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SUMMARY

In this paper the efficacy of structured and unstructured parameterisations of the degree of freedom within a
predictive control algorithm is investigated. While several earlier papers investigated the enlargement of the
region of attraction using structured prediction dynamics, little consideration has been given to the potential
of unstructured parameterisations to handle the trade-offbetween the region of attraction, performance and
computational burden. This paper demonstrates how unstructured dynamics can be both selected and used
effectively and furthermore gives a comparison with structured methods. Copyrightc© 2010 John Wiley &
Sons, Ltd.

Received . . .

KEY WORDS: Alternative parameterisation; MPC; Region of attraction; Performance; Computational
burden.

1. INTRODUCTION

Model Predictive control (MPC) [13, 17, 3] is popular because it handles multivariable processes
with constraints in a systematic fashion, but to achieve this, the online implementation may require a
challenging optimisation. In this paper, there is a well understood set of conflicting objectives, e.g.,
between the desire for good performance and large regions ofattraction, with the equally important
desire to keep the number of degrees of freedom (d.o.f.) small in order to maintain an implementable
computational complexity.

Several authors have looked at this issue, some well known ones being focussed on multi-
parametric solutions [1], fast optimisations [23], time varying control laws [12], interpolation
between two different control strategies, [15, 19, 18], and blocking [2, 7]; the latter two methods
form foundation concepts for parametric methods proposed in [20] where the key development is
that the effective horizon range of the d.o.f. (for constraint handling) is far greater than the number
of d.o.f. (this is not the case for conventional algorithms such as Generalised Predictive Control
(GPC)).

∗Correspondence to: Department of Electrical Enigneering COMSATS Institute of Information Technology, Abbottabad,
Pakistan.
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In the earlier work of [9, 11] ellipsoidal approximations of the constraints were implicitly
embedded within the MPC problem, resulting in a formulationthat is equivalent to that of [20].
However, ellipses are ill-suited to approximating constraints that are polyhedral and/or asymmetric.
Furthermore, when using ellipsoidal approaches [4] there is no further gain in the size of the
ellipsoidal region of attraction when the order of the parameterisation dynamic exceeds the system
dimension.

In light of [4] an obvious extension to the parameterisations proposed in[20] that are based
on Laguerre polynomials was to consider a wider class of functions; for reasons of numerical
conditioning the focus was given to generalised orthonormal functions, such as Kautz [10].
Specifically, it was shown that in many cases changing the parameterisation allowed substantial
improvements in the volume of the region of attraction with little or no detriment to performance.
However this gives rise to several questions:

1. Is there an alternative to structured ‘generalised function dynamics’ for parameterising
the input trajectories which would yield further benefits? For example multi-parametric
approaches have shown that the constrained optimal controllaw is piecewise affine in the
state. Furthermore, blocking [2] is another example of an alternative structure.

2. The algorithms of [20] are based on implicit assumption that the choice of initialcondition
for the parameterised dynamics is unimportant, as this was typical in the original works [22];
is this true?

This paper is organised as follows: after presenting the background in Section2, Section3
is considered the impact of the initial condition for the dynamic embedded in the degrees of
freedom and thus whether there are preferred choices for this. Section4 is proposed an alternative
mechanism for exploiting the desired input prediction space in an efficient manner but which is not
necessarily linked to a fixed dynamic; this will be termed an unstructured parameterisation. Section
5 analyses unstructured parameterisations in detail and formulates a convex optimisation problem
for performing a strategic tradeoff between cost performance and volumes of the sets of feasible
states. Section 6 will present numerical examples followedby conclusions in Section7.

2. BACKGROUND

2.1. Modelling and a standard optimal MPC algorithm

Assume a standard state-space model of the form:

xk+1 = Axk + Buk; yk =Cxk; (1)

with xk ∈ Rnx , yk ∈ Rny anduk ∈ Rnu which are the state vector, the measured output and the
plant input, respectively.

The performance index to be minimised (with respect touk,uk+1, . . .) is

J =
∑∞

i=0 (xk+i+1)
T Q(xk+i+1) + (uk+i)

T R(uk+i)

s.t.

{
(1),u ≤ uk ≤ u, y ≤ yk ≤ y ∀k ≥ 0,

uk+i = −Kxk+i ∀i ≥ nc

(2)

with Q, R positive definite state and input cost weighting matrices.K is the optimal feedback gain
minimisingJ in the absence of constraints.

Practical limitations imply that only a finite number, that is nc, of free control moves can
be used [21]. For these cases, (2) is implemented [14] by imposing that the statexnc

must be
contained in a polytopic control invariant set (that is the Maximum Admissible Set (MAS)):
XMAS = {x ∈ Rnx | Cφix ∈ Y,−Kφix ∈ U, ∀i ≥ 0}, whereφ = A−BK, Y = {y ∈ Rny | y ≤
y ≤ y} andU = {u ∈ Rnu | u ≤ u ≤ u} . For simplicity of notation, the MAS can also be described
in the formXMAS = {x ∈ Rnx | M0x ≤ d0} for appropriateM0,d0.

Copyright c© 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2010)
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The degrees of freedom can be reformulated in terms of a new variable ck using dual mode
paradigm for guaranteeing nominal stability [17] i.e.,

uk+i =

{
−Kxk+i + ck+i; i = 0, ..., nc − 1;
−Kxk+i; i ≥ nc;

(3)

and hence the equivalent optimisation to (2) is

min
c
−→

c−→
T S c−→ s.t. Mx + N c−→ ≤ d; (4)

with c−→ = [cT0 , . . . , c
T
nc−1]

T . Details of how to compute positive definite matrixS, matricesN, M
and vectord may be found in the following literature: [6, 14, 17].

Definition 2.1
Let XMCAS be the set of initial statesx for which the optimal control problem (4) is feasible (often
denoted as the feasible region):

XMCAS = {x ∈ R
nx | ∃ c−→ ∈ R

ncnu ,Mx + N c−→ ≤ d}.

A typical conflict in MPC design is between the desire for a large volume ofXMCAS , which
increases withnc, and the desire fornc to be small as this links to the computational load of the
optimisation. It has been noted that the formulation of (3) is inefficient in that typically a largenc is
required for large volumes [20].

2.2. Optimisation of prediction dynamics

In [4], a convex formulation of the optimisation of prediction dynamics is proposed to enlarge the
region of attraction using as optimally tuned a terminal control law as is possible in combination
with any other stabilising law. Specifically, the predictedinput trajectories can be generated by
incorporation of a dynamic feedback law:

uk = −Kxk + CcAcck; ck = Acck−1 (5)

whereCc andAc are variables that are used to optimise the size of the associated feasible invariant
ellipsoid [4]. It was also shown that there is no further gain in volume of the region of an ellipsoidal
region of attraction when the prediction horizon exceeds the system dimension. However, the
proposed optimisation for selecting this feedback is basedon ellipsoids and hence will typically
be conservative in volume.

The design parameter in this optimisation are matrices,Cc andAc. It is clear that this concept is
equivalent to the parameterisations in [10, 20] with the minor difference that the latter considered a
special case ofAc, being a lower triangular matrix of a particular structure and Cc depends on the
parameter ofAc. The main advantage of parameetrisations in [10] is that the orthonormal functions
may defineAc intuitively (without optimisation) and moreover is well defined for orders less than
the system state dimension and asymmetric constraints; thealgorithm of [4] does not handle such
cases.

2.3. GOMPC: Generalised functions and MPC

Generalised Optimal MPC (GOMPC) is a dual-mode MPC algorithm [20, 10] where the input
predictions are parameterised in terms of generalised functions using an input prediction akin to
(5). The generalised functions can be computed using an arbitrary order discrete transfer function
network in z-transform (typically we use ordern ∈ {1, 2, 3}):

gii(z) = gii−1(z)
(z−1 − a1)

ii−1 . . . (z−1 − an)
ii−1

(1− a1z−1)ii . . . (1 − anz−1)ii
; 0 ≤ aj < 1, j = 1, . . . , n, (6)

Copyright c© 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2010)
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with g1(z) =

√
(1−a2

1
)...(1−a2

n)

(1−a1z−1)...(1−anz−1) . For example, in case ofn = 4 a state space formulation is given
by











g1,k+1

g2,k+1

g3,k+1

g4,k+1

g5,k+1

...











︸ ︷︷ ︸

Gk+1

=











a2 0 0 0 0
a2 a3 0 0 0
a2 a3 a4 0 0

−a1a2 −a1a3 1− a1a4 a1 0
a1a

2
2 a1a2a3 −a2(1 − a1a4) 1− a1a2 a2

...
...

...
...

...











︸ ︷︷ ︸

AG











g1,k
g2,k
g3,k
g4,k
g5,k,

...











︸ ︷︷ ︸

Gk

;

G0 =
√

(1− a21) . . . (1− a24) [1, 1, 1, − a1, a1a2, . . . ]
T
.

(7)

Input predictions are defined using (3) and:

ck = GT
k ηk, Gk+1 = AGGk, ∀k. (8)

Consequently predictions forck evolve over an infinite horizon via the following dynamic
relationship:

c−→k = HG η−→k, HG = [GT
0 , . . . ,G

T
nc−1, . . . ]. (9)

The associated feasible region is given as

XG = {xk ∈ R
nx | ∃ η−→k ∈ R

ncnu ,MGxk + NGHG η−→k ≤ dG}. (10)

for suitably definedNG,HG,MG,dG.

Algorithm 2.1
The GOMPC Algorithm is summarised as:

η−→
∗
k = argmin

η
−→

k

η−→
T
k HT

GSHG η−→k s.t. MGxk + NGHG η−→k ≤ dG; (11)

Define c−→
∗
k = HG η−→

∗
k and implementuk = −Kxk + eT1 c−→

∗
k, eT1 = [Inu

, 0, . . . , 0].

Remark 2.1
Readers will note thatG0 is needed to define the initial condition.

Remark 2.2
Systematic mechanisms to choose the best parameterisationdynamics were discussed in [10]. If
GOMPC usesaj = 0, thenG0 = [1, 0, . . .] and GOMPC is equivalent to Optimal MPC (OMPC).

3. THE BEST CHOICE FOR INITIAL CONDITION IN THE PREDICTION DYNAMICS

The background section has shown two clear choices for GOMPCwithin the future input
predictions. First, one can choose the implied dynamicAG and, second, one can choose the initial
conditionG0. This section explores the second of these choices by askingwhat impact the choice
G0 has on the region of attraction (10)? It is clear from (8) that the choice has a clear link
to the input predictions and thus the impact needs investigation. A key question is whether the
initialization of G0 can be exploited to improve either the size of the region of attraction, or closed
loop performance?

Lemma 3.1
The predictionsck+i,k

‡ can be considered as the output of a linear time invariant state-space model
with initial condition linked toG0.

‡k + i, k means the prediction for samplek + i made at samplek.

Copyright c© 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2010)
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Proof
Define an arbitrary state-space model with dynamic matrixΦT as follows

wk+1 = ΦT wk; ck = η−→
T wk; w0 = G0. (12)

Forming predictions for this givesck = η−→
T G0, ck+1 = η−→

TΦT G0, ck+2 = η−→
T (ΦT )2G0, . . .

Lemma 3.2
If Φ has distinct eigenvalues, then there exists an alternativestate-space model with the same
input/output relationship but different initial condition and different output matrix that gives the
same output predictions as (12).

Proof
In place of initial conditionG0, instead useZ0 so now define the model.

vk+1 = ΦT vk; ck = η̃−→
T vk; v0 = Z0. (13)

The requirement is that the output predictions of models (12) and (13) given next can be made
the same but withZ0 6= G0 and η−→ 6= η̃−→. Hence, prove

ck+n = η−→
T (ΦT )nG0 = η̃−→

T (ΦT )nZ0, ∀n. (14)

First, decomposeΦ using its eigenvalue/vector decomposition into the formΦT = VΛV−1 and
substitute in (14):

ck+n = η−→
T VΛnV−1G0 = η̃−→

T VΛnV −1Z0. (15)

From this it is clear that

ck+i =
∑

j

λi
jαj ;







αj = [ η−→
T V]j [V−1G0]j ;

or

αj = [η̃T V]j [V−1Z0]j .

(16)

Consequently, there always exists a choice ofη̃−→ so that the output of model (13) replicates (12),

as long as the initial conditionZ0 is not orthogonal to any eigenvector ofΦ.

However, the reader will notice that the implied state-spacematrix with the generalised functions
has repeated eigenvalues when the order of dynamics is less than the number of d.o.f. (i.e.n < nc,
wheren is number of poles) and thus does not have a simple decomposition.

Lemma 3.3
For dynamic matrices of the form given in (7) with repeated eigenvalues, the initial condition still
has no bearing on the reachable space of futureck+i.

Proof
This follows similar lines to Lemma3.2 with the only difference that a non-simple Jordan form
is required fornc is greater than the number of poles of generalised function dynamics. It is still
possible to decompose the matrix asΦT = VJdV−1 whereJd is no longer strictly diagonal but all
powers ofJd are upper triangular, and consequently the same proof as previously applies, but with
slightly more complex algebra.

ck+n = η−→
T VJn

dV−1G0 = η̃−→
T VJn

dV−1Z0. (17)

Copyright c© 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2010)
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Similarly as in Lemma3.2

ck+i =
∑

j

(λi
j + (i − 1)λi−1

j )αj + βj ;







αj = [ η−→
T V]j [V−1G0]j ;

βj = [ η−→
T WG0]j ;

or

αj = [η̃T V]j [V−1Z0]j ;
βj = [ η−→

T WZ0]j ;

(18)

whereW depends upon Jordan blocks. Consequently, there always exists a choice of̃η−→ so that the

output of model (13) replicates (12), as long as the initial conditionZ0 is not orthogonal to any
eigenvector ofΦ.

In summary, subject to some mild conditions on including components of all the eigenvectors, the
choice ofG0 has no impact on the reachable space ofck+i and thus is not a parameter that needs to
be considered further.

4. PARAMETERISATIONS USING UNSTRUCTURED PREDICTIONS

One could argue that conventional algorithms such as GPC andOMPC have unstructured input
predictions in that there is no explicit or implicit link between the different values. GOMPC has
structured predictions because there is an explicit link through the model of (8). However, the
advantage of GOMPC is that the effective horizon of the inputperturbationsck is infinite, whereas
for OMPC the effective horizon is justnc!, in order to maintain an implementable computational
complexity. Nevertheless, such a fixed structure is restrictive and indeed the insights of multi-
parametric solutions [1] make this very clear.

A question that follows from these observations is the following: Does there exist anunstructured
perturbation class forc−→ that has a large effective horizon but which can be captured with a low
number of d.o.f., and, would such a class bring any advantages? In simple terms this could be
interpreted as allowing a totally open choice forHG (see (9)).

4.1. The reachable space for the input predictions

The flexibility within the input predictions (8) is given from c−→k = HG η−→k. The row dimension of

HG dictates how far into the future one wishes to use non-zerock and the column dimension dictates
the number of d.o.f.. While for OMPCHG is square, here the assumption is that it is tall and thin,
or more preciselync2 × nc (blocks in case of more than one input), wherenc2 > nc. The problem
is then, how does one determine the optimum columns forHG? These columns define the flexibility
in the input predictions.

4.2. Monte Carlo approaches to find the search directions

It is known that the mapping from current statexk to optimal offset vectorc−→k is nonlinear;
consequently a range of different search directions withinfeasible sets are needed to capture the
required flexibility in c−→k for large feasible region. Here, a simple Monte Carlo approach is taken to
capture those search directions that have ’most value’.

Algorithm 4.1
Search directions

1. Choose a large value ofnc = nc2 for OMPC consistent with finding a large enough feasible
region.

2. Define equi-spaced points on the surface of the unitnx dimensional sphere centered at the
origin. Stretch these directions to the outer boundary of the MCAS (for given largenc = nc2)
and denote them asvi.

Copyright c© 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2010)
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3. For each pointvi, determine the optimalc−→k and denote asc−→vi
.

4. Form a matrixP = [ c−→v1
, c−→v2

, · · · , c−→vm
].

5. Find the singular value decomposition ofP asP = XΣY∗.
6. DefineHF = X(:, 1 : nc) wherenc = nη is now taken to be the desired number of d.o.f.. It is

assumed that the firstnc columns ofX correspond to the largest singular values.

It is clear that in some objective sense, this choice ofHF captures the best finite number of search
directions, on average, to capture the optimalc−→k required on the boundary of the MCAS. Moreover,
one can inspect the singular values ofP in Σ to determine what might be the best number of columns
to take.

4.3. Feasible OMPC

This section shows briefly how theHF matrix of the previous subsection is used to define a Feasible
OMPC (FOMPC) algorithm.

Algorithm 4.2
FOMPC

1. Select the maximum numbernc2 of non-zerock+i terms in the predictions and the number of
d.o.f.nc to be used online; use Algorithm4.1to determineHF . Let c−→k = HF η−→k.

2. DefineJF = η−→
T
k SF η−→k, whereSF = HT

Fdiag{S, . . . ,S}HF .

3. Find the optimumη−→
∗
k from:

η−→
∗
k = argmin

η
−→

JF s.t. Mxk + NHF η−→k ≤ d.

4. Define c−→
∗
k = HF η−→

∗
k and implement the control lawuk = −Kxk + eT1 c−→

∗
k.

4.4. Recursive feasibility and convergence

Here, by not prescribing any specific structure toHF , the specific structure of (7) is lost and also
the literature standard recursive feasibility/convergence result. A simple procedure does exist in the
literature to recover this guarantee, but at the cost of introducing one additional d.o.f. [15]. In simple
terms, one appends the d.o.f. inHF η−→k with one additional direction, that is the tail of the optimised

c−→k from the previous sample. This is not discussed further, butinteresting reader is referred to [15].

5. CONVEX OPTIMISATION OF FOMPC FOR MAXIMUM VOLUME PROJECTIONS

As the examples will show FOMPC generates a large feasible setfor a low number of d.o.f.. In this
section, whether FOMPC also provides a good trade-off between the volume of the resulting region
of attraction and cost performance is investigated. The goalof this section is to produce a pareto
surface between the d.o.f.nη, the resulting volume of the feasible set (as a function of the average
radiusα) and the level of suboptimalityβ of FOMPC.

Our goal is to solve the following optimisation problem as a function of(α, β) ∈ [0, 1]2:

J̃(α, β) =min
HF

nη

s.t. d ≤ αMxi + Nui, ∀i = {1, . . . , n}, (19)

β ≥ 1

n

n∑

i=1

JF (αxi)− Jopt(αxi)

Jopt(αxi)
,

ui = HF ηi, HF ∈ R
m×nc .

Copyright c© 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2010)
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Computing the volume of, or the integral over, a polytope is complex, and can, in the worst of the
case be exponential in the size ofM andN. Here, the volume is approximated by the average radius
α of the MCAS determined by choosing a number of pointsx = {x1, . . . , xn} equi-spaced on the
unit hyper-sphere centered at origin and solving a series oflinear programming (LP) in order to
move the points to the boundary. The predicted performance,for given pointsxi are represented by
the optimised values of closed loopJopt(xi), JF (xi) for global OMPC and FOMPC.

Constraint ui = HF ηi is bi-linear in the decision variableHF and ηi and therefore the
optimisation problem above (19) is non-convex optimisation problem. We propose in this section a
convex relaxation of (19) based on the nuclear norm.

The bilinear constraint is equivalent to

ui ∈ Range(HF ), HF ∈ R
m×nη , ∀i = 0, . . . , n. (20)

The only property of interest of the matrixHF is its number of columns (i.e., the rank, because
HF is tall) and so we can replace the constraintui = HF ηi with the following rank-condition

rank(U) ≤ nη (21)

where U=
[
u0, . . . , un

]
. Minimising the rank of a matrixU ∈ R

m×n is a non-convex problem and
is in general NP-hard.

The nuclear norm is a convex heuristic for rank minimisationthat was proposed in [5] and shown
in [16] to be the convex envelope, or the closest convex function tothe rank operation

||U||⋆ =

m∑

i=1

σi(U) (22)

whereσi(U) is theith singular value ofU. In last few years, minimisation of thel1 norm has been
used as a convex approximation of cardinality minimisation, or to promote sparsity in the decision
vector of optimisation problems. Since the singular valuesof a matrix are all positive, the nuclear
norm ofU is equal to thel1 norm of the vector formed from the singular values ofU. As a result,
minimising nuclear norm in (22) leads to sparsity in the vector of singular values, or equality to a
low-rank matrixU.

We now relax the optimisation to its convex envelope and the optimisation can be re-cast as the
following semi-definite program (SDP) [5].

Ĵ(α, β) =min
U⋆

tr(V1) + tr(V2)

s.t.

[

V1 UT

U V2

]

≥ 0 (23)

d ≥ αMxi + Nui;

β ≥ 1

n

n∑

i=1

JF (αxi)− Jopt(αxi)

Jopt(αxi)

where we introduce the symmetric matricesV1 ∈ Rn×n andV2 ∈ Rm×m as decision variables.
Let U⋆ be the optimal solution of (23) andn⋆

η be the rank ofU⋆. A matrix HF ∈ R
m×n⋆

η that
span the range ofU⋆ can then be found via a singular decomposition ofU⋆. We term the resulting
procedure of solving SDP (23) and then computing the optimalU⋆ as optimised FOMPC.

6. NUMERICAL EXAMPLES

This section gives some numerical illustrations to comparethe efficacy of OMPC, GOMPC and
FOMPC. Specifically, the focus is on the comparison of the volume of the MCAS against the

Copyright c© 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2010)
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number of optimisation variables, that is, it considers to what extent FOMPC uses a more systematic
parameterisation of the d.o.f. within the predictions to allow for maximal gains in the size of the
regions of attractions with small numbers of d.o.f.

For numerical simulations, a large number of points equi-spaced (by solid angle for 2-dimensional
systems) or random selection or chosen uniformly on the unithyper-sphere; feasible volumes are
inferred from the distance, here denoted radii, to the feasibility boundary in each direction. A
notional or pragmatic maximum (of cost performance and sizeof the regions of attractions) for
comparison is taken as that obtained from OMPC withnc = 20 (theoretical maxima can vary [8]).

The following models/constraints are used.

Example 1

A =

[
0.6 −0.4
1 1.4

]

; B =

[
0.2
0.05

]

; C =
[
1 −2.2

]
;

− 1.5 ≤ uk ≤ 0.8; |∆uk| ≤ 0.4; |xi,k| ≤ 5; Q = I; R = 2.

Example 2

A =






0.9146 0 0.0405 0.1
0.1665 0.1353 0.0058 −0.2

0 0 0.1353 0.5
−0.2 0 0 0.8




 ;

B =






0.054 −0.075
0.005 0.0147
0.864 0
0.5 0.2




 ;C =

[
1.799 13.21 0 0.1
0.823 0 0 −0.3

]

;

|∆ui,k| ≤ 2; |uk| ≤
[

1
2

]

; |xi,k| ≤ 10; Q = CT C; R = I.

Readers should note that for example 2, the number of d.o.f. isncnc, and that in this casenu = 2.
The parameterisation dynamics for GOMPC are selected usinga multi-objective optimisation [10].

This section contains two main comparisons:

1. The achievable feasible volumes with FOMPC and GOMPC§.
2. A comparison between a default FOMPC and one arising usingthe Nuclear norm search

assesseing the performance and feasibility trade-off.

6.1. Comparison of the size of regions of attractions for OMPC, GOMPC and FOMPC

The feasible regions for Example 1 are shown in Figure1. The average radii for examples 1, 2 are
shown in figures3, 4 respectively. It is clear that FOMPC has a larger MCAS than GOMPC for the
same number of d.o.f. Indeed Figure3 shows that, for this example, FOMPC gets to within 85% of
the global MCAS with just 3 d.o.f. whereas, GOMPC require 7 d.o.f. and OMPC requires 11 d.o.f.
For example 2, FOMPC needs just 2 d.o.f.!.

Consideration of the singular values for the respectiveHL,HF matrices shown in Figure2 shows
that a choice ofnη ∈ {3, 4} captures all the key directionality, whereas for GOMPC, many more
columns are needed.

6.2. Comparison between FOMPC and optimised FOMPC

This section demonstrates that while the default FOMPC givesthe largest feasible volumes, for a
givennη, use of optimisation (23) enables a compromise between feasibility and performance.For
both examples, the optimisation (23) was run for eachα ∈ {0.01, 0.025, 0.5, 0.75, 0.99} and a fixed
value ofβ = 5%.

§Other work has already demonstrated that GOMPC outperformsboth OMPC and the algorithm of [4].
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Figure 1. Comparison of MCAS fornc = nη = 2 for Example 1.
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Figure 2. Comparison of singular values ofHL for Example 1.

1. For Example 1 for eachα resulted in matricesHF with {1, 1, 3, 6, 9} columns respectively.
Figures5, 6 show the resulting average radii of the regions of attraction and the performance
drop resulting from each considered parameterisation. Figure9 shows the trade-offs between
radius and performance loss as a function of the d.o.f.

2. For Example 2, the performance loss is significantly less for all cases than was seen for
Example 1. For eachα resulted in matricesHF with {2, 4, 5, 4, 5} columns respectively. The
results are shown in Figures7, 8, and10.
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Figure 3. Comparison of average MCAS radii asnc, nη vary for Example 1.
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Figure 4. Comparison of average MCAS radii asnc, nη vary for Example 2.

7. CONCLUSIONS

In this paper a novel mechanism for parameterising the d.o.f. within a dual-mode MPC algorithm
was proposed. The proposal builds on the insights of parameterised methods, which have
demonstrated how to achievelong effective input horizons using small numbers of d.o.f.. Here,
the concept is radically altered by identifying the optimalsubset of long horizon ’unstructured’
perturbations which are then applied to the input predictions. It is shown that using well defined
perturbations allows substantial improvements in the volume of the set of feasible states, for the
same numbers of d.o.f.. However, given that feasibility andperformance requirements are often in
conflict, the paper also proposes systematic tools for analysing this trade-off and thus allowing a
design choice.
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Figure 6. Average performance loss as a function ofα for Example 1.

Future work will look at several questions: (i) How well do these methods extend to large
dimensional systems or indeed to make use of system or direction specific information? (ii) How
would the approach be modified to deal with the uncertain case? (iii) While the proposal reduces the
required number of d.o.f., there is a need to investigate thepotential for developing efficient online
MPC optimisations.
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