

This is a repository copy of Impact of prehospital transfer strategies in major trauma and head injury: Systematic review, meta-analysis, and recommendations for study design.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/96909/

Version: Accepted Version

Article:

Pickering, A., Cooper, K., Harnan, S. et al. (3 more authors) (2015) Impact of prehospital transfer strategies in major trauma and head injury: Systematic review, meta-analysis, and recommendations for study design. Journal of Trauma and Acute Care Surgery, 78 (1). pp. 164-177. ISSN 2163-0755

https://doi.org/10.1097/TA.000000000000483

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Title Page

Impact of pre-hospital transfer strategies in major trauma and head injury: Systematic review, meta-analysis and recommendations for study design

Authors: Pickering A, Cooper K, Harnan S, Sutton A, Mason S, Nicholl J.

Corresponding author:

Alastair Pickering, Consultant in Emergency Medicine, MD

Emergency Department,

Hull Royal Infirmary

Hull & East Yorkshire Hospitals NHS Trust,

Anlaby Road, Hull, HU3 2JZ

Alastair.Pickering@hey.nhs.uk

Tel: 01482 602865, Fax: 01482 674058

Authors: (address below)

- K. Cooper, Senior Research Fellow, PhD, k.l.cooper@sheffield.ac.uk
- S. Harnan, Research Fellow, MSc, s.harnan@sheffield.ac.uk
- A. Sutton, Information Specialist, MSc, a.sutton@sheffield.ac.uk
- S. Mason, Professor of Emergency Medicine, MD, s.mason@sheffield.ac.uk
- J. Nicholl, Dean, FMedSci, j.nicholl@sheffield.ac.uk

School of Health and Related Research, University of Sheffield, Regent Court, 30 Regent Street,

Sheffield, S1 4DA

Short title: Trauma transfer strategies: systematic review

Conflicts of Interest and Source of Funding

This project was funded by the National Institute for Health Research (NIHR) Service Delivery and Organisation (SDO) programme (project number 09/1001/037). This programme now falls under the NIHR Health Services and Delivery Research (HS&DR) Programme. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the SDO programme, NIHR, NHS or the Department of Health. The analysis of data, reporting of findings, and decision to publish were independent of the funding body.

No authors have any conflicts of interest to declare.

Abstract

Background: It is unclear whether trauma patients should be transferred initially to a trauma centre or local hospital.

Methods: A systematic review and meta-analysis assessed evidence for direct transport to specialist centres (SC) versus initial stabilisation at non-specialist centres (NSC) for major trauma or moderate-to-severe head injury. Nine databases were searched from 1988 to 2012. Limitations in study design informed recommendations for future studies.

Results: Of 19 major trauma studies, five (N=19,910) included patients not transferred to SC and adjusted for casemix. Meta-analysis showed no difference in mortality for initial triage to NSC vs. SC (odds ratio [OR] 1.03, 95% CI 0.85-1.23). Within studies excluding patients not transferred to SC, unadjusted analyses of mortality non-significantly favoured transfer via NSC (16 studies; N=37,079; OR 0.83, 95% CI 0.68 to 1.01) while adjusted analysis non-significantly favoured direct triage to SC (9 studies; N=34,266; OR 1.18, 95% CI 0.96 to 1.44). Of 11 head injury studies, all excluded patients not transferred to SC and half were in remote locations. There was no significant mortality difference between initial triage to NSC vs. SC within adjusted analyses (3 studies; N=1,507; OR 0.74, 95% CI=0.31-1.79) or unadjusted analyses (10 studies; N=3,671; OR 0.87, 95% CI=0.62-1.23).

Conclusions: This systematic review demonstrated no difference in outcomes for direct transport to a trauma centre versus initial triage to local hospital. Many studies had significant limitations in design and heterogeneity was high. Recommendations for future studies include: i) inclusion of patients not transferred to specialist centre and those dying during transport; ii) clear description of centres plus transport distances/times; iii) adjustments for casemix; and iv) assessment of morbidity as well as mortality.

Level of evidence: Systematic review and meta-analysis of predominantly Level IV studies (non-RCT, more than one negative criterion).

Keywords: trauma, head injury, transfer, systematic review, meta-analysis

Background

The development of regional major trauma centres as the hub of a network of hospitals for severely injured patients is a widely recognized model of care. Evidence from international studies demonstrates improved clinical outcomes in areas with regional trauma networks compared to models of care where severely injured patients are transferred to the nearest local hospital.^{1;2} For example previous studies have shown the odds of death for major trauma patients with severe head injury in the UK based on Trauma Audit and Research Network (TARN) data was three times that in a mature regionalized trauma network in Australia (OR 3.22, 95% CI 2.84-3.65).³

However, the decision to bypass the nearest hospital to transfer a patient directly to a regional major trauma centre is difficult and dependent on pre-hospital clinical assessment and prioritisation. From the trauma and head injury literature, trauma centres have reported improved clinical outcomes when compared with care in a non-specialist centre.⁴ However, the benefits of early correction of hypoxia and hypotension are also recognised for improving outcomes,⁵⁻⁸ and this would more likely be achieved quickly by delivery of patients to the nearest hospital. Current opinion supports the direct transfer of major trauma and head injured patients to the major trauma centre from the point of injury, but the evidence for this strategy remains unclear.

Working from an underlying assumption that the best outcomes for patients are achieved through management in a specialist centre, the aim of this study was to review the current evidence for a policy of triage and direct transfer to the specialist (major trauma) centre (SC) compared with initial transfer to the local hospital, with secondary transfer to the SC if appropriate, for patients experiencing severe multi-system trauma or moderate-to-severe head **Comment [KC1]:** Is this okay or too UK-focussed?

injury. The methodological limitations of included studies are also reviewed, and used to generate recommendations for future studies in this area.

6

Methods

A systematic review was undertaken according to the general principles recommended in the PRISMA statement.⁹

Search strategy

The following databases were searched: MEDLINE; MEDLINE In-Process; EMBASE; CINAHL; Cochrane Library including Cochrane Database of Systematic Reviews, Cochrane CENTRAL Controlled Trials Register, DARE, NHS EED and HTA databases, with relevant bibliographies, from 1988 to December 2012. The search was limited to articles published from 1988 onwards, as the organisation of emergency care has changed significantly since studies published before that date. A full search strategy is available from the authors on request.

Screening of retrieved articles

A title and initial abstract sift were undertaken by two reviewers, with involvement of a third reviewer where necessary. Potentially relevant articles were then fully screened by two reviewers and any uncertainties resolved through discussion with a third reviewer. Data were extracted by one reviewer and checked by a second.

Included populations and outcomes

Studies of major trauma (defined as an Injury Severity Score of >15 or other clear definition) or moderate-to-severe head injury (defined as Glasgow Coma Scale <13 or other clear definition) were included. The review was restricted to more severe cases since these patients were considered more likely than less severe cases to benefit from treatment in a specialist

centre.(11-13)¹⁰⁻¹² Relevant outcomes included mortality, morbidity, length of stay, time and distance data.

Included study design

Studies were included if they compared patients directly triaged to a specialist centre (SC) versus those initially triaged to a non-specialist centre (NSC) with some or all later transferred to a SC. Studies were excluded if they compared patients ever treated in a SC versus those never treated in a SC, since the aim was to assess the optimum initial triage route rather than the optimum location for overall management.

Risk of bias assessment

A bespoke tool for assessing risk of bias in included studies was developed for this review, based on relevance to the research question and robustness of analysis methods. This included four criteria:

- Whether NSC group included (or adjusted for exclusion of) patients not transferred to SC
- 2. Whether analyses were adjusted for differences in age and severity between groups
- 3. Whether sample included all relevant patients (rather than restricting to specific clinical subtypes or those receiving specific intervention)
- Whether no more than 5% patients were excluded from analyses due to missing data.

Data synthesis

Study data were meta-analysed using Review Manager version 5.0.12. Random effects models were used where clinical or statistical heterogeneity existed between studies. Data were converted so all odds ratios (ORs) compared initial triage to NSC versus direct triage to

8

SC; similarly, ORs for survival were converted to mortality. Hence for the presented mortality data an OR greater than 1 favours the direct to SC cohort, whilst for morbidity data (reporting on favourable outcomes) an OR greater than 1 favours the initial triage to NSC group.

Results

Number of retrieved studies

The literature search for this review (and for a wider review of emergency triage) identified 7767 references, of which 193 were examined as full texts. In total, 19 studies of trauma (within 20 references) and 11 studies of head injury (within 11 references) were included in this review. One reference covered both trauma and head injury. The PRISMA diagram is included as Appendix 1 and the PRISMA checklist as Appendix 2.

Major trauma: included studies

The study characteristics for the trauma studies are shown in Table 1. All nineteen studies of trauma (within 20 references)¹³⁻³² were controlled cohort studies; no randomised studies were identified. Eight studies were conducted in the USA, ^{15;18-20;24;25;30;31} four in Canada, ^{13;21;23;25} two in Australia, ^{26;27} one in Hong Kong, ²² one in Taiwan²⁸ and three in Europe. ^{14;16;17} Study size ranged from 222 to 11,398 patients. Thirteen studies identified major trauma patients based on ISS>15, ^{13;14;16;17;19;20;22;24-28} two Canadian studies based on ISS>12 (included since this appeared to be the standard definition of major trauma in this setting), ^{21;23} one based on ISS>24, ³¹ one based on ≥1 injury with Abbreviated Injury Scale (AIS) ≥ 3, ¹⁵ and two based on other parameters. ^{18;30}

The SC was described in thirteen studies as a Level I trauma centre or equivalent, ^{14-16;18;20-25;28;30;31} with the other six studies using different criteria (Table 1).^{13;17;19;25-27} NSCs were described in four studies as Level II-IV trauma centres ^{16;21;23;30} and in the remainder as non-trauma centres or other hospitals (Table 1). The majority of trauma studies excluded deaths before arrival at the SC; two excluded deaths before arrival at either the SC or NSC;^{13;16} one

included pre-hospital deaths,¹⁴ two presented data including and excluding these deaths,^{17;22} and for three this was not reported or was unclear.^{26;27;31}

Head injury: included studies

The study characteristics for the head injury studies are shown in Table 1.

All eleven studies of head injury were controlled cohort studies;^{23;33-42} no randomised studies were identified. Study size varied from 60 to 1,118 patients. Two studies were conducted in the USA,^{37;38} two in Canada,^{23;33} three in Norway,^{35;36;39} one in New Zealand,³⁴ one in Taiwan,⁴⁰ one in the Netherlands⁴¹ and one in Israel.⁴² Study size varied from 60 to 1,118 patients. Five studies included patients with severe head injury (GCS≤8);^{33;35;36;38;40} one with moderate-to-severe head injury (GCS≤12);³⁷ two with AIS≥3 for head injury;^{23;34} and three with brain injury requiring neurosurgery.^{39;41;42}

All studies described the specialist centre as having neurosurgical care available (or as a Level I trauma centre). NSCs were described as local hospitals, non-trauma centres or (in one study) Level II-III trauma centres.²³ All studies excluded deaths before SC arrival, except one which excluded deaths before transfer to SC;³⁷ one study excluded deaths before neurosurgery.³⁹

Risk of bias in included studies

Four criteria assessing risk of bias and relevance to the research question were assessed (Box 1). Only one-third of trauma studies and none of the head injury studies included or adjusted for patients not transferred to SC. Around half of the trauma studies and a quarter of head injury studies adjusted for differences in age and severity between groups. The majority of trauma and head injury studies included all relevant patients (rather than restricting to specific clinical subtypes or those receiving specific interventions). Finally, around a quarter 11

of trauma studies and half of the head injury studies excluded no more than 5% of patients from the analyses due to missing data (the majority of the remainder did not report sufficient data to assess this). These findings partially inform the recommendations below.

Box	1:	Risk	of	bias	due	to	study	y designs

Risk of bias criteria	n/N (%) studies with low risk of
	bias
1) NSC group includes or adjusts for	Trauma: 7/19 (37%)
patients not transferred to SC	
	Head injury: 0/11 (0%)
2) Analyses adjusted for differences in	Trauma: 11/19 (58%)
age and severity between groups	
	Head injury: 3/11 (27%)
3) Sample includes all relevant patients	Trauma: 17/19 (89%)
(not just specific clinical	
subtypes/interventions)	Head injury: 8/11 (73%)
4) No more than 5% patients excluded	Trauma: 5/19 (26%)
from analyses due to missing data	(additional 13/19 (68%) unclear
	risk)
	Head injury: 5/11 (45%)
	(additional 5/11 (45%) unclear risk)

Mortality data

<u>Trauma</u>

All nineteen trauma studies reported mortality; this was measured at one year in one study¹⁵ and one month in five studies;^{13;14;16;18;30} the remainder reported in-hospital mortality (this was assumed where unclear). Follow-up durations are shown on the meta-analysis figures.

Only seven studies accounted for all patients initially triaged to NSC (whether or not they were later transferred to SC), either by including these patients directly or by adjusting for their exclusion.^{13-17;26;27} Of these seven studies, five adjusted for age and severity in the analyses of mortality.^{13-15;26;27} These five studies were considered the highest quality, although their design was heterogeneous (factors contributing to this heterogeneity are discussed below). One Canadian study significantly favoured direct transfer to SC,¹³ one study in the Netherlands non-significantly favoured initial transfer to NSC,¹⁴ and three studies in the USA and Australia showed no difference between groups.^{15;26;27} A meta-analysis of these five studies (total N=19,910) showed no difference in mortality between groups (OR for NSC vs. SC = 1.03, 95% CI 0.85 to 1.23) with a moderate level of heterogeneity (I²=47%); see Table 2 and Figure 1. Meta-analysis of the unadjusted data for six studies which included all patients initially triaged to NSC (total N=17,523) also showed no statistically significant difference in mortality between groups (OR 1.04, 95% CI 0.72 to 1.50) with a high level of heterogeneity (I²=94%).

The remaining studies only compared patients transferred from NSC to SC versus those directly triaged to SC, generally because the data was obtained from SC databases. Unadjusted analysis of mortality for sixteen studies (N=37,079) showed a non-significant trend favouring initial triage to the NSC (OR 0.83, 95% CI 0.68 to 1.01, I^2 =86%). Conversely, adjusted analysis of 9 studies (N=34,266) non-significantly favoured direct triage to SC (OR 1.18, 95% CI 0.96 to 1.44, I^2 =77%). (Table 2; Figure 2). This demonstrates the potential effect of adjusting for casemix and the importance of caution when interpreting results.

Head injury

All eleven head injury studies reported mortality. This was reported in-hospital for six studies,^{23;33;34;37;40;42} at 2 weeks in one study,³⁸ 1 month in one study,⁴¹ 6 months in two studies,^{35;36} and ranged from 2-76 months in one study;³⁹ follow-up durations are shown on the meta-analysis figures following the author and date. All eleven studies of head injury compared transfers from NSC to SC versus direct triage to SC; no studies included or accounted for NSC patients who were not transferred to SC. Most studies were conducted in remote areas and involved long transport distances.

Only three studies adjusted for age and severity in the analyses of mortality. Two nonsignificantly favoured transfer: a study in Norway involving long transfer times (times to SC arrival were 5.5h for transfer group and 1.8h for direct group)³⁶ and a study in Taiwan where most traumas occurred within 30 mins of a hospital.⁴⁰ The other study significantly favoured direct triage to SC; this study in New York state covered urban and rural areas (times to SC arrival were 4.5h for transfer group and 1.1h for direct group).³⁸ Meta-analysis of these three studies (total N=1,507) showed no significant difference in mortality between groups (OR for transfers vs. direct = 0.74, 95% CI 0.31 to 1.79); heterogeneity was high (I^2 =80%) and the meta-analysis should be interpreted with caution as the included studies showed different directions of effect (Table 2; Figure 3).

Ten studies reported unadjusted mortality data. A meta-analysis (total N=3,671) again showed no significant difference between groups (OR for transfers vs. direct = 0.87 95% CI 0.62 to 1.23, I²=66%); see Table 2 and Figure 4. The meta-analysis is sub-grouped by country/continent and urban or rural area: one urban study significantly favoured direct triage to SC, four studies in urban/rural areas or with short transport distances showed no significant difference, while four of five studies in rural areas involving long transfer distances favoured 14 transfer (two statistically significant). While this pattern makes intuitive sense, further studies in urban areas would be required to confirm this finding. In addition, exclusion of transport deaths may skew results within studies involving long transport distances.

Morbidity data

No trauma studies reported morbidity outcomes. Limited morbidity data were reported for head injury studies. Four studies reported median Glasgow Outcome Scale (GOS) at follow-up,^{35;36;39;41} with one study also reporting the number of patients with a favourable GOS score of 4-5;³⁹ two studies reported the number discharged home.^{37;42} There was no clear difference between groups on these outcomes (Table 3).

Length of stay

Seven studies of trauma and three of head injury reported length of stay in hospital and/or intensive care unit (ICU). Hospital/ICU stays were longer for patients initially triaged to NSC than for those directly triaged to SC in all trauma studies and two of three head injury studies, though differences were not statistically significant (Table 4).

Time and distance data

For trauma, little data were reported in terms of urban or rural setting and distances between centres. Six studies reported longer times from injury to SC arrival for patients initially triaged to NSC than for those directly triaged to SC;^{17;24;26-28;30} this information was not reported for other studies. These data were somewhat better reported for head injury studies. Times from injury to SC arrival were longer for transferred patients than for direct triage to SC in all seven studies reporting this;^{34-39;41} times from injury to neurosurgery were also longer for transfers in the five studies reporting this.^{34;36;39;41;42}

Discussion

Principal findings

Overall, thirty relevant articles were included, investigating over 50,000 patients, but there was significant heterogeneity between studies and limitations in study methodology affecting the ability to draw any definitive conclusions. Within the remit of the search strategy nineteen relevant studies of major trauma were included, of which only five accounted for all patients initially triaged to NSC and adjusted for age and severity. Meta-analysis of these five studies showed no difference in mortality between those directly transferred to the SC and those initially triaged to the NSC.

Eleven studies of head injury were included, half of which were conducted in rural or remote geographical locations. All were restricted to comparing transfer from NSC to SC with direct triage to SC; none included patients remaining at the NSC. Meta-analyses showed no significant difference between initial triage to NSC and direct transfer to SC in either adjusted or unadjusted analyses. Studies in rural areas with long transport distances appeared more likely to favour initial triage to NSC than studies in mixed urban/rural areas (which showed little difference between groups), though the exclusion of patients dying before SC arrival may have skewed results.

Strengths and limitations of this review

This study has systematically reviewed the published evidence around triage strategies, following major trauma and significant head injury (moderate to severe), for delivery to a specialist centre. Within this a structured assessment of the risk of bias has been performed, with a bespoke tool designed for this review, which has identified a number of deficiencies in methodology across the included studies. These have impacted on the ability to perform robust meta-analyses and limited the generalisability of study findings. One example is shown in our analysis of major trauma studies that only compare transfers from NSC to SC versus direct triage to SC. Analysis of unadjusted mortality data favoured transfer via NSC while using adjusted data favoured direct triage to SC, demonstrating the importance of appropriate adjustment for confounders.

Previous reviews

A previous review by Hill et al. (2011)⁴³ also assessed the effects of direct transport versus inter-hospital transfer for trauma patients. Their inclusion criteria differed somewhat from ours, mainly in that inclusion was not restricted by trauma severity. Thirteen studies were included in both reviews. The review by Hill et al. included 22 studies which did not meet our inclusion criteria (12 not restricted to severe trauma; 2 very specific trauma types; 3 for paediatric injuries; 3 with data collected pre-1988; 1 with no relevant data and 1 without appropriate study design). We included ten studies not in the Hill et al. review.

The authors present meta-analyses for mortality, in which most studies excluded patients not transferred from the NSC. The OR for mortality for initial triage to NSC vs. direct to SC was 1.04 (95% CI=0.88-1.22) with significant heterogeneity (I²=82%). These findings concur with ours in that there is no clear evidence for a difference in mortality between these transfer pathways for major trauma patients. One major difference from our review is their inclusion of all severities of trauma, which may not reflect the population most likely to benefit from direct transfer to a specialist centre and could lead to undue influence of studies demonstrating no significant difference between strategies as a result of the lesser severity of injuries being investigated.

Implications of the review findings

The findings of this review led to the conclusion that there is no significant difference in mortality rates between the two triage strategies compared. The methodological frailties and heterogeneity identified mean that this cannot be considered a definitive conclusion. For policymakers and clinicians this means that the findings of this review do not contradict the current national recommendations around triage and transfer decisions following significant injury in the UK. Future recommendations should be based on better quality evidence than is currently available and robust evaluations of the current systems.

Review of study designs and recommendations for future research

Based on our review of study designs and the limitations of existing studies, we recommend the following for future studies aiming to compare triage strategies (Box 2).

Box 2: Limitations in study design to be addressed in future studies

Recommendations	Rationale
Selection of study cohorts	
5) Inclusion of all major trauma	Assessment of system effectiveness should
patients triaged to local hospital,	include all severely injured patients within the
whether or not later transferred	system measured from the point of injury
to specialist centre	
6) Exclusion of patients for whom	This subgroup of patients will not be affected by
the specialist centre is the	triage decisions and contaminate any analysis of
nearest hospital	outcomes based on this pre-hospital decision-
	making
7) Inclusion of patients dying	To robustly compare two different strategies of
during transport/transfer (both	delivery, from the point of injury, it is important
to the initial hospital and from	to include all patients prospectively. Failure to
NSC to SC)	do this may mean that the effects of transporting
	injured patients long distances are not taken into
	account
Data collection and analysis	
8) Adjustment for clinical factors	Adjusting for clinical factors such as age and
such as age and injury severity	severity which are known to affect outcomes is
	vital for providing a fair comparison between
	systems
9) Reporting of outcomes at	Mortality outcomes, when assessing bypass or
different time points (including	triage decisions, should be reported early (e.g.
in-hospital) and reporting of	in-hospital) to avoid confounding by other
morbidity as well as mortality	factors in the patient pathway. Reporting key
outcomes	morbidity outcomes in addition to mortality is
	important when assessing the effect of triage
	decisions
Description of centres and	
settings	

10) Clear description of	Specific facilities available at each SC and NSC
specialist and non-specialist	are not always consistently described within
hospitals being compared	existing studies and so sub-grouping the level of
	care to perform a meaningful analysis was not
	possible
11) Clear reporting of	Descriptions of setting, level of rurality,
geographical setting and	distances and transfer times (both to initial
distances and times for each	hospital and to specialist centre) should all be
group to arrive at the initial	reported in order to improve generalisability of
hospital and the specialist centre	study findings

Conclusion

A comprehensive systematic review of the current literature for major trauma and moderateto-severe head injury does not demonstrate evidence of any difference in clinical outcomes for initial triage to local hospital (with potential for later transfer) versus direct transport to a specialist centre.

Many studies had significant limitations in design and there was marked heterogeneity between studies. There is a need for high quality research in a UK setting. Future research should concentrate on prospective, comprehensive data collection from the point of injury, include appropriate adjustments for confounders, and consider reporting on a wider range of relevant outcomes.

Author contributions

JN conceived the idea for the study and oversaw its running; SM assisted AP in the clinical aspects of the study and overall coordination; KC, AS & SH performed the literature searches, systematic review and meta-analysis; all authors listed made significant contributions to the final report and drafting of the article.

References

- Celso B, Tepas J, Langland-Orban B, Pracht E, Papa L, Lottenberg L et al. A systematic review and meta-analysis comparing outcome of severely injured patients treated in trauma centers following the establishment of trauma systems. Journal of Trauma-Injury Infection & Critical Care 2006; 60(2):371-378.
- (2) Mann CN, Mullins RJ, Mackenzie EJ, Jurkovich GJ, Mock CN. Systematic Review of Published evidence regarding trauma system effectiveness. Journal of Trauma-Injury Infection & Critical Care 1999; 47(3 Suppl).
- (3) Gabbe BJ, Lecky FE, Bouamra O, Woodford M, Jenks T, Coats TJ et al. The Effect of an Organized Trauma System on Mortality in Major Trauma Involving Serious Head Injury: A Comparison of the United Kingdom and Victoria, Australia. Annals of Surgery 2011; 253(1):138-143.
- (4) Patel HC, Bouamra O, Woodford M, King AT, Yates DW, Lecky FE et al. Trends in head injury outcome from 1989 to 2003 and the effect of neurosurgical care: an observational study. Lancet 2005; 366(9496):1538-1544.
- (5) Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM et al. The role of secondary brain injury in determining outcome from severe head injury. Journal of Trauma-Injury Infection & Critical Care 1993; 34(2):216-222.
- (6) Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A. Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. Journal of Trauma-Injury Infection & Critical Care 2003; 54(2):312-319.
- (7) Manley G, Knudson MM, Morabito D, Damron S, Erickson V, Pitts L. Hypotension, Hypoxia, and Head Injury: Frequency, Duration, and Consequences. Arch Surg 2001; 136:1118-1123.
- (8) Moppett IK. Traumatic brain injury: assessment, resuscitation and early management. British Journal of Anaesthesia 2007; 99(1):18-31.
- (9) Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151(4):264-9, W64.
- (10) Nathens AB, Jurkovich GJ, Maier RV, Grossman DC, MacKenzie EJ, Moore M et al. Relationship between trauma center volume and outcomes. JAMA: Journal of the American Medical Association 2001; 285(9):1164-1171.
- (11) Demetriades D, Martin M, Salim A, Rhee P, Brown C, Doucet J et al. Relationship between American College of Surgeons trauma center designation and mortality in patients with severe trauma (injury severity score > 15). Journal of the American College of Surgeons 2006; 202(2):212-215.

- (12) Demetriades D, Martin M, Salim A, Rhee P, Brown C, Chan L. The effect of trauma center designation and trauma volume on outcome in specific severe injuries. Annals of Surgery 2005; 242(4):512-517.
- (13) Haas B, Gomez D, Zagorski B, Stukel TA, Rubenfeld GD, Nathens AB. Survival of the fittest: the hidden cost of undertriage of major trauma. Journal of the American College of Surgeons 2010; 211(6):804-811.
- (14) de Jongh MA, Meeuwis JD, van Baar ME, van Stel HF, Schrijvers AJ. Evaluation of trauma care by comparing mortality risks and admission policy in a Dutch trauma region. Injury 2008; 39(9):1007-1012.
- (15) Rivara FP, Koepsell TD, Wang J, Nathens A, Jurkovich GA, MacKenzie EJ. Outcomes of trauma patients after transfer to a level I trauma center. Journal of Trauma-Injury Infection & Critical Care 2008; 64(6):1594-1599.
- (16) Biewener A, Aschenbrenner U, Rammelt S, Grass R, Zwipp H. Impact of helicopter transport and hospital level on mortality of polytrauma patients. Journal of Trauma-Injury Infection & Critical Care 2004; 56(1):94-98.
- (17) Nardi G, Massarutti D, Muzzi R, Kette F, de Monte A, Carnelos GA et al. Impact of emergency medical helicopter service on mortality for trauma in north-east Italy. A regional prospective audit. European Journal of Emergency Medicine 1994; 1(2):69-77.
- (18) Nirula R, Maier R, Moore E, Sperry J, Gentilello L. Scoop and run to the trauma center or stay and play at the local hospital: hospital transfer's effect on mortality. Journal of Trauma-Injury Infection & Critical Care 2010; 69(3):595.
- (19) Clancy TV, Maxwell JG, Covington DL, Brinker CC, Blackman D. A statewide analysis of level I and II trauma centers for patients with major injuries. Journal of Trauma-Injury Infection & Critical Care 2001; 51(2):346-351.
- (20) O'Keefe GE, Jurkovich GJ, Copass M, Maier RV. Ten-year trend in survival and resource utilization at a level I trauma center. Annals of Surgery 1999; 229(3):409-415.
- (21) Sampalis JS, Denis R, Lavoie A, Frechette P, Boukas S, Nikolis A et al. Trauma care regionalization: a process-outcome evaluation. Journal of Trauma-Injury Infection & Critical Care 1999; 46(4):565-579.
- (22) Kam CW, Kitchell AK, Yau HH, Kan CH. Outcome of major trauma patients in a Hong Kong general hospital. European Journal of Emergency Medicine 1998; 5(3):297-306.
- (23) Sampalis JS, Denis R, Frechette P, Brown R, Fleiszer D, Mulder D. Direct transport to tertiary trauma centers versus transfer from lower level facilities: impact on mortality and morbidity among patients with major trauma. Journal of Trauma-Injury Infection & Critical Care 1997; 43(2):288-295.

- (24) Young JS, Bassam D, Cephas GA, Brady WJ, Butler K, Pomphrey M. Interhospital versus direct scene transfer of major trauma patients in a rural trauma system. American Surgeon 1998; 64(1):88-91.
- (25) Boulanger BR, McLellan BA, Sharkey PW, Rizoli S, Mitchell K, Rodriguez A. A comparison between a Canadian regional trauma unit and an American level I trauma center. Journal of Trauma-Injury Infection & Critical Care 1993; 35(2):261-266.
- (26) Fatovich DM, Phillips M, Jacobs IG. A comparison of major trauma patients transported to trauma centres vs. non-trauma centres in metropolitan Perth. Resuscitation 2011; 82(5):560-563.
- (27) Fatovich DM, Phillips M, Langford SA, Jacobs IG. A comparison of metropolitan vs rural major trauma in Western Australia. Resuscitation 2011; 82(7):886-890.
- (28) Hsiao KY, Lin LC, Chou MH, Chen CC, Lee HC, Foo NP et al. Outcomes of trauma patients: direct transport versus transfer after stabilisation at another hospital. Injury 2012; 43(9):1575-1579.
- (29) Garwe T, Cowan LD, Neas BR, Sacra JC, Albrecht RM, Rich KM. A propensity score analysis of prehospital factors and directness of transport of major trauma patients to a level I trauma center. Journal of Trauma-Injury Infection & Critical Care 2011; 70(1):120-129.
- (30) Garwe T, Cowan LD, Neas BR, Sacra JC, Albrecht RM. Directness of transport of major trauma patients to a level I trauma center: a propensity-adjusted survival analysis of the impact on short-term mortality. Journal of Trauma-Injury Infection & Critical Care 2011; 70(5):1118-1127.
- (31) Koczirka S, Tinkoff G, Jones M, Marco DR, Reed JF, Megargel RE. Trends in the overall mortality rate in severely injured trauma patients transported from scene to a level i trauma center from 1998-2007. Annals of Emergency Medicine Conference: American College of Emergency Physicians, ACEP 2011 Research Forum San Francisco, CA United States Conference Start: 20111015 Conference End: 20111016 Conference Publication: (var pagings) 2011; 58(4 SUPPL.#1):October.
- (32) Haas B, Stukel TA, Gomez D, Zagorski B, de MC, Sharma SV et al. The mortality benefit of direct trauma center transport in a regional trauma system: A population-based analysis. Journal of Trauma and Acute Care Surgery 2012; 72(6):June.
- (33) Simons R, Brasher P, Taulu T, Lakha N, Molnar N, Caron N et al. A populationbased analysis of injury-related deaths and access to trauma care in rural-remote Northwest British Columbia. Journal of Trauma-Injury Infection & Critical Care 2010; 69(1):11-19.
- (34) Kejriwal R, Civil I. Time to definitive care for patients with moderate and severe traumatic brain injury--does a trauma system matter? New Zealand Medical Journal 2009; 122(1302):40-46.

- (35) Moen KG, Skandsen T, Karlsen BH, Hara S, Solheim O, Strand IH et al. Patients with severe head injury in Norway - transfer and outcome. Journal of Neurotrauma 2009; 26(8):A35 Abstract P132.
- (36) Moen KG, Klepstad P, Skandsen T, Fredriksli OA, Vik A. Direct transport versus interhospital transfer of patients with severe head injury in Norway. European Journal of Emergency Medicine 2008; 15(5):249-255.
- (37) Tiesman H, Young T, Torner JC, McMahon M, Peek-Asa C, Fiedler J. Effects of a rural trauma system on traumatic brain injuries. Journal of Neurotrauma 2007; 24(7):1189-1197.
- (38) Hartl R, Gerber LM, Iacono L, Ni Q, Lyons K, Ghajar J. Direct transport within an organized state trauma system reduces mortality in patients with severe traumatic brain injury. Journal of Trauma-Injury Infection & Critical Care 2006; 60(6):1250-1256.
- (39) Sollid S, Munch-Ellingsen J, Gilbert M, Ingebrigtsen T. Pre- and inter-hospital transport of severely head-injured patients in rural Northern Norway. Journal of Neurotrauma 2003; 20(3):309-314.
- (40) Hsiao KY, Chen IC, Yang CJ, Hsiao CT, Chen KH. Is direct transport to a trauma centre best for patients with severe traumatic brain injury? A study in south-central Taiwan. EMERG MED J 2012; 29(2):156-159.
- (41) Joosse P, Saltzherr TP, van Lieshout WA, van EP, Ponsen KJ, Vandertop WP et al. Impact of secondary transfer on patients with severe traumatic brain injury. The Journal of Trauma and Acute Care Surgery 2012; 72(2):487-490.
- (42) Lin G, Teplitsky A, Hymas G, Bahouth H. Evacuation of wounded with intracranial injury to a hospital without neurosurgical service versus primary evacuation to a level I trauma centre. Injury 2012; 43(12):2136-2140.
- (43) Hill AD, Fowler RA, Nathens AB. Impact of interhospital transfer on outcomes for trauma patients: a systematic review. J TRAUMA 2011; 71(6):1885.

Figure 1: Trauma: Adjusted mortality for initial triage to NSC vs. direct triage to SC (includes

or adjusts for patients not transferred from NSC)

		т	RANSFERS+NSC	DIRECT		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
3.1.1 USA: transfers adjus	ted for NSC death	ns vs. dire	ct to SC (excluded	transpor	t deaths)		
Rivara 2008 (1y)	-0.01005	0.1216	863	2150	26.4%	0.99 [0.78, 1.26]	-+-
Subtotal (95% CI)			863	2150	26.4%	0.99 [0.78, 1.26]	•
Heterogeneity: Not applicab	le						
Test for overall effect: Z = 0	.08 (P = 0.93)						
3.1.2 Canada: transfers +	NSC deaths vs. di	rect to SC	(excluded transpo	ort deaths	5)		
Haas 2010 (1m)	0.1823	0.0633	3917	7481	38.6%	1.20 [1.06, 1.36]	₩
Subtotal (95% CI)			3917	7481	38.6%	1.20 [1.06, 1.36]	•
Heterogeneity: Not applicab	le						
Test for overall effect: Z = 2	.88 (P = 0.004)						
3.1.3 Australia: transfers	NSC deaths vs.	direct to S	C (unclear if inclue	ded trans	port deatl	ns)	
Fatovich 2011a (in-hosp)	-0.01	0.2728	1152	2005	9.6%	0.99 [0.58, 1.69]	
Fatovich 2011b (in-hosp)	0.095	0.2606	1443	2005		1.10 [0.66, 1.83]	
Subtotal (95% CI)			2595	4010	19.8%	1.05 [0.72, 1.51]	•
Heterogeneity: Tau ² = 0.00;	$Chi^2 = 0.08, df = 1$	(P = 0.78)	; l ² = 0%				
Test for overall effect: Z = 0	.24 (P = 0.81)						
3.1.6 Europe: transfers + I	NSC vs. direct to S	SC (includ	ed transport death	is)			
de Jongh 2008 (1m)	-0.3425	0.1997	517	382		0.71 [0.48, 1.05]	
Subtotal (95% CI)			517	382	15.2%	0.71 [0.48, 1.05]	
Heterogeneity: Not applicab	le						
Test for overall effect: Z = 1	.72 (P = 0.09)						
Total (95% CI)			7892	14023	100.0%	1.03 [0.85, 1.23]	•
Heterogeneity: Tau ² = 0.02;	$Chi^2 = 7.58, df = 4$	(P = 0.11)	; l² = 47%				0.1 0.2 0.5 1 2 5
Test for overall effect: Z = 0	.26 (P = 0.79)					Favo	U.1 U.2 U.5 I 2 5
Test for subgroup difference	es: Chi² = 7.50, df =	= 3 (P = 0.0	6), I ² = 60.0%			1 400	

Time of outcome measurement is shown for each study following author/date. Rivara et al. (2008) data is a hazard ratio but has been included as an approximation for the OR since it is a large and important study. Fatovich et al. (2011a and 2011b) use the same patient data for their direct-to-SC groups. The meta-analysed OR excluding Rivara 2008 and Fatovich 2011b does not change substantially (OR 0.98; 95% CI 0.69 to 1.39). Studies are sub-grouped by location, definition of groups, and whether transport deaths were included.

26

Figure 2: Trauma: Adjusted mortality for transfers NSC to SC vs. direct triage to SC (excludes

patients not transferred from NSC)

			TRANSFERS	DIRECT		Odds Ratio		Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
6.1.1 USA (excluding trans	sport deaths)							
Garwe 2011 (2 wk)	0.997	0.3709	600	1398	5.7%	2.71 [1.31, 5.61]	2011	· · · · · · · · · · · · · · · · · · ·
Nirula 2010 (1m)	1.0986	0.4267	318	787	4.6%	3.00 [1.30, 6.92]	2010	
Rivara 2008 (1y)	-0.1054	0.1282	863	2150	16.5%	0.90 [0.70, 1.16]	2008	
O'Keefe 1999 (in-hosp) Subtotal (95% Cl)	0.2231	0.0699	3840 5621	3840 8175	20.2% 47.0%	1.25 [1.09, 1.43] 1.44 [0.97, 2.12]	1999	•
Heterogeneity: Tau ² = 0.10;	Chi ² = 14.80, df =	3 (P = 0	.002); l ² = 80%					
Test for overall effect: Z = 1.	82 (P = 0.07)							
6.1.2 Taiwan (excluding tra	ansport deaths)							
Hsiao 2012a (in-hosp)	0.113	0.7073	75	156	1.9%	1.12 [0.28, 4.48]	2012	
Subtotal (95% CI)			75	156	1.9%	1.12 [0.28, 4.48]		
Heterogeneity: Not applicab	le							
Test for overall effect: Z = 0.	16 (P = 0.87)							
6.1.3 Canada (excluding tr	ansport deaths)							
Haas 2010 (1m)	-0.0726	0.0705	3469	7481	20.2%	0.93 [0.81, 1.07]	2010	
Sampalis 1999 (in-hosp) Subtotal (95% CI)	0.2927	0.0563	3856 7325	4680 12161	20.9% 41.1%	1.34 [1.20, 1.50] 1.12 [0.78, 1.60]	1999	•
Heterogeneity: Tau ² = 0.06;	Chi ² = 16.39, df =	1 (P < 0	.0001); l ² = 94%					
Test for overall effect: Z = 0.	62 (P = 0.54)							
6.1.7 Europe (excluding tra	ansport deaths)							
Biewener 2004 heli (1m)	0.2469	0.4039	92	210	5.0%	1.28 [0.58, 2.83]	2004	
Subtotal (95% CI)			92	210	5.0%	1.28 [0.58, 2.83]		
Heterogeneity: Not applicab Test for overall effect: Z = 0.								
6.1.8 Europe (including tra	insport deaths)							
de Jongh 2008 (1m)	-0.6349	0.4042	69	382	5.0%	0.53 [0.24, 1.17]	2008	
Subtotal (95% CI)			69	382	5.0%	0.53 [0.24, 1.17]		
Heterogeneity: Not applicab	le							
Test for overall effect: Z = 1.	57 (P = 0.12)							
Total (95% CI)			13182	21084	100.0%	1.18 [0.96, 1.44]		•
Heterogeneity: Tau ² = 0.05;	Chi ² = 35.39, df =	8 (P < 0	.0001); l² = 77%					
Test for overall effect: Z = 1.	60 (P = 0.11)							0.1 0.2 0.5 1 2 5 avours TRANSFERS Favours DIRECT
Test for subgroup difference	s: Chi ² = 5.02, df =	= 4 (P =	0.29), l ² = 20.3%	, D			1.6	avours manor Eno Tavours DIRECT

Time of outcome measurement is shown for each study following author/date. Rivara et al. (2008) and Garwe et al. (2011) data are hazard ratios but have been included as approximations for the ORs since they are large and important studies; the meta-analysed OR excluding these data does not change substantially (OR 1.17; 95% CI 0.95 to 1.45). Studies are sub-grouped by location and whether transport deaths were included.

Figure 3: Head injury: Adjusted mortality for transfers NSC to SC vs. direct triage to SC

			TRANSFERS	DIRECT		Odds Ratio			Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	Year		IV, Rando	om, 95%	СІ
2.1.1 Time to SC for tr	ansfers: not report	ed									
Hsiao 2012b (in-hosp)	-0.673	0.3846	167	87	32.5%	0.51 [0.24, 1.08]	2012			ł	
Subtotal (95% CI)			167	87	32.5%	0.51 [0.24, 1.08]		-		+	
Heterogeneity: Not appl	licable										
Test for overall effect: Z	2 = 1.75 (P = 0.08)										
2.1.2 Time to SC for tr	ansfers: 4.1-6h										
Moen 2008 (6m)	-0.844	0.5044	60	75	27.7%	0.43 [0.16, 1.16]	2008			+	
Hartl 2006 (2-week)	0.392	0.1849	254	864	39.8%	1.48 [1.03, 2.13]	2006				
Subtotal (95% CI)			314	939	67.5%	0.87 [0.26, 2.89]		_			-
Heterogeneity: Tau ² = 0	0.62; Chi ² = 5.29, df =	= 1 (P =	0.02); l ² = 81%								
Test for overall effect: Z	2 = 0.22 (P = 0.82)										
Total (95% CI)			481	1026	100.0%	0.74 [0.31, 1.79]					
Heterogeneity: Tau ² = 0	0.47; Chi ² = 10.03, df	f = 2 (P =	= 0.007); l ² = 80 ⁴	%			-				
Test for overall effect: Z	(= 0.66 (P = 0.51)).1 0.2	0.5 NSFERS	1 2 Fourier	5
Test for subgroup differ	ences: Chi ² = 0.55, d	df = 1 (P	= 0.46), l ² = 0%	, ,			га	vours i n <i>i</i>	INOFERO	Favours	DIRECT

Time of outcome measurement is shown for each study following author/date. Studies are subgrouped by time to SC for transfer group.

28

Figure 4: Head injury: Unadjusted mortality for transfers NSC to SC vs. direct triage to SC

0	TRANSF		DIREC			Odds Ratio	X .	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
2.2.1 Canada: urban								
Sampalis 1997 (in-hosp) Subtotal (95% CI)	74	486 486	44	466 466	14.9% 14.9%	1.72 [1.16, 2.56] 1.72 [1.16, 2.56]	1997	•
Total events	74		44					
Heterogeneity: Not applicab Test for overall effect: Z = 2		.007)						
2.2.2 USA: urban and rura	I							
Hartl 2006 (2-week) Subtotal (95% CI)	65	254 254	179	864 864	15.9% 15.9 %	1.32 [0.95, 1.82] 1.32 [0.95, 1.82]	2006	•
Total events	65		179					-
Heterogeneity: Not applicab								
Test for overall effect: Z = 1		.10)						
2.2.3 Israel: urban and rur	al							
Lin 2012 (in-hosp) Subtotal (95% CI)	2	31 31	2	29 29	2.5% 2.5%	0.93 [0.12, 7.08] 0.93 [0.12, 7.08]	2012	
Total events	2		2			· · · ·		
Heterogeneity: Not applicab Test for overall effect: Z = 0		.94)						
2.2.4 Netherlands: urban a	and rural							
Joosse 2012 (1m) Subtotal (95% CI)	8	24 24	15	56 56	6.9% 6.9%	1.37 [0.49, 3.85] 1.37 [0.49, 3.85]	2012	
Total events	8		15			,		
Heterogeneity: Not applicab			.5					
Test for overall effect: Z = 0		.55)						
2.2.5 Taiwan: rural, fairly s	short dist	ances						
Hsiao 2012b (in-hosp)	86	167	55	87	12.8%	0.62 [0.36, 1.05]	2012	
Subtotal (95% CI)		167		87	12.8%	0.62 [0.36, 1.05]		
Total events	86		55					
Heterogeneity: Not applicab Test for overall effect: Z = 1		.08)						
2.2.6 USA: mostly rural, lo	na distar	ices						
Tiesman 2007 (in-hosp)	105 105	379	128	350	16.1%	0.66 [0.49, 0.91]	2007	
Subtotal (95% CI)		379		350	16.1%	0.66 [0.49, 0.91]		•
Total events	105		128					
Heterogeneity: Not applicab Test for overall effect: Z = 2		.01)						
2.2.7 Norway: mostly rura	l, long dis	atances						
Moen 2009 (6m)	8	34	12	54	7.0%	1.08 [0.39, 2.99]	2009	
Moen 2008 (6m)	9	60	23	75	8.5%	0.40 [0.17, 0.94]		
Sollid 2003 (2-76m)	10	38	16	47	7.7%	0.69 [0.27, 1.77]	2003	
Subtotal (95% CI)		132	_	176	23.2%	0.63 [0.36, 1.11]		
Total events	27	0.4	51 (P 0.0	4). 10	00/			
Heterogeneity: Tau ² = 0.02; Test for overall effect: Z = 1			∠ (۲ = 0.3	4); l² =	8%			
2.2.8 New Zealand: mostly	rural, loi	ng dista	inces					
Kejriwal 2009 (in-hosp)	7	73	17	97	7.7%	0.50 [0.20, 1.28]	2009	
Subtotal (95% CI)		73		97	7.7%	0.50 [0.20, 1.28]		
(7		17					
Total events	lo.							
Total events Heterogeneity: Not applicab								
Total events		.15)						
Total events Heterogeneity: Not applicab		.15) 1546		2125	100.0%	0.87 [0.62, 1.23]		•
Total events Heterogeneity: Not applicab Test for overall effect: Z = 1 Total (95% CI) Total events	.45 (P = 0 374	1546	491			0.87 [0.62, 1.23]		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Total events Heterogeneity: Not applicab Test for overall effect: Z = 1 Total (95% CI)	.45 (P = 0 374 Chi ² = 26	1546 .66, df =				0.87 [0.62, 1.23]		

Time of outcome measurement is shown for each study following author/date.

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
Trauma s	tudies	-		-	-	-			<u>.</u>	-
Initial triage	e to NSC vs. dir	ect triage to S	C (either including patients not transfe	rred from NS	C or adjusting for th	eir exclusion)				
Fatovich 2011a ²⁶	1997-2006 Australia (Perth) 4 SCs, 6 NSCs	Total: 3083 A: 2005 B2:1078 B1 (deaths): 74	Analysis of non-transferred patients only included deaths at NSC, not those who survived but were not transferred. <u>Included</u> deaths in ED or within 24h of admission. <u>Excluded</u> those presenting >7 days after injury admitted for <24h.	ISS > 15	ISS (Median, IQR): A: 24 (17-29) B2: 24 (17-29)	Mean (SD): A: 43.9 (24.3) B2: 39.1 (24.3)	SC registry, Death Registry. Retrospective	Inclusive trauma system	SC: Trauma centres NSC: Non-trauma centres Investigator based at SC	Age, ISS, RTS, N regions injured, time to ambulance arrival and SC arrival, and corrected for selection bias of deaths in NSC
Fatovich 2011b ²⁷	1997-2006 Australia (Perth) 4 SC, NSCs	Total: 3333 A: 2005 B2: 1328 B1 (deaths): 185	Analysis of non-transferred patients only included deaths at NSC, not those who survived but were not transferred. <u>Included</u> deaths in ED or within 24h of admission. <u>Excluded</u> those presenting >7 days after injury admitted for <24h.	ISS > 15	ISS (Median, IQR): A: 24 (17-29) B2: 25 (18-29)	Mean (SD): A: 43.9 years (24.3) B2: 34.2 years (18.3)	SC registry, Death Registry, Royal Flying Doctor database. Retrospective	Inclusive trauma system	SC: Trauma centres NSC: Non-trauma centres Investigator based at SC	Age, ISS, RTS, N regions injured, time to ambulance arrival and SC arrival, and corrected for selection bias of deaths in NSC
Haas 2010 ¹³	2002-2007 Canada (Ontario) 9 SCs, NSCs	Total: 11,398 A: 7,481 B1+B2: 3,917	Excluded deaths before or within 30 mins of SC/NSC arrival. <u>Other exclusions</u> : discharged home from ED (SC or NSC) or admitted to NSC <u>Group definitions</u> : <u>B1</u> : only patients dying in NSC ED (not those who survived but were not transferred to SC). <u>B2</u> : only transfers from NSC ED. Included only B1+B2 patients surviving at least 1 hour in NSC (for whom direct transfer to SC may have been feasible)	ISS > 15 or death within 24h	% ISS 16-24, 25- 47, 48-75: A: 46%, 48%, 4% B1+B2: 39%, 49%, 3% B2: 43%, 53%, 3%	B1+B2:48	Databases of trauma deaths, ED visits, hospitalisation s Retrospective	NR	<u>SC</u> : Level I and II trauma centres <u>NSC</u> : Non-trauma centres Unclear whether investigator based at SC or NSC	Age, gender, ISS, comorbidities (Charlson score), mechanism of injury, whether AIS>3 in head/chest/abdomen

Table 1: Study characteristics: Trauma and head injury

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
de Jongh 2008 ¹⁴	2000-2006 Netherlands (Noord- Brabant) 1 SC, 11 NSCs	Total: 899 A: 382 B1: 448 B2: 69	Included patients admitted to SC or NSC, or dead on arrival, or who died in ED	ISS > 15	ISS (median, IQR): A: 25 (17-30) B1: 19 (16-25) B2: 25 (17-26)	Mean (SD): A: 40 (21) B1: 45 (22) B2: 36 (22)	Regional trauma registry (prospective); NSC registries (prospective & retrospective)	network for data collection; no centralisation of care. Policy of	<u>SC</u> : Level 1 trauma centre with large neurosurgical unit <u>NSC</u> : Other hospitals Investigator based at SC	Age, ISS, GCS, severe brain injury (AIS ≥ 4)
Rivara 2008 ¹⁵	2001-2002 USA (14 states) 18 SCs, 51 NSCs		Excluded deaths before or within 30 mins of SC arrival. <u>Other exclusions</u> : arrival at SC/NSC >24h after injury; patients admitted to NSC. <u>Analyses</u> : included all deaths in SC and sample living to discharge; analyses weighted to account for sampling. See Adjustments for accounting for deaths before transfer	At least one injury AIS ≥ 3	NISS >15: 76% of patients (mean NR)	Range 18-84 (mean/media n NR)	Other study (National Study on Cost and Outcome of Trauma; NSCOT) Prospective	Various	<u>SC</u> : Level I trauma centres <u>NSC</u> : Large non-trauma centres Unclear whether investigator based at SC or NSC	Age, gender, NISS, mechanism of injury, comorbidities (Charlson score). Adjustment for NSC deaths before transfer: compared B2 patients transferred at various time points after NSC admission versus A patients alive at same time points after SC admission (i.e. excluded A patients dying before each time point)

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
Biewener 2004 ¹⁶	1998-1999 Germany (Dresden) 1 SC, 6 NSCs	Total: 404 A: 210 B1: 102 B2: 92	Excluded deaths before SC/NSC arrival. <u>Other exclusions</u> : ISS >67; age >75 years. <u>Note</u> : Some transfers (B2) were level II to level I trauma centre. <u>Group definitions</u> : <u>A (heli)</u> : helicopter to SC. <u>A (amb)</u> : ground ambulance to SC. Unadjusted data includes all A (heli and amb); adjusted data includes A (heli) only	ISS > 15	ISS (mean): A (heli): 35.6 A (amb): 34.9 B1: 34.0 B2: 33.3	Mean (SD): A (heli): 37 (18) A (amb): 34 (18) B1: 39 (21) B2: 36 (18) All age ≤ 75	SC trauma registry (prospective); NSC data collection (retrospective)	NR	<u>SC</u> : Level I trauma centre, university hospital <u>NSC</u> : Regional (level II or III) hospitals Investigator based at SC	Age, ISS
Nardi 1994 ¹⁷	1992-1993 Italy (3 provinces in North-East) 4 SCs, 12 NSCs	Total: 222 A: 140 B1+B2: 82	Excluded deaths before arrival of first rescuers. Analyses including and excluding deaths before SC/NSC arrival/transfer. <u>Group definitions</u> : <u>A1</u> : direct to SC, also nearest hospital. <u>A2</u> : direct to SC via helicopter after stabilisation in field	ISS > 15 + SC ICU admission ≥ 48h + ventilatory support	ISS (mean, SD): A1: 33.4 (19.6) A2: 36.0 (17.8) B1+B2: 35.1 (18.2)	Mean: A1: 41 A2: 37 B1+B2: 43	Patients attended by EMS Prospective	Policy of severe trauma to trauma centre, either directly or via local hospital	<u>SC</u> : Trauma centres <u>NSC</u> : Nearest hospital for stabilisation Unclear whether investigator based at SC or NSC	None

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
Transfer NS	SC to SC vs. dire	ect triage to SC	(excluding patients not transferred fro	om NSC)	-	-	-	-	-	-
Hsiao 2012a ²⁸	2010 Taiwan (south- central) 1 SC, NSCs	Total: 231 A: 156 B2: 75	Excluded deaths before SC arrival Other exclusions: loss of vital signs before SC arrival, stayed in the NSC for >6 hours, admitted to ward or ICU at NSC, not transported by EMS	ISS > 15	ISS (mean, SD): A: 27.7 (16.1) B2: 25.6 (11.7)	Mean (SD): A: 53.6 (21.1) B2: 49.9 (20.3)	Charts and EMS records Prospective	Exclusive; trauma system establishment began during study period; most patients sent to nearest hospital	SC: severe-grade emergency care ability hospital, similar rating to level 1 trauma centres. NSC: Non-trauma centres Investigator based at SC	Adjustments for: ISS score, hypotension, hypoxia, acidosis, coagulopathy, initial GCS score, haemoglobin, platelets
Garwe 2011a, ²⁹ Garwe 2011b ³⁰	2006-2007 USA (Oklahoma) 1SC, NSCs	Total: 1998 A: 1398 B2: 600	hours (for nonfatal cases), isolated orthopaedic injury to the extremities due to same level fall; overexertion injuries; submersions; poisonings; asphyxiation; injury from pre-existing condition, did not arrive at SC within 24	AIS≥3 or ISS≥9 or TRISS survival probability <0.9 ISS≥16: A: 847 (60.6%) B: 397 (66.2%)	ISS (Mean, SD): A: 20.8 (11.5) B: 21.4 (11.5)	Mean (SD): A: 37 (19.2) B: 38.5 (23)	Oklahoma State Trauma Registry Retrospective	Inclusive trauma system	SC: Level 1 trauma centre NSC: Two level 2 trauma centres and a number of level 3 and 4 trauma centres in rural areas External investigator	Mortality hazard ratio adjusted for propensity to be transported directly to SC, time to SC, age, ISS, intubation in the ED, presence of severe head injury, comorbid condition and shock.
Koczirka 2011 ³¹	1998-2007 USA (Delaware) 1SC, NSCs	Total: 2491 A: 1848 B2: 643	NR	ISS>24	NR	NR	Trauma system registry Retrospective	Inclusive trauma system	SC: Level 1 trauma centre NSC: other facilities	None

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
Nirula 2010 ¹⁸	2004-2007 USA (various areas) 8 SCs, NSCs	Total: 1,105 A: 787 B2: 318	Excluded deaths before SC arrival. <u>Other exclusions</u> : arrival to hospital >6h after injury	Hypotension (<90) or elevated base deficit (≥ 6), transfusion within 12h, ≥ 1 injury AIS ≥ 2 (not brain), intact cervical spinal cord	ISS (mean, SD): A: 31 (13) B2: 31 (13)	Mean (SD): A: 41 (18) B2: 44 (20)	Glue Grant Trauma Database (severely injured patients) Prospective	Various	<u>SC</u> : Level I trauma centres <u>NSC</u> : Non-trauma centres Investigator based at SC	Age, ISS, time to SC arrival, comorbidities (APACHE II), crystalloid and blood infusion volumes, head injury, SC site
Clancy 2001 ¹⁹	1995-1996 USA (North Carolina) 9 SCs, NSCs	Total: 801 A: 358 B2: 443	Excluded deaths before SC arrival; included deaths in SC ED. <u>Other exclusions</u> : patients admitted for <24h <u>Note</u> : Some transfers (B2) may have been level II to level I trauma centre	ISS > 15	NR	A+B2, all severities (mean, SD): Level I SC: 34 (20) Level II SC: 36 (SD 20)	State trauma registry	NR	<u>SC</u> : 5 Level I and 4 level II trauma centres, > 600 beds each <u>NSC</u> : Other hospitals Investigator based at SC	None
O'Keefe 1999 ²⁰	1986-1995 USA (Washingto n) 1 SC, NSCs	Total: 7,681 A: NR B2: NR	Excluded deaths before SC arrival and deaths in SC ED	ISS > 15	NR	All severities: mean 34	SC trauma registry Retrospective	Became inclusive trauma system during study period	<u>SC</u> : Level I trauma centre <u>NSC</u> : Other hospitals Investigator based at SC	Age, AIS (abdomen / chest / head), mechanism of injury, year of admission

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
Sampalis 1999 ²¹	1992-1998 Canada (Montreal, Quebec City) 4 SCs, 95 NSCs	Total: 8,536 A: 4,680 B2: 3,856	Excluded deaths at the scene; included deaths in SC ED. <u>Note</u> : Some transfers (B2) were level II to level I trauma centre	ISS > 12 or one of: death from injury, PHI > 3, ≥ 2 injuries AIS ≥ 3, stay > 3 days	ISS ≥ 12: 94% patients Mean ISS 24.6- 27.9 across study years	All study years: mean 46-54	Regional trauma registry; hospital &; EMS records Prospective	Became inclusive trauma system during study. Policy (1995+): severe trauma to level I trauma centre, either directly or via local hospital	<u>SC</u> : Level I trauma centres, trauma and neurosurgery cover at all times <u>NSC</u> : Level II or level III trauma centre Investigator based at SC	Age, ISS, trauma centre designation (level I, II or III), prehospital time, time to admission, phase of regionalisation of trauma system
Kam 1998 ²²	1994-1996 Hong Kong 1 SC, 1 NSC	Total: 70 A: 43 B2: 27	Analyses including and excluding deaths before SC arrival and during transfer from NSC to SC	ISS > 15	% ISS 16-24, 25- 40, 41-50, ≥ 51: A: 23%, 37%, 26%, 14% B2: 30%, 48%, 11%, 11%	All severities: >54 years: A: 15% B2: 18%	Medical records at SC Retrospective	Policy of transport to nearest hospital	<u>SC</u> : General hospital with trauma team; facilities and expertise between that of US level I and II trauma centres, 1200 beds <u>NSC</u> : District hospital of 200 beds; ED but no acute operative facilities Investigator based at SC	None
Sampalis 1997 ²³	1993-1995 Canada (Montreal, Quebec City) 3 SCs, NSCs	Total: 1,755 A: 1,035 B2: 720	Excluded deaths before SC arrival. <u>Other exclusions</u> : injured outside city limits; not transported by EMS. <u>Note</u> : 27% transfers (B2) were level II to level I trauma centre	ISS > 12 and one of: death from injury; stay > 3 days; ICU admission	NR	All severities (mean, SD): A: 48 (23) B2: 42 (21)	State trauma registry; other study	Policy of severe trauma to level I trauma centre, either directly or via local hospital	<u>SC</u> : Level I trauma centres, neurosurgery available at all times <u>NSC</u> : Level II trauma centre (27% patients) or level III trauma centre (73% patients), specialists on call Investigator based at SC	None

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
Young 1997 ²⁴	1994-1995 USA (Virginia) 1 SC, NSCs	Total: 316 A: 165 B2: 151	Excluded deaths before SC arrival; included deaths in SC ED	ISS > 15	ISS (mean, SD): A: 24.8 (8.2) B2: 23.1 (7.2) GCS (mean, SD): A: 11.4 (4.9) B2: 11.4 (5.0)	Mean (SD): A: 44 (20) B2: 46 (21)	SC trauma registry; medical records Retrospective	NR	<u>SC</u> : Level I trauma centre <u>NSC</u> : Other hospitals Investigator based at SC	None
Boulanger 1993a ²⁵	1986-1990 Canada (Toronto, Ontario) 1 SC, NSCs	Total: 911 A: 226 B2: 685	Excluded deaths before SC arrival. Inclusion: victims of motor vehicle crashes (drivers or passengers), age >14 years	ISS > 15	ISS (mean, SD): A: 29.8 (12.2) B2: 31.5 (11.1) GCS (mean, SD): A: 10.8 (5.2) B2: 9.2 (5.3)	Mean (SD): A: 38 (18) B2: 34 (17)	SC trauma registry Prospective	Exclusive trauma system	<u>SC</u> : Regional trauma unit <u>NSC</u> : Non-trauma centres Investigator based at SC	None
Boulanger 1993b ²⁵	1986-1990 USA (Baltimore, Maryland) 1 SC, NSCs	Total: 1,852 A: 1,368 B2: 484	Excluded deaths before SC arrival. Inclusion: victims of motor vehicle crashes (drivers or passengers), age >14 years	ISS > 15	<u>ISS</u> (mean, SD): A: 28.8 (12.1) B2: 29.4 (14.0) <u>GCS</u> (mean, SD): A: 11.5 (4.4) B2: 11.9 (4.3)	Mean (SD): A: 33 (17) B2: 34 (18)	SC trauma registry Prospective	Inclusive trauma system	<u>SC</u> : Level I trauma centre <u>NSC</u> : Non-trauma centres Investigator based at SC	None
Head inju	ry studies	÷		÷	•	-	•	÷	÷	
Transfer NSO	C to SC vs. dire	ect triage to SC	C (excluding patients not transferred fr	om NSC)						
Hsiao 2012b ⁴⁰	2003-2008 Taiwan (south- central) 1 SC, NSCs	Total: 254 A: 87 B2: 167	Excluded deaths before hospital arrival Other exclusions: loss of vital signs before arrival at hospital, multiple traumas, penetrating brain injury, <18 years of age, GCS>8 after drugs eliminated.	GCS 3-8 after initial resuscitatio n at the ED	GCS mean (SD) A: 5.4 (1.92) B2: 5.3 (1.71)	Median (range): A: 55 (20-91) B2: 48 (18-92)	Chart review Retrospective	Non-inclusive - patients bypass nearest hospital for SC at patient or family request	<u>SC</u> : "severe" class emergency care general hospital with neurosurgeons available 24h - similar to level 1 trauma centre <u>NSC</u> : Other hospitals Investigator based at SC	Age, initial GCS, hypotension, hypertension, hyperthermia, hyperglycaemia, surgical treatment

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
Joosse 2012 ⁴¹	2006-2009 Netherlands (Amsterdam) 1 SC, NSCs		Excluded deaths before hospital arrival Inclusion: severe head injury requiring neurosurgery (craniotomy, craniectomy, or operation on depressed skull fracture) within 6h of admission. Exclusion: Patients operated on solely for insertion of intracranial pressure monitor or external ventricular drain, or admitted for observation bur requiring neurosurgery after deterioration.	AIS ≥ 3 for head injury and requiring neurosurgic al intervention	ISS (median, IQR): A: 25 (16-29) B2: 25 (16-25)	Median (IQR): A: 46 (31-56) B2: 53 (36-64)		Decision to present to SC made on-scene by ambulance nurses based on clinical presentation	SC: level 1 trauma centre with neurosurgical facilities NSC: district hospital without neurosurgical facilities Investigator based at SC	None
Lin 2012 ⁴²	2008-2010 Israel (Naharia) 1 SC, 1 NSC	Total: 60 A: 29 B2: 31	Excluded deaths before hospital arrival Inclusion: aged >2 years, blunt intracranial injury diagnosed by CT and requiring neurosurgical intervention. Case-control study; subset of direct-to- SC patients selected at random. Exclusion: AIS>2 for other body system, received anticoagulation prior to injury, urgent non-neurosurgical operations, arrivals >24h after injury.	Requiring neurosurgic al intervention	GCS mean (SD) A: 11.0 (2.8) B2: 10.4 (3.7)	Mean (SD): A: 31.7 (24.4) B2: 29.4 (23.2)	Trauma registry at SC and NSC, ER files and computerised medical records. Retrospective	Patients usually transported to nearest hospital	SC: Level 1 trauma centre NSC: trauma service but no neurosurgery Investigators based at SC and NSC	None
Simons 2010 ³³	2001-2006 Canada (British Colombia) 1 SC vs. NSCs	Total: NR A: NR B2: NR	Excluded deaths before SC arrival	GCS ≤ 8	NR	NR	State trauma registry Retrospective	No bypass protocols; transport to nearest hospital	<u>SC</u> : Level I trauma centre with neurosurgery <u>NSC</u> : Local hospital, level V trauma services, no neurosurgery Investigator based at SC	None, but "similar patients" compared between groups (not reported how matched)

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
Kejriwal 2009 ³⁴	2004 New Zealand (Upper North Island) 1 SC, NSCs	Total: 170 A: 97 B2: 73	Excluded deaths before SC arrival <u>Other exclusions</u> : arrival at hospital >24h after injury	AIS ≥ 3 for head injury	ISS (median, IQR): A: 17 (9 to 50) B2: 16 (6 to 25)	Median (IQR): A: 40 (15-94) B2: 33 (20-49)	SC trauma registry Retrospective	Ad hoc trauma system; transport to nearest hospital; telemedicine	<u>SC</u> : City hospital, provides brain trauma care for population of two million <u>NSC</u> : Closest regional hospital Investigator based at SC	None
Moen 2009 ³⁵	2004-2007 Norway (Trondheim) 1 SC, NSCs	Total: 88 A: 54 B2: 34	Excluded deaths before SC arrival <u>Other exclusions</u> : unsalvageable patients; deaths from other injuries; patients not receiving active treatment	GCS ≤ 8	ISS (median, range): A: 27 (9 to 50) B2: 26 (9 to 54) GCS (median, range): A: 5 (3 to 9) B2: 6 (3 to 9)	Median (range): A: 40 (7-94) B2: 45 (6-81)	SC data collection Retrospective	Well-developed transfer system; telemedicine	<u>SC</u> : University hospital department of neurosurgery <u>NSC</u> : Local hospitals Investigator based at SC	None
Moen 2008 ³⁶	1998-2002 Norway (Trondheim) 1 SC, 8 NSCs	Total: 135 A: 75 B2: 60	Excluded deaths before SC arrival <u>Other exclusions</u> : unsalvageable patients; deaths within 24h of other injuries; patients not receiving active treatment	GCS ≤ 8	ISS (mean, range): A: 31.8 (9 to 75) B2: 27.0 (9 to 75) GCS (median, range): A: 5.5 (3 to 15) B2: 7 (3 to 15)	Median (range): A: 34 (1-82) B2: 34 (2-88)	Medical records, ambulance records Prospective	Air ambulance triage to SC or NSC, or ground ambulance transport to nearest hospital; telemedicine	<u>SC</u> : University hospital department of neurosurgery <u>NSC</u> : 7 local district hospitals and 1 central hospital Investigator based at SC	Mortality analysis only: Age, ISS, GCS, pupil dilation

Study	Dates, country (area), N centres	N patients	Inclusion/exclusion; definitions of groups	Severity (inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
Tiesman 2007 ³⁷	2002-2003 USA (Iowa) 9 SCs, 100+ NSCs	Total: 754 A: 375 B2: 379	Excluded deaths before transfer to SC	GCS ≤ 12	ISS (mean, SD): A: 26.3 (15.2) B2: 27.2 (11.9) GCS (mean, SD): A: 5.5 (3.3) B2: 5.2 (2.8)	NR	State trauma registry Retrospective	Inclusive trauma system; triage protocol	<u>SC</u> : 2 level I and 7 level II trauma centres with neurosurgery <u>NSC</u> : Community hospitals and lower level trauma centres Unclear whether investigator based at SC or NSC	None
Hartl 2006 ³⁸	2000-2004 USA (New York State) 24 SCs, NSCs	Total: 1,118 A: 864 B2: 254	Excluded deaths before SC arrival, deaths in ED, and those brain dead on admission <u>Other exclusions</u> : arrival at SC >24h after injury; arrival at hospital <10 mins after injury; non-paralysed with GCS 3-4 and fixed & dilated pupils	GCS ≤ 8	GCS: A: 52% 3-5, 48% 6-8 B2: 47% 3-5, 53% 6-8	A: mean 36.5 B2: mean 34.4 A+B2: range 0- 94	SC trauma registries	Inclusive trauma system	<u>SC</u> : 22 level I and II trauma centres enrolled in quality improvement programme <u>NSC</u> : Non-trauma centre Unclear whether investigator based at SC or NSC	Age, GCS, pupillary status, arterial hypotension
Sollid 2003 ³⁹	1986-1995 Norway (North, Tromso) 1 SC, 10 NSCs	Total: 85 A: 47 B2: 38	Excluded deaths before surgery at SC Inclusion: Brain injury requiring neurosurgery for intracranial mass lesion <u>Other exclusions</u> : neurosurgery >48h after injury; operations for depressed or open skull fractures without intracranial mass lesions; operations with diagnostic burr holes; reoperations	Brain injury requiring neurosurger y for intracranial mass lesion	GCS (median): A: 7 B2: 7	Mean (range): A+B2: 41 (0- 85)	Medical records, ambulance records Retrospective	NR	<u>SC</u> : University hospital (level I trauma centre) department of neurosurgery <u>NSC</u> : 9 district general hospitals and 1 central hospital Investigator based at SC	None

Study Date coun (area centr	ntry a), N	-	, ,	(inclusion)	Severity (baseline): ISS and GCS	Age	Data source	System co- ordination	Description of centres	Adjustments
1997 ²³ Cana (Mon Queb	ida A	a: 466 32: 486	Excluded deaths before SC arrival <u>Other exclusions</u> : injured outside city limits; not transported by EMS <u>Note</u> : 27% transfers (B2) were level II to level I SC	AIS ≥ 3 for head and one of: death due to injury; stay > 3 days; ICU admission	NR	all severities:	State trauma registry plus other study	trauma to level I trauma centre, either directly or via local hospital	<u>SC</u> : Level I trauma centres, neurosurgery available at all times <u>NSC</u> : Level II trauma centre (27% patients) or level III trauma centre (73% patients), specialists on call Investigator based at SC	None

<u>Abbreviations</u>: AIS=Abbreviated Injury Scale; ALS=Advanced Life Support; BLS=Basic Life Support; ED=emergency department; EMS=emergency medical services; GCS=Glasgo w Coma Scale; ICU=intensive care unit; IQR=interquartile range; ISS=Injury Severity Score; NR=not reported; NSC=non-specialist centre; SC=specialist centre; SD=standard deviation. <u>Definitions of study groups</u>: A=direct to SC and remained there; B1=direct to NSC and remained there; B2=to NSC initially then transferred to SC. In Nardi et al. (1994): A1=nearest hospital; A2=via helicopter after stabilisation.

		Trauma			Head inj	ury
Mortality analyses	N studies (patients)	Refs	OR for triage to NSC vs. SC (95% CI)	N studies (patients)	Refs	OR for triage to NSC vs. SC (95% CI)
Initial triage to NS NSC)	SC vs. SC (includes or ac	ljusts for patients not	transferred from			
Adjusted for age and severity	5 (19,910)	13-15;26;27	1.03 (0.85 to 1.23)	0	-	-
Unadjusted	6 (17,523)	13;14;16;17;26;27	1.04 (0.72 to 1.50)*	0	-	-
Transfers NSC to S NSC)	SC vs. direct triage to SC	C (excluding patients n	ot transferred from			
Adjusted for severity (and generally age)	9 (34,266)	13-16;18;20;21;28;30	1.18 (0.96 to 1.44)*	3 (1,507)	36;38;40	0.74 (0.31 to 1.79)*
Unadjusted	15 (37,079)	13-17;19;22-28;30;31	0.83 (0.68 to 1.01)*	10 (3,671)	23;34-42	0.87 (0.62 to 1.23)*

Table 2: Mortality data (trauma and head injury)

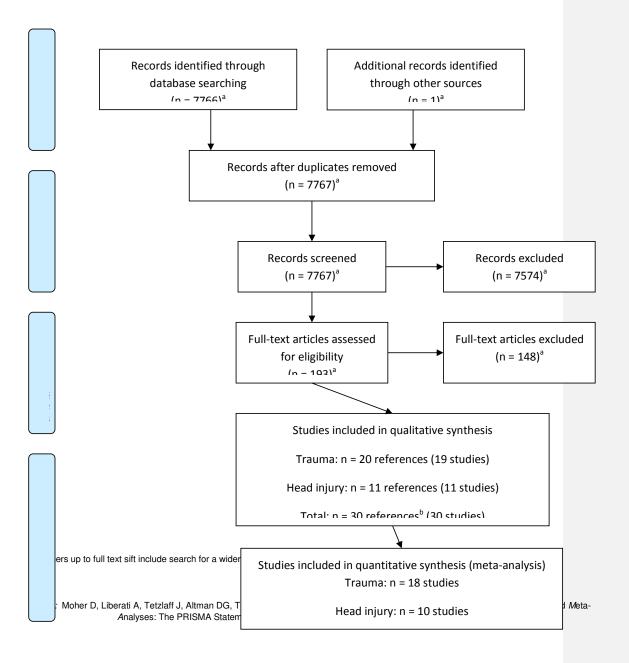
*Significant heterogeneity ($I^2 \ge 50\%$). Higher ORs favour direct triage to SC. <u>Abbreviations</u>: CI=confidence interval; NSC=non-specialist centre; OR=odds ratio; SC=specialist centre.

Study	N	Time of measurement	Transfer NSC to SC	Direct triage to SC	Comparison between groups		
			GOS: median (ran	ige)			
Joosse 201241	80	NR	3 (1-5)	3 (1-5)	p=0.866		
Moen 2009 ^{35*}	88	6 months	4 (1-5)	3 (1-5)	p=0.89		
Moen 2008 ³⁶	131	6 months	3 (1-5)	3 (1-5)	p=0.105		
Sollid 2003 ³⁹	85	2-76 months	4 (NR)	4 (NR)	p=Not sig		
			N (%) with favou 5)	N (%) with favourable GOS (score 4- 5)			
Sollid 2003 ³⁹	85	2-76 months	22/38 (58%)	25/47 (53%)	OR=1.21 (95% CI 0.51 to 2.87)		
			N (%) discharged	home			
Lin 2012 ⁴²	60	NA	21/31 (68%)	16/29 (55%)	p=0.43 for discharge destination		
Tiesman 2007 ³⁷	754	NA	103/379 (27%)	115/375 (31%)	OR=0.84 (95% CI 0.62 to 1.161)		

Table 3: Morbidity data (head injury)

<u>Abbreviations</u>: CI=confidence interval; GOS=Glasgow Outcome Scale; NA=not applicable; NR=not reported; NSC=non-specialist centre; OR=odds ratio; SC=specialist centre; . <u>Definitions of study groups</u>: A=direct to SC and remained there; B1=direct to NSC and remained there; B2=to NSC initially then transferred to SC. *Moen et al. (2009) also report that there was no difference between groups in the proportion of patients with unfavourable GOS (1-3) at 6 months in an adjusted multiple regression analysis (no data reported).

Study	Mean/median	Hospital leng	th of stay (d	ays)	ICU length of stay (days)			
		Initial triage to NSC	Direct to SC	Difference (NSC minus SC)	Initial triage to NSC	Direct to SC	Difference (NSC minus SC)	
Trauma								
Fatovich 2011a ²⁶	Median (IQR)	10 (5-20)	9 (3-19)	1	NR			
Fatovich 2011b ²⁷	Median (IQR)	12 (6-24)	9 (3-19)	3	5 (2-11)	4 (2-10)	1	
Garwe 2011a, ²⁹ Garwe 2011b ³⁰	Median (IQR)	7 (9)	6 (9)	1 (NS)	4 (8)	4 (8)	0 (NS)	
Young 1997 ²⁴	Mean (SD)	19.1 (20.6)	15.4 (21.3)	3.7 (NS)	12 (5.4)	10.1 (15.8)	1.9 (NS)	
Nardi 1994 ¹⁷	Mean (SD)	NR	NR	NR	15 (NR)	A1: 13 (NR) A2: 11 (NR)	2.0 4.0	
Boulanger 1993 (Canada) ²⁵	Mean (SD)	33.9 (NR)	26.2 (NR)	7.7	9.4 (NR)	8.4 (NR)	1.0	
Boulanger 1993 (USA) ²⁵	Mean (SD)	23.7 (NR)	18.5 (NR)	5.2	18.5 (NR)	15.4 (NR)	3.1	
Head injury		Initial triage to NSC	Direct to SC	Difference (NSC minus SC)	Initial triage to NSC	Direct to SC	Difference (NSC minus SC)	
Lin 2012 ⁴²	Mean (SD)	14.6 (14.9)	13.2 (9.0)	1.4 (p=0.52)	7.5 (6.9)	10.3 (8.8)	-2.8 (p=0.20)	
Kejriwal 2009 ³⁴	Median	7	7	0 (p=0.10)	3	1	2 (p=0.74)	
Tiesman 2007 ³⁷	Mean (SD)	12.7 (14.5)	8.8 (12.3)	3.9 (95% CI 2.0 to 5.8)	NR	NR	NR	


Table 4: Length of stay (trauma and head injury)

Abbreviations: ICU=intensive care unit; NR=not reported; NS=non-significant (no further data reported); NSC=non-specialist centre; SC=specialist centre;

SD=standard deviation. In Nardi et al. (1994): A1=nearest hospital; A2=via helicopter after stabilisation.

Appendix 1: PRISMA Flow Diagram

For more information, visit www.prisma-statement.org.

Appendix 2: PRISMA Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE	<u> </u>		
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3-4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	N/A
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5 (available on request)
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6

Appendix 2: PRISMA Checklist

Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	6
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	N/A
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	N/A
RESULTS		·	
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	p7, Appendix 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	p7-8, Tables 1-2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	p8, Table 3
Results of individual studies	esults of individual studies 20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.		Tables 5-6, Figures 1-4
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	p8-11, Table 5, Figures 1-4
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	N/A
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	p8-11, Figures 1-4
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	12-13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13-15
FUNDING	·		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	16

Appendix 2: PRISMA Checklist

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.