are performed on two different bedrock topographies in
the main paper. For Scenario A the modern Bedmap2 topography is used [31].
For Scenario B an approximate middle Miocene (15 Ma) Antarctic topography
was created by scaling between an Eocene-Oligocene (34 Ma) topography
[31] and an ice-free, isostatically rebounded version of the modern Bedmap2
topography [41]. This assumes constant landscape evolution through time;
we explore ice sheet model sensitivity to a variety of other topographies in
the Supporting Information.

The climate forcing for the ice sheet model is provided by an asyn-
chronously coupled GCM-RCM. The GCM (GENESIS v3.0 [42,43]) uses a middle
Miocene (15 Ma) paleogeography [44], with modifications to the Antarctic
topography as a result of the asynchronous coupling. The GCM uses the
BIOME4 vegetation model, with changes in vegetation used to update the
surface type in the RCM. The GCM is oxygen isotope enabled. We first
perform a cool climate simulation with atmospheric CO2 of 280 ppm and
a cool austral astronomical configuration (January insolation at 70əS = 465
Wm-2). These meteorological boundary conditions (6-hourly saves) are then
used by the RCM (RegCM3 [45]), which has a resolution of 80 × 80 km. The
RCM is not isotope enabled so we use the ˡ18O of precipitation from the
GCM. A uniform correction (-10 ಽ) is applied to the ˡ18O of precipitation
because of a heavy bias when compared with modern estimates [46]. The
climate output from the RCM (temperature and precipitation) is used to force
the ice sheet model. A correction of +2əC is applied to RCM temperatures
because of a cool bias in control simulations when compared with modern
temperatures. As detailed simulation of sub-ice-shelf warming on these
timescales is not currently feasible, sub-surface ocean temperatures are from
a high-resolution modern dataset. The ice sheet is allowed to equilibrate with
the cold climate forcing, starting from either a modern ice sheet (Scenario A)
or ice-free conditions for Scenario B, which takes 150 kyrs.

Next an instantaneous warming experiment is performed. This uses the
equilibrated ice sheets from the colder climate simulations as boundary- and
initial-conditions. Atmospheric CO2 is increased to either 500 or 840 ppm and
a warm austral summer astronomical configuration is specified (January inso-
lation at 70əS = 539 Wm-2). Because of the significant computational expense
of the asynchronous GCM-RCM climate forcing it is not currently feasible to
perform simulations with a transient astronomical forcing. Following earlier
work [23,43], for warmer climate GCM simulations the ocean heat flux in
the southern ocean is increased to maintain ice-free conditions following
the collapse of the West Antarctic ice sheet. This increased heat flux does
not drive ice sheet collapse, and sensitivity tests without the increased heat
flux yield similar results (see Supporting Information). A uniform sub-surface
ocean warming of 2 əC is added to the modern dataset. Coupling between
the GCM-RCM-ISM is performed for the first 2 iterations (i.e. 0 kyr and 2
kyr into the simulation), because of large changes in the land-sea mask. For
subsequent iterations (every 2 kyr) the ice sheet model is coupled directly
to the RCM, with the GCM boundary conditions held constant. We rerun the
GCM at the end of the simulation to obtain ˡ18O of precipitation for the final
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ice sheet configuration. The mean oxygen isotopic composition of the ice
sheet is converted to a mean seawater oxygen isotope value following [48].
All sea level equivalent values in the manuscript are for ice above floatation,
accounting for the infilling with seawater of ocean basins below sea level

once ice has retreated; these values should be used for comparison with
eustatic sea level records. These values are not used for calculations of ˡ18Osw,
because this infilling effect is not relevant to the total ice volume recorded
by ˡ18Osw (i.e. ice both above and below floatation).
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