
This is a repository copy of XML Labels Compression using Prefix-Encodings.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/96826/

Version: Accepted Version

Proceedings Paper:
Zadjali, H. and North, S.D. (2016) XML Labels Compression using Prefix-Encodings. In:
Proceedings of the 12th International Conference on Web Information Systems and
Technologies. 12th International Conference on Web Information Systems and
Technologies, April 23-25, 2016, Rome, Italy. SCITEPRESS, Science and Technology
Publications , pp. 69-75. ISBN 978-989-758-186-1

https://doi.org/10.5220/0005755500690075

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

XML Labels Compression using Prefix-Encodings

Hanaa Al Zadjali, Siobhán North
Department of Computer Science, The University of Sheffield, Sheffield, UK.

Hawalzadjali1@sheffield.ac.uk, s.north@sheffield.ac.uk

Keywords: XML Labels, XML Compression, Encoding Methods, Prefix Encoding.

Abstract: XML is the de-facto standard for data representation and communication over the web, and so there is a lot

of interest in querying XML data and most approaches require the data to be labelled to indicate structural

relationships between elements. This is simple when the data does not change but complex when it does. In

the day-to-day management of XML databases over the web, it is usual that more information is inserted

over time than deleted. Frequent insertions can lead to large labels which have a detrimental impact on

query performance and can cause overflow problems. Many researchers have shown that prefix encoding

usually gives the highest compression ratio in comparison to other encoding schemes. Nonetheless, none of

the existing prefix encoding methods has been applied to XML labels. This research investigates

compressing XML labels via different prefix-encoding methods in order to reduce the occurrence of any

overflow problems and improve query performance. The paper also presents a comparison between the

performances of several prefix-encodings in terms of encoding/decoding time and compressed code size.

1 INTRODUCTION

Due to its flexible, self-describing nature, eXtensible

Mark-up Language (XML) has become the de-facto

standard for data representation and transformation

over the web but, again due to its self-describing

nature, it is verbose. Moreover, throughout the

lifecycle of an XML document there can be arbitrary

insertions of new nodes. Various methods have been

proposed to improve the storage and retrieval of

XML data in a dynamic environment. Among them

a variety of dynamic XML labelling schemes

intended to speed up query processing.

Unfortunately, almost all the existing dynamic

labelling schemes suffer from a linear growth rate of

label size under arbitrary/frequent node insertions

which may cause an overflow problem.

The aim of this paper is to study the possibility

of compressing XML labels to reduce the occurrence

of any overflow problems. Although several

encoding methods have been applied by existing

XML labelling schemes to store XML labels, prefix-

encoding techniques were not among them.

Therefore, this paper tests and compares the

performance of many prefix encoding methods in

terms of compressing XML labels.

This paper is structured as follows: Section 2

briefly describes XML labelling schemes and

section 3 considers how the generated labels are

encoded in different label storage schemes. Section

4 defines the overflow problem. Section 5 describes

various prefix-encoding methods used for

compressing XML labels to overcome the limitation

of the current label storage schemes. The

experimental validation of the performance of these

prefix-encoding techniques in terms of

encoding/decoding time and compressed code size is

illustrated in section 6. Finally section 7 concludes

this paper with the results.

2 XML LABELLING SCHEMES

An XML document can be represented as an ordered

tree structure in which nodes represent elements and

edges represent the structural relationships (e.g.

Parent/Child and Ancestor/Descendant). An XML

labelling scheme assigns a unique identifier to each

node in such a way that structural relationships

between nodes can be determined directly from

these labels, ideally all structural relationships.

In general, XML labelling schemes can be

classified into four categories: interval-based, prefix-

based, multiplicative, and hybrid labelling schemes.

With the available data on frequently updated XML

applications it is difficult to determine in advance

the number of possible future updates and

consequently the initial size of intervals in interval-

based labelling schemes which leave space for

insertions. Whereas constructing labels in

multiplicative labelling schemes which can easily

cope with insertions and hybrid labelling schemes

are computationally expensive and complex (Haw

and Lee 2011). For these reasons, prefix based

labelling approaches appear to be more suitable for

dynamic XML data (Sans and Laurent 2008).

Therefore, this research concerns prefix labelling

schemes where the labelling summarizes both the

position of the node in the tree and also maintains

the document order during updating.

The first prefix labelling scheme which

considered document order was introduced by

(Tatarinov, Viglas et al. 2002) and is called Dewey

labelling scheme. It assigns integer labels based on

the Dewey decimal classification system for

libraries. Although this scheme is the most widely

used (He 2015) in XML query processing since it

easily identifies the structural relationship between

XML nodes, it does not support node insertion.

Recently many prefix-based XML labelling

schemes have been proposed in the literature to

support node insertions amongst them the

SCOOTER labelling scheme (O�Connor and

Roantree 2012). Unlike Dewey, SCOOTER labels

are based on quaternary strings and represent node

order lexicographically rather than numerically.

However, like all dynamic labelling schemes,

SCOOTER suffers from what is called the overflow

problem in certain circumstances (Ghaleb and

Mohammed 2013).

3 ENCODING METHODS

A key factor for all dynamic XML labelling schemes

is how their labels are physically encoded, decoded

and stored in a computer. In the logical

representation of prefix labelling schemes there is

always a delimiter �.� but this delimiter is encoded

and stored separately from the label value (Li, Ling

et al. 2008). Therefore, the logical interpretation of a

label in the computer immediately affects the label

size on disk as well the computational cost of

encoding/decoding between the logical and physical

representations (O�Connor and Roantree 2013).

All existing dynamic labels storage schemes can

be categorised into four classes: length fields,

control tokens, separators, and prefix-free codes.

3.1 Length Field

Concept of a length field is a field to store the length

of a node label (as a fixed length bit number)

directly before the node label value. The length of

labels can vary widely depending on the node�s

position within the XML tree. Since XML trees are

arbitrarily wide and arbitrarily deep there restriction

on the number of nodes might be inserted later, as a

consequence in a dynamic XML the number of node

insertions is limited to the capacity of the fixed

length field yielding to the overflow problem.

3.2 Control Tokens

Control tokens are tokens used to indicate the

position of a label value within a specific-level

interval and these tokens are used to determine how

the subsequent bit sequence of the label value is

interpreted. An example of control tokens is UTF-8

(Yergeau 2003) which is employed by the Dewey

labelling scheme to encode Dewey labels, where

each component of Dewey path is encoded in UTF-8

and then concatenated together in the same path

order (Tatarinov, Viglas et al. 2002). However, this

encoding method causes overflow when a code

value goes beyond 231.

3.3 Separator

In prefix based labelling schemes a separator �.� is

usually encoded and stored separately from the label

itself. In a separator storage scheme a predefined bit

sequence is reserved as a delimiter and not a part of

the label value. For instance, the quaternary

encoding QED (Li and Ling 2005) and SCOOTER

(O�Connor and Roantree 2012) employed their own

separator storage scheme in which the digit �0� is

used only for separators and therefore the separator

code size remain constant no matter how big the

label size might become. This approach results in

slow bit-by-bit or byte-by-byte comparison

operation during decoding because of the process

needed to recognize bit �0� or �00� as a separator

rather than the binary representation of the code

itself. Consequently, it degrades query performance.

3.4 Prefix-Free Codes

Prefix-free codes are based on the (Elias 1975)

proposition that a prefix set S is said to be a prefix

code if and only if no member of S is the beginning

of another. A prefix-free code approach often

requires fewer bits to represent a label than a control

token scheme since the prefix-free codes can be

adjusted according to the number of members within

a prefix set (Härder, Haustein et al. 2007). An

example of a dynamic labelling scheme that uses

prefix-free codes is ORDPATH (O'Neil, O'Neil et al.

2004). However, the ORDPATH compression

technique makes the decoding process in

ORDPATH more time consuming.

4 OVERFLOW PROBLEM

There are two main reasons that cause re-labelling

nodes when XML is updated (O�Connor and

Roantree 2013). The first reason is when arbitrary

dynamic node insertions are not enabled by the node

insertion algorithms within a labelling scheme, such

as in Dewey labelling scheme (Tatarinov, Viglas et

al. 2002). The other reason is the overflow problem

produced by a labelling scheme due to the label

storage scheme used for encoding XML labels, such

as in ORDPATH (O'Neil, O'Neil et al. 2004) and

SCOOTER (O�Connor and Roantree 2012).

The overflow problem relates to the label storage

scheme used to encode and store label values. If

there is insufficient storage space to accommodate a

new node label, a part of the new label might be lost

resulting in incorrect and possibly duplicate labels.

This is referred to as an overflow problem. When

the problem occurs the entire tree has to be re-

labelled; a costly process which is always

undesirable. It is to avoid re-labelling that so many

dynamic labelling schemes have been devised.

Node labels are stored either as fixed-length or

variable length binary numbers at implementation.

Fixed-length labels are not scalable as the whole tree

has to be re-labelled when all the assigned bits have

been used up otherwise overflow will occur. On the

other hand, using variable length necessitates the use

of length field storage scheme which also subject to

overflow as described in section 3.1.

Prefix labelling schemes; in particular, suffer

from the overflow problem since they are structured

so that the label of every ancestor is included in each

label. This has the advantage of speeding up the

identification of relationships between nodes but at a

cost in label size.

This research investigates the possibility of

reducing the overflow or complete re-labelling

occurrences by compressing label size. Several

alternative prefix encoding methods have been

investigated to this end.

5 PREFIX ENCODING

METHODS

One of the most popular data compression

techniques currently is prefix coding (Karpinski and

Nekrich 2009). A prefix code is a variable-size code

suitable for coding a set of integers whose size is

unknown beforehand. Many researchers such as

(Walder, Krátký et al. 2012) and (Bača, Walder et al.

2010) have shown that prefix encoding approaches

give highest compression ratio in comparison to

other encoding schemes.

 In this paper several prefix coding approaches

are used for first time to compress XML nodes

labels, where each component of a label path is

encoded separately and then concatenated (the

separators are omitted).

5.1 Fibonacci of Order m ≥ 2

Based on Fibonacci numbers (Fi), the Generalised

Fibonacci code of order m ≥ 2 was introduced in

(Apostolico and Fraenkel 1987) and states that for

each non-negative integer value N there is exactly

one unique binary code of the form:

ܰ ൌ ෍݀௜ܨ௜ ǡ ݀௜ א ሼͲǡ ͳሽǡ Ͳ ൑ ݅	 ൑ ݇௞
௜ୀ଴ (1)

Such that there is no (m) consecutive 1-bits

within the summation result of Fibonacci numbers of

order m; whereas each Fibonacci code ends up with

exactly (m) consecutive 1-bits.

O�Connor used Fibonacci-Zeckendorf principle

(O�Connor and Roantree 2013) for encoding and

decoding the length field of a label value.

Nevertheless, Fibonacci-Zeckendorf representation

only compresses the length field part of the encoded

labels and so the labels codes still subject to

overflow in case of frequent nodes insertions.

5.2 Lucas Coding

Lucas numbers (Li) introduced by Edouard Lucas

(MacTutor 1996) based on Fibonacci sequence

properties and so coding theorems for Lucas

numbers correspond to Fibonacci coding (of order

2) theorems. Equation 2 below represents the

Zeckendorf theorem for Lucas numbers applied in

this paper. Although the Lucas coding algorithm

exists, no one has implemented it for encoding. In

this paper, the Lucas coding method is applied (for

first time) to compress XML labels.

ݔ ൌ 	෍ߙ௜ܮ௜௞ିଵ
௜ୀ଴ ǡ				ߙ௜ א ሼͲǡͳሽ	

	such	that	 ൜ߙ௜ߙ௜ାଵ ൌ Ͳǡ ݅	ݎ݋݂ ൒ Ͳߙ଴ߙଶ ൌ Ͳ 																						
(2)

5.3 Elias-Delta Coding

Introduced by Peter Elias (Elias 1975), the Elias-

delta code is one of the most commonly used prefix

codes defined as follow: for each positive integer

value N the Elias-delta code E(N) = S(N)  L(N) 

B�(N) ; where:��means concatenation. B(N) is the

binary representation of N excluding insignificant 0-

bits (at the left of the binary number) and B�(N) is

B(N) without the foremost 1-bit (most-left 1-bit).

L(N) is the length of B(N); i.e. number of bits of

B(N), and S(N) is a sequence of 0-bits of size equals

to the length of L(N) Ͳ1.

(Williams and Zobel 1999) applied Elias-delta

codes to store integers in compressed form in order

to improve the performance of disk access and data

retrieval. Elias-delta was also utilised by (Scholer,

Williams et al. 2002) for compressing inverted

indices to speed up the query performance and query

evaluation.

5.4 Elias-Fibonacci of Order 2

Elias-Fibonacci code introduced by (Walder, Krátký

et al. 2012) as a combination of Elias-Delta code and

Fibonacci of order 2 code and it is defined as follow: EFሺNሻ ൌ 	Fሺଶሻ൫LሺNሻ൯	BሺNሻ (3)

 Where BሺNሻ is binary representation of N, L(N)

is the length of BሺNሻ, and Fሺଶሻ൫LሺNሻ൯ is Fibonacci

of order 2 of L(N). (Bača, Walder et al. 2010)

applied Elias-delta, Fibonacci of order 2 and order 3,

and Elias-Fibonacci codes for the compression of

XML node streams arrays.

5.5 Elias-Fibonacci of Order 3

In this paper a new Elias-Fibonacci (m>2) is

proposed to encode XML labels. The method is

basically to code L(N) in Fibonacci of order (m>2)

instead of order 2 in Elias-Fibonacci coding method

(see equation 4). EFሺNሻ ൌ 	Fሺ୫ሻ൫LሺNሻ൯ BሺNሻǡ m ൐ ʹ (4)

The aim of this is to study the effect of

increasing the order number into the encoding time

and generated code size.

6 IMPLEMENTATION AND

RESULTS

Three different real XML benchmark datasets

(Miklau 2015) were used to test the efficiency of the

prefix coding methods presented in section 5. Table

1 illustrates the characteristics of the datasets used

from which Dewey labels (type integer) and

SCOOTER labels (type string) were generated

separately using a SAX parser. Dewey/SCOOTER

labels for each dataset were compressed and

decompressed by the 6 different prefix encoding

methods presented earlier. To improve the

compression performance of the SCOOTER labels,

the label�s components were also coded as long

integers. Moreover, the original encoding methods

proposed by the designers of Dewey and SCOOTER

labelling schemes were also applied (i.e. UTF8 for

Dewey and QED for SCOOTER labels) for

comparison.

Table 1: XML benchmarks datasets properties.

XML

dataset

File

size

Max

depth

Max

breadth

Total

elements

Nasa 23MB 8 80396 476646

Treebank 82 MB 36 144493 2437666

DBLP 127MB 6 328858 3332130

6.1 Encoding and Decoding Time

The encoding/decoding process for each prefix

coding method were implemented (repeated 20

times after excluding at least the first 4 runs to avoid

cache memory and verify the accuracy and

reliability of the results) for every

Dewey/SCOOTER label set and the execution time

in mill-seconds was calculated. Figures 1-4 shows

the average encoding and decoding time

comparison. Due to limited space, compression/

decompression results of SCOOTER labels as

strings are not included in the figures.

Overall the encoding/decoding time of Dewey

and SCOOTER labels were slowest for the Treebank

dataset, which has the deepest XML tree.

SCOOTER labels are computed based on the node

child count and so the more children per node exist

(i.e. wider XML tree as in DBLP dataset) the bigger

self-label value is. For integers SCOOTER labels

Fibonacci and Lucas methods have given the slowest

encoding time for DBLP whilst these methods failed

to encode SCOOTER string labels for DBLP

because the huge label size caused overflow.

Overall, for SCOOTER labels the original QED

achieved the fastest encoding time of all 6 prefix-

encoding methods.

The Kruskal-Wallis test (non-parametric test

equivalent to ANOVA) was carried out on average

encoding/decoding time and the p-value obtained

was p < 0.001, suggesting there is a very strong

evidence of difference between at least two prefix-

encoding methods. Then the �pairwise comparisons�

via Manny-Whitney test showed that there was very

strong evidence (p<0.001, adjusted using the

Bonferroni correction) of a difference between most

of the groups.

In terms of encoding time there was no evidence

of difference between Elias-Delta and the newly

implemented Elias-Fibonacci of order 3. The overall

time for Elias-Delta has a smaller median value in

comparison to the other prefix coding methods.

Alternatively, the Manny-Whitney test has shown

that there is no evidence of difference between

Fibonacci of order 2, Fibonacci of order 3, and

Lucas coding. Moreover, Fibonacci of order 2 and

Lucas produced the same median value (of decoding

time) and that is smaller than other prefix-encodings.

In practice, the decoding process is usually done

more often than encoding. Therefore, for faster

XML query processing Fibonacci coding is

preferable to other encoding methods.

Figure 1 Average encoding timefor Dewey labels.

Figure 2 Average encoding time for SCOOTER labels.

Figure 3 Average decoding time for Dewey labels.

Figure 4 Average decoding time for SCOOTER labels.

6.2 Code Size

The average, maximum, and total code sizes of all

the Dewey/SCOOTER labels within a dataset were

computed. Figures 5 and 6 illustrates the total code

size (in Kbyte) for all the prefix coding methods for

each dataset. All the prefix-encoding methods

applied have generated smaller codes in comparison

to the original UTF8 coding for Dewey labels, but

for SCOOTER labels the original QED encoding

gave the smallest codes of all prefix-encodings.

The size of self-label values in a label set has an

impact on the size of the compressed code. For

instance, label sets with shorter self-labels such as

Dewey labels for the NASA and Treebank datasets

using Fibonacci order 2 generated the smallest code.

As self-label values gets bigger (e.g. in SCOOTER

labels), Fibonacci of order 3 produced the most

compressed code. In general, Fibonacci coding

generates the most compressed codes in comparison

to the other prefix-encoding methods applied in this

paper. For smaller self-labels values Fibonacci of

order 2 is better, whereas Fibonacci of order 3 is

recommended for larger self-labels values.

Figure 5 Total code size (KB) for Dewey labels.

Figure 6 Total code size (KB) for SCOOTER labels.

6.3 Dataset Size

To study the effect of the dataset size on the

compression process Treebank and DBLP file sizes

were reduced to 23MB (to be the same as the NASA

file size) but their XML tree properties were

preserved as described in table 1. The compression

and decompression methods were measured over

these datasets and the results were consistent with

the original ones. In conclusion, the XML tree�s

shape (depth and breadth) influences the

compression time and code size but not the XML

document size.

7 CONCLUSION AND FUTURE

WORK

In this paper, various prefix coding methods were

applied for the first time for compressing XML

labels. Among these coding methods Lucas coding

was implemented for first time and Elias-Fibonacci

of order m > 2 was also considered. The

compression process was conducted on three real

XML benchmark datasets. The results shown the

structure of an XML tree representation of a dataset

affects the performance of the compression methods

but not the XML document size. Among the prefix-

encoding methods studied Elias-Delta achieved the

fastest encoding time on average whilst Fibonacci of

order 2 had the best decoding time and Fibonacci of

order 3 produced the most compressed codes.

Consequently, Fibonacci coding is recommended for

encoding XML labels since it generates smaller code

and produces faster decoding in comparison to other

encoding methods presented in this paper.

REFERENCES

Apostolico, A. and A. S. Fraenkel (1987). "Robust

transmission of unbounded strings using Fibonacci

representations." Information Theory, IEEE

Transactions on 33(2): 238-245.

Bača, R., J. Walder, et al. (2010). Benchmarking the

compression of XML node streams. Database Systems

for Advanced Applications, Berlin Heidelberg,

Springer.

Elias, P. (1975). "Universal codeword sets and

representations of the integers." Information Theory,

IEEE Transactions on 21(2): 194-203.

Ghaleb, T. A. and S. Mohammed (2013). Novel scheme

for labeling XML trees based on bits-masking and

logical matching. 2013 World Congress on Computer

and Information Technology (WCCIT),, Tunisia,

Sousse, IEEE.

Härder, T., M. Haustein, et al. (2007). "Node labeling

schemes for dynamic XML documents reconsidered."

Data & Knowledge Engineering 60(1): 126-149.

Haw, S.-C. and C.-S. Lee (2011). "Data storage practices

and query processing in XML databases: A survey."

Knowledge-Based Systems 24(8): 1317-1340.

He, Y. (2015). A Novel Encoding Scheme for XML

Document Update-supporting. International

Conference on Advances in Mechanical Engineering

and Industrial Informatics (AMEII), Zhengzhou,

Atlantis Press.

Karpinski, M. and Y. Nekrich (2009). "A Fast Algorithm

for Adaptive Prefix Coding." Algorithmica 55(1): 29-

41.

Li, C. and T. W. Ling (2005). QED: a novel quaternary

encoding to completely avoid re-labeling in XML

updates. Proceedings of the 14th ACM international

conference on Information and knowledge

management. Bremen, Germany, ACM: 501-508.

Li, C., T. W. Ling, et al. (2008). "Efficient updates in

dynamic XML data: from binary string to quaternary

string." The VLDB Journal�The International Journal

on Very Large Data Bases 17(3): 573-601.

MacTutor. (1996). "Edouard Lucas http://www-

groups.dcs.st-

and.ac.uk/~history/Biographies/Lucas.html."

Retrieved 7/May/2015.

Miklau, G. (2015). "XML Data Repository

http://www.cs.washington.edu/research/xmldatasets/."

Retrieved February 2015.

O'Neil, P., E. O'Neil, et al. (2004). ORDPATHs: insert-

friendly XML node labels. Proceedings of the 2004

ACM SIGMOD international conference on

Management of data. Paris, France, ACM: 903-908.

O�Connor, M. and M. Roantree (2012). SCOOTER: A

Compact and Scalable Dynamic Labeling Scheme for

XML Updates. Database and Expert Systems

Applications, Springer Berlin Heidelberg. 7446: 26-

40.

O�Connor, M. and M. Roantree (2013). FibLSS: A

Scalable Label Storage Scheme for Dynamic XML

Updates. Advances in Databases and Information

Systems, Springer Berlin Heidelberg. 8133: 218-231.

Sans, V. and D. Laurent (2008). "Prefix based numbering

schemes for XML: techniques, applications and

performances." Proc. VLDB Endow. 1(2): 1564-1573.

Scholer, F., H. E. Williams, et al. (2002). Compression of

inverted indexes For fast query evaluation.

Proceedings of the 25th annual international ACM

SIGIR conference on Research and development in

information retrieval. Tampere, Finland, ACM: 222-

229.

Tatarinov, I., S. D. Viglas, et al. (2002). Storing and

querying ordered XML using a relational database

system. Proceedings of the 2002 ACM SIGMOD

international conference on Management of data.

Madison, Wisconsin, ACM: 204-215.

Walder, J., M. Krátký, et al. (2012). "Fast decoding

algorithms for variable-lengths codes." Information

Sciences 183(1): 66-91.

Williams, H. E. and J. Zobel (1999). "Compressing

integers for fast file access." The Computer Journal

42(3): 193-201.

Yergeau, F. (2003). "UTF-8, a transformation format of

ISO 10646 via https://tools.ietf.org/html/rfc3629."

Retrieved January 2015.

