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SUMMARY

In this paper the efficacy of structured and unstructuredmaterisations of the degree of freedom within a
predictive control algorithm is investigated. While selezarlier papers investigated the enlargement of the
region of attraction using structured prediction dynanittte consideration has been given to the potential
of unstructured parameterisations to handle the tradbetifeen the region of attraction, performance and
computational burden. This paper demonstrates how unstagcdynamics can be both selected and used
effectively and furthermore gives a comparison with suted methods. Copyrigh® 2010 John Wiley &
Sons, Ltd.

Received ...

KEY WORDS: Alternative parameterisation; MPC; Region dfaattion; Performance; Computational
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1. INTRODUCTION

Model Predictive control (MPC)1[3, 17, 3] is popular because it handles multivariable processes
with constraints in a systematic fashion, but to achiev& thie online implementation may require a
challenging optimisation. In this paper, there is a wellenstbod set of conflicting objectives, e.g.,
between the desire for good performance and large regicatsrattion, with the equally important
desire to keep the number of degrees of freedom (d.o.f.) ém@ider to maintain an implementable
computational complexity.

Several authors have looked at this issue, some well knoves deing focussed on multi-
parametric solutionsl], fast optimisations 23], time varying control laws 12], interpolation
between two different control strategie&b| 19, 18], and blocking B, 7]; the latter two methods
form foundation concepts for parametric methods proposddd where the key development is
that the effective horizon range of the d.o.f. (for consir&iandling) is far greater than the number
of d.o.f. (this is not the case for conventional algorithrashsas Generalised Predictive Control
(GPQ)).

*Correspondence to: Department of Electrical Enigneeri@y/SATS Institute of Information Technology, Abbottabad,
Pakistan.
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In the earlier work of 9§, 11] ellipsoidal approximations of the constraints were irajlly
embedded within the MPC problem, resulting in a formulatibbat is equivalent to that o).
However, ellipses are ill-suited to approximating corstsathat are polyhedral and/or asymmetric.
Furthermore, when using ellipsoidal approachésthiere is no further gain in the size of the
ellipsoidal region of attraction when the order of the pagtarisation dynamic exceeds the system
dimension.

In light of [4] an obvious extension to the parameterisations propos¢dQnthat are based
on Laguerre polynomials was to consider a wider class oftfans; for reasons of numerical
conditioning the focus was given to generalised orthonbrfuactions, such as Kautzl1(].
Specifically, it was shown that in many cases changing tharmpeterisation allowed substantial
improvements in the volume of the region of attraction wittid or no detriment to performance.
However this gives rise to several questions:

1. Is there an alternative to structured ‘generalised fonctlynamics’ for parameterising
the input trajectories which would yield further benefits@r example multi-parametric
approaches have shown that the constrained optimal cdawois piecewise affine in the
state. Furthermore, blocking][is another example of an alternative structure.

2. The algorithms of70] are based on implicit assumption that the choice of init@hdition
for the parameterised dynamics is unimportant, as this yasdl in the original worksZ2];
is this true?

This paper is organised as follows: after presenting the&kdracind in Sectior?, Section3

is considered the impact of the initial condition for the dymic embedded in the degrees of
freedom and thus whether there are preferred choices ®rS3kictiord is proposed an alternative

mechanism for exploiting the desired input prediction gpiacan efficient manner but which is not

necessarily linked to a fixed dynamic; this will be termed asttuctured parameterisation. Section
5 analyses unstructured parameterisations in detail amduletes a convex optimisation problem
for performing a strategic tradeoff between cost perforteasnd volumes of the sets of feasible
states. Section 6 will present numerical examples follolbsedonclusions in Section

2. BACKGROUND

2.1. Modelling and a standard optimal MPC algorithm
Assume a standard state-space model of the form:

X1 = AXg + Bug; Y, =CXy; (1)

with x;, € R"=, y, € R™ andu; € R"« which are the state vector, the measured output and the
plant input, respectively.
The performance index to be minimised (with respeatousq,...)is

J =3 Kegir1) T Q(Xupit1) + (Unps) " R(Urs)
op ] (DU<u<T, y<y, <y vk >0, (2
T Uk = —KXgpi Vi > ne

with Q, R positive definite state and input cost weighting matriéess the optimal feedback gain
minimisingJ in the absence of constraints.

Practical limitations imply that only a finite nhumber, thatsi., of free control moves can
be used 21]. For these cases?) is implemented 14] by imposing that the statg,, must be
contained in a polytopic control invariant set (that is theXdilmum Admissible Set (MAS)):
Xyas = {z e R | Coplw € Y, -~ K¢z € U,Vi > 0}, where¢p = A — BK, Y={yeR" |y <
y <y}andU = {u € R™ | u < u < U} . For simplicity of notation, the MAS can also be described
inthe formX 45 = {x € R™= | Mox < dy} for appropriatéM, do.
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The degrees of freedom can be reformulated in terms of a neablec, using dual mode
paradigm for guaranteeing nominal stabilify/] i.e.,

U — —K X4 + Crgs 1=0,...,n.—1; ®)
bt —KXp445 i 2> N

and hence the equivalent optimisation 2pi6

mgn gTSg s.t. Mx+ Ng <d; 4
with ¢ = [cd,...,ck _,]". Details of how to compute positive definite matBxmatricesN, M
and vectoid may be found in the following literature6] 14, 17].

Definition 2.1
Let Xy, a5 be the set of initial statesfor which the optimal control problend is feasible (often
denoted as the feasible region):

— N e
Xycas ={XeR |3£>ER 7MX-|—N£>§d},

A typical conflict in MPC design is between the desire for gdéavolume ofXy;c 45, Which
increases withi., and the desire fon. to be small as this links to the computational load of the
optimisation. It has been noted that the formulation3f¢ inefficient in that typically a large. is
required for large volumeg[)].

2.2. Optimisation of prediction dynamics

In [4], a convex formulation of the optimisation of predictionndymics is proposed to enlarge the
region of attraction using as optimally tuned a terminaltogiriaw as is possible in combination
with any other stabilising law. Specifically, the predictegut trajectories can be generated by
incorporation of a dynamic feedback law:

Up = —KXp + C.ACr; G = ACr1 ®)

whereC,. andA. are variables that are used to optimise the size of the ageddeasible invariant
ellipsoid [4]. It was also shown that there is no further gain in volumehefriegion of an ellipsoidal
region of attraction when the prediction horizon exceeds diistem dimension. However, the
proposed optimisation for selecting this feedback is baseellipsoids and hence will typically
be conservative in volume.

The design parameter in this optimisation are matri€esandA... It is clear that this concept is
equivalent to the parameterisations 19,[20] with the minor difference that the latter considered a
special case 0A., being a lower triangular matrix of a particular structungl €. depends on the
parameter oA.. The main advantage of parameetrisationd.iij [s that the orthonormal functions
may defineA. intuitively (without optimisation) and moreover is well dedid for orders less than
the system state dimension and asymmetric constraintsigiogithm of @] does not handle such
cases.

2.3. GOMPC: Generalised functions and MPC

Generalised Optimal MPC (GOMPC) is a dual-mode MPC algorifg0, 10] where the input
predictions are parameterised in terms of generalisedifumecusing an input prediction akin to
(5). The generalised functions can be computed using an anpivrder discrete transfer function
network in z-transform (typically we use orderc {1, 2, 3}):

(271 _ al)iiq (- an)iz‘q'

(1—apz=Hu. . (1 —apz~t)s ’

gii(Z) :gi,-_l(z) OSaj < 17 j :1,...,’1’1,7 (6)
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(1—a?)...(A—a?)

with ¢1(2) = T For example, in case af = 4 a state space formulation is given
by
[ g1k+1 ] [ a2 0 0 0 077 g1k 7
92, k+1 a as 0 0 0 g2,k
93,k+1 as as aq 0 0 93,k
Jaky1 | = | —aiaz —aias 1 —ajay ax 0 gak |’
g5,k+1 alag a1a20as —ag(l — a1a4) 1-— a1ag as g571¢7 (7)
- - - - - - -
Gk+1 Ac Gk
Goz\/(l—a%)...(l—ai)[l, 1,1, —a, alag,...]T.
Input predictions are defined using) @nd:
¢ =GpLnk,  Gii1 =AgGr, Vk. 8)

Consequently predictions fot, evolve over an infinite horizon via the following dynamic
relationship:

G = Ha 1k, He=1[G§,....G} _1,...]. )
The associated feasible region is given as
X = {Xr e R"" | Hlk € R™™ MgXy + NGHng <dg}. (10)
for suitably definedN¢,Hg, Mg, de.
Algorithm 2.1
The GOMPC Algorithm is summarised as:
P = in niHLSH . Mgxi +NgH <dg; 11
v argril,fl Mk oS Gk S aXr + Na a1k < do; (11)

Define ¢ = Hclz and implement;, = —Kx;, + e}”g;;, el =[I,,,0,...,0].

Remark 2.1
Readers will note tha® is needed to define the initial condition.

Remark 2.2
Systematic mechanisms to choose the best parameterisigth@amics were discussed itd]. If
GOMPC uses; = 0, thenG, = [1,0, ...] and GOMPC is equivalent to Optimal MPC (OMPC).

3. THE BEST CHOICE FOR INITIAL CONDITION IN THE PREDICTION DXAMICS

The background section has shown two clear choices for GOMMRGIn the future input
predictions. First, one can choose the implied dynatnicand, second, one can choose the initial
conditionGy. This section explores the second of these choices by askiatjimpact the choice
Gy has on the region of attractiodl@? It is clear from 8) that the choice has a clear link
to the input predictions and thus the impact needs investigaA key question is whether the
initialization of Gy can be exploited to improve either the size of the regiontoéetion, or closed
loop performance?

Lemma 3.1
The predictiong;,; .+ can be considered as the output of a linear time invariarg-stgice model
with initial condition linked toG,.

*k + i, k means the prediction for samplet : made at samplg.
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Proof
Define an arbitrary state-space model with dynamic matfivas follows

Wi = @Twy; ¢ = ﬁ)TWk; Wy = Go. (12)
Forming predictions for this gives, = Q)TGO, Chy1 = Q)TQTGO, Chio = lT(QT)QGO, ... O

Lemma 3.2

If ® has distinct eigenvalues, then there exists an alternataie-space model with the same
input/output relationship but different initial conditicand different output matrix that gives the
same output predictions akZ).

Proof
In place of initial conditiorG, instead us& , so now define the model.

Vipr = 0Ty o = iTVk; Vo = Zo. (13)

The requirement is that the output predictions of modeB &nd (L3) given next can be made
the same but witlZ, # Gy andﬂ> + i Hence, prove

Chqn = lT(q)T)nG() = ﬁ)T(q)T)nZ(), Vn. (14)

First, decompos@ using its eigenvalue/vector decomposition into the fa@fn= VAV ' and
substitute in {4):

Chn = 1] TVAPVTIGy = 5 TVA"YV ~1Z,. (15)

A
From this it is clear that

. a;j = [ V[V Golj;
Chti = Z Ao or (16)
i aj = [7"V]; [V Zol;.

Consequently, there always exists a choicelosﬁo that the output of model g) replicates {2),
as long as the initial conditior, is not orthogonal to any eigenvector®f O

However, the reader will notice that the implied state-spaatrix with the generalised functions
has repeated eigenvalues when the order of dynamics ishi@sshte number of d.o.f. (i.e. < n.,
wheren is number of poles) and thus does not have a simple decorigosit

Lemma 3.3
For dynamic matrices of the form given ii)(with repeated eigenvalues, the initial condition still
has no bearing on the reachable space of futire.

Proof

This follows similar lines to Lemm&.2 with the only difference that a non-simple Jordan form
is required forn. is greater than the number of poles of generalised functjorahics. It is still
possible to decompose the matrix®5 = VJ,V~* whereJ, is no longer strictly diagonal but all
powers ofl,; are upper triangular, and consequently the same proof a®psty applies, but with
slightly more complex algebra.

Chn = 1] vV, = A vaiv=1z,. 17)
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Similarly as in Lemma3.2

aj = [lTV]j[VflGO]j;

. . ﬂj = [ﬂ)TWGO]j;
Chpi = Y (N5 + (i = DA Dy + B5; or (18)
J a; = [TV, V7 Zol;;
Bj = [lTWZ()]j;

whereW depends upon Jordan blocks. Consequently, there alwasts exchoice ofy so that the

_>
output of model {3) replicates 12), as long as the initial conditiod, is not orthogonal to any
eigenvector ofb. O

In summary, subject to some mild conditions on including ponents of all the eigenvectors, the
choice ofG, has no impact on the reachable space.qf and thus is not a parameter that needs to
be considered further.

4. PARAMETERISATIONS USING UNSTRUCTURED PREDICTIONS

One could argue that conventional algorithms such as GPCOMEC have unstructured input
predictions in that there is no explicit or implicit link lve¢en the different values. GOMPC has
structured predictions because there is an explicit limbupgh the model ofg). However, the
advantage of GOMPC is that the effective horizon of the ingarturbationgy, is infinite, whereas
for OMPC the effective horizon is just.!, in order to maintain an implementable computational
complexity. Nevertheless, such a fixed structure is résteicand indeed the insights of multi-
parametric solutionsl] make this very clear.

A question that follows from these observations is the feif@: Does there exist amstructured
perturbation class fog> that has a large effective horizon but which can be captuiidd avlow
number of d.o.f., and, would such a class bring any advan®taljesimple terms this could be
interpreted as allowing a totally open choice fbt: (see 9)).

4.1. The reachable space for the input predictions

The flexibility within the input predictionsg] is given fromgk = Hgﬁ)k. The row dimension of

H . dictates how far into the future one wishes to use non-zgemd the column dimension dictates
the number of d.o.f.. While for OMPE ¢ is square, here the assumption is that it is tall and thin,
or more precisely..» x n. (blocks in case of more than one input), whege > n.. The problem

is then, how does one determine the optimum columnblfg? These columns define the flexibility
in the input predictions.

4.2. Monte Carlo approaches to find the search directions

It is known that the mapping from current statg to optimal offset vectorg is nonlinear;
consequently a range of different search directions witbasible sets are needed to capture the
required flexibility ingk for large feasible region. Here, a simple Monte Carlo apghioataken to
capture those search directions that have 'most value’.

Algorithm 4.1
Search directions

1. Choose a large value of. = n.» for OMPC consistent with finding a large enough feasible
region.

2. Define equi-spaced points on the surface of the mpitimensional sphere centered at the
origin. Stretch these directions to the outer boundary @MICAS (for given large:. = n.s)
and denote them as.

Copyright© 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth(2010)
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For each point;, determine the optimagk and denote ag .
FF)rm a miatn)P - [gvl’ E)'UQ7 T —(::)_'Um].
Find the singular value decompositionasP = XXY™.

DefineHr = X(:,1 : n.) wheren. = n, is now taken to be the desired number of d.o.f.. Itis
assumed that the firaf. columns ofX correspond to the largest singular values.

o0k~ w

Itis clear that in some objective sense, this choic pfcaptures the best finite number of search
directions, on average, to capture the optig&;lrequired on the boundary of the MCAS. Moreover,
one can inspect the singular value$ah X to determine what might be the best number of columns
to take.

4.3. Feasible OMPC

This section shows briefly how théz matrix of the previous subsection is used to define a Feasible
OMPC (FOMPC) algorithm.

Algorithm 4.2
FOMPC

1. Select the maximum numbey, of non-zerocy,; terms in the predictions and the number of
d.o.f.n. to be used online; use Algorithth1to determineH . Letg),C = lek.

2. DefineJp = Q){SFQ},C whereSy = HLdiag(S, ..., S}Hz.

3. Find the optimuml;; from:

P =argmin Jp s.t. MX NH <d.
gk g ! F k+ Flk_

4. Defineg; = HFQQ; and implement the control law, = —Kx;, + eng;;.

4.4. Recursive feasibility and convergence

Here, by not prescribing any specific structurdg, the specific structure of’f is lost and also
the literature standard recursive feasibility/convengaresult. A simple procedure does exist in the
literature to recover this guarantee, but at the cost obéhicing one additional d.o.fLf]. In simple
terms, one appends the d.o.fHi- 7 ;. with one additional direction, that is the tail of the optaad

Sk from the previous sample. This is not discussed furtheriritetesting reader is referred tof].

5. CONVEX OPTIMISATION OF FOMPC FOR MAXIMUM VOLUME PROJECTINS

As the examples will show FOMPC generates a large feasibfersaiow number of d.o.f.. In this
section, whether FOMPC also provides a good trade-off betweevolume of the resulting region
of attraction and cost performance is investigated. The gb#lis section is to produce a pareto
surface between the d.oif,, the resulting volume of the feasible set (as a function efaerage
radiusa) and the level of suboptimality of FOMPC.

Our goal is to solve the following optimisation problem asiadtion of(«, 3) € [0, 1}*:

J(a, fB) =min n,
Hp

st. d<aMa; + Nu;, Vi ={1,...,n}, (29)

)

1 — Jr(ox;) — Jopt(ax;)
> =
B> HZ;

Jopt ()

U; = HF77i7 Hp € R e
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Computing the volume of, or the integral over, a polytope isiplex, and can, in the worst of the
case be exponential in the sizeMfandN. Here, the volume is approximated by the average radius
« of the MCAS determined by choosing a number of points {z1,...,z,} equi-spaced on the
unit hyper-sphere centered at origin and solving a seridmeér programming (LP) in order to
move the points to the boundary. The predicted performdncegjven pointse; are represented by
the optimised values of closed l00p,(x;), Jr(z;) for global OMPC and FOMPC.

Constraintu; = Hgn; is bi-linear in the decision variablélr and n; and therefore the
optimisation problem abovéd §) is non-convex optimisation problem. We propose in thigisaa
convex relaxation of9) based on the nuclear norm.

The bilinear constraint is equivalent to

u; € RangéHr), Hp e R™*™  Vi=0,...,n. (20)

The only property of interest of the matrixr is its number of columns (i.e., the rank, because
H r is tall) and so we can replace the constraint H gn; with the following rank-condition

rankU) < n,, (21)

where U= [uo, . .., u,]. Minimising the rank of a matrix) € R™*" is a non-convex problem and
is in general NP-hard.

The nuclear norm is a convex heuristic for rank minimisatloat was proposed irb] and shown
in [16] to be the convex envelope, or the closest convex functidhewank operation

m

U, = ei(V) (22)

i=1

whereo; (V) is theit" singular value ofJ. In last few years, minimisation of thig norm has been
used as a convex approximation of cardinality minimisat@rto promote sparsity in the decision
vector of optimisation problems. Since the singular valofes matrix are all positive, the nuclear
norm ofU is equal to thé; norm of the vector formed from the singular valuedbfAs a result,
minimising nuclear norm in22) leads to sparsity in the vector of singular values, or egued a
low-rank matrixU.

We now relax the optimisation to its convex envelope and fhtérasation can be re-cast as the
following semi-definite program (SDP3].

J(a, B) =min tr(Vy) 4 tr(Vs)

*

v, U?
s.t. [U Vz] >0 (23)

d > aMz; + Nu;;

1 & Jr(ax;) — Jopt(ax;)
>
B>— Zl

Jopt (Qv;)

where we introduce the symmetric matridése R"*™ andV, € R™*™ as decision variables.
Let U be the optimal solution of23) andn; be the rank olU*. A matrix Hy € R™ ™ that

span the range df* can then be found via a singular decompositiotJ6f We term the resulting

procedure of solving SDRPB) and then computing the optimdl as optimised FOMPC.

6. NUMERICAL EXAMPLES

This section gives some numerical illustrations to compheesefficacy of OMPC, GOMPC and
FOMPC. Specifically, the focus is on the comparison of theiv@ of the MCAS against the
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number of optimisation variables, that is, it considers tatextent FOMPC uses a more systematic
parameterisation of the d.o.f. within the predictions tiowlfor maximal gains in the size of the
regions of attractions with small numbers of d.o.f.

For numerical simulations, a large number of points eqaicep (by solid angle for 2-dimensional
systems) or random selection or chosen uniformly on thehyper-sphere; feasible volumes are
inferred from the distance, here denoted radii, to the ##tgi boundary in each direction. A
notional or pragmatic maximum (of cost performance and eiztéhe regions of attractions) for
comparison is taken as that obtained from OMPC with= 20 (theoretical maxima can varg]).

The following models/constraints are used.

Example 1
0.6 —0.4 0.2
A:[1 1.4}’ 82{0.05]’ c=[1 —22];
—1.5<u; <0.8; |Aug| <0.4; Xk <5 Q=1; R=2.
Example 2
[ 0.9146 0 0.0405 0.1
A 0.1665 0.1353 0.0058 —0.2
B 0 0 0.1353 0.5 '
—0.2 0 0 0.8
[ 0.064 —0.075
g | 0005 00147 |  [1799 1321 0 0.1 ],
| 0.864 0 T ] 0.823 0 0 —-0.3 |’
0.5 0.2

[Au k] < 25 Jug| < [ ; ] ; [xikl <10, Q=CTC; R=1.

Readers should note that for example 2, the number of dsa.fni., and that in this case, = 2.
The parameterisation dynamics for GOMPC are selected asmglti-objective optimisationl[0].
This section contains two main comparisons:

1. The achievable feasible volumes with FOMPC and GORMPC
2. A comparison between a default FOMPC and one arising uki@gNuclear norm search
assesseing the performance and feasibility trade-off.

6.1. Comparison of the size of regions of attractions for @IBOMPC and FOMPC

The feasible regions for Example 1 are shown in Figur€he average radii for examples 1, 2 are
shown in figures3, 4 respectively. It is clear that FOMPC has a larger MCAS tharMBQ for the
same number of d.o.f. Indeed Figugshows that, for this example, FOMPC gets to within 85% of
the global MCAS with just 3 d.o.f. whereas, GOMPC required.fdand OMPC requires 11 d.o.f.
For example 2, FOMPC needs just 2 d.o.f.l.

Consideration of the singular values for the respedtiyeH r matrices shown in Figurgshows
that a choice of,, € {3,4} captures all the key directionality, whereas for GOMPC, ynarore
columns are needed.

6.2. Comparison between FOMPC and optimised FOMPC

This section demonstrates that while the default FOMPC divedargest feasible volumes, for a
givenn,, use of optimisation43) enables a compromise between feasibility and performdrare.
both examples, the optimisatiop3) was run for eacla € {0.01,0.025,0.5,0.75,0.99} and a fixed
value of 8 = 5%.

§Other work has already demonstrated that GOMPC outperfbotisOMPC and the algorithm of].
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Il GOMPC (2nd order)
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-0.5F B
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-1.5r b
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-15 -1 -0.5 0 0.5 1 1.5

Figure 1. Comparison of MCAS fot. = n,, = 2 for Example 1.

1
7 0 FOMPC
* GOMPC (2nd order)
O GOMPC (1st order)
+ OMPC
o 10f ]
=
S
>
s
2 O
£
0 gt U N
® BB ® ®
peeEBRER L
2 4 6 8

Singular value counter

Figure 2. Comparison of singular valuestbf, for Example 1.

1. For Example 1 for each resulted in matricesl » with {1, 1,3, 6,9} columns respectively.
Figuresb, 6 show the resulting average radii of the regions of attractiod the performance
drop resulting from each considered parameterisatiomure@gshows the trade-offs between
radius and performance loss as a function of the d.o.f.

2. For Example 2, the performance loss is significantly lessafl cases than was seen for
Example 1. For each resulted in matricebl » with {2,4, 5,4, 5} columns respectively. The
results are shown in Figur&s8, and10.
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Figure 4. Comparison of average MCAS radiiras n, vary for Example 2.

7. CONCLUSIONS

In this paper a novel mechanism for parameterising the.daitfiin a dual-mode MPC algorithm
was proposed. The proposal builds on the insights of pammetl methods, which have
demonstrated how to achieleng effective input horizons using small numbers of d.o.f.. éjer
the concept is radically altered by identifying the optirsabset of long horizon 'unstructured’
perturbations which are then applied to the input predistidt is shown that using well defined
perturbations allows substantial improvements in the ma&wf the set of feasible states, for the
same numbers of d.o.f.. However, given that feasibility padformance requirements are often in
conflict, the paper also proposes systematic tools for amajythis trade-off and thus allowing a
design choice.
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Figure 5. Average radius as a functioncofor Example 1.
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Figure 6. Average performance loss as a functioa @r Example 1.

Future work will look at several questions: (i) How well doette methods extend to large
dimensional systems or indeed to make use of system or idinegpecific information? (ii) How
would the approach be modified to deal with the uncertainzésgWhile the proposal reduces the
required number of d.o.f., there is a need to investigat@ttential for developing efficient online
MPC optimisations.
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