

This is a repository copy of *Changing densities of generalist species underlie apparent homogenization of UK bird communities*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/96802/

Version: Accepted Version

Article:

Sullivan, MJP, Newson, SE and Pearce-Higgins, JW (2016) Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis, 158 (3). pp. 645-655. ISSN 0019-1019

https://doi.org/10.1111/ibi.12370

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Running head: Community specialisation
2	
3	Changing densities of generalist species underlie apparent homogenization of UK
4	bird communities
5	
6	MARTIN J. P. SULLIVAN, ^{1,2} STUART E. NEWSON ^{1*} & JAMES W. PEARCE-HIGGINS ¹
7	
8	¹ British Trust for Ornithology, The Nunnery, Thetford, IP24 2PU, UK.
9	² School of Geography, University of Leeds, Leeds, LS2 9JT, UK.
10	
11	* Corresponding author.
12	Email: stuart.newson@bto.org
13	
14	Generalist species are becoming increasingly dominant in European bird communities. This has been
15	taken as evidence of biotic homogenization, where generalist 'winners' systematically replace
16	specialist 'losers'. We test this by relating changes in the average specialisation of UK bird
17	communities to changes in the density of species with different degrees of habitat-specialisation.
18	Although we find the expected continued decline in community specialisation, this was driven by a
19	combination of a strong increase in the density of the most generalist quartile of species and declines
20	in the density of moderately generalist species. Contrary to expectation, specialist species increased
21	slightly over the 18 year study period, but had little effect on the overall trend in community
22	specialisation. Our results indicate that the apparent homogenization of UK bird communities is not
23	driven by the replacement of specialists by generalists, but instead by the changing fortunes of
24	generalist species.
25	
26	Keywords: biotic homogenization, Breeding Bird Survey, community specialisation index,
27	monitoring.

28 Changes to the environment, such as climate change and land-use intensification, do not affect all 29 species equally (Rader et al. 2014). Habitat specialists may be more vulnerable to environmental 30 change than habitat generalists, due to their more restricted habitat requirements and potentially lower 31 ability to exploit new opportunities (Shultz et al. 2005). Environmental change could therefore lead to 32 a loss of differentiation in species composition between habitats, as a few generalist 'winners' replace 33 specialist 'losers' (McGill et al. 2015). This is supported by negative relationships between 34 population growth rate and specialisation in a wide range of taxa (Munday 2004, Matthews et al. 35 2014, Timmermann et al., 2015), including birds (Julliard et al. 2004, Jiguet et al. 2007, Salido et al. 36 2012), and by observations of communities becoming increasingly composed of individuals of 37 generalist species (Davey et al. 2012, Timmermann et al. 2015). 38 However, while individuals of generalist species make up an increasing proportion of 39 European bird communities (Davey et al. 2012, Le Viol et al. 2012), it is unclear whether these 40 changes are being driven by increases in populations of generalist species, declines in populations of specialist species or some combination of both. The nature of the processes driving changes in 41 42 community specialisation has important consequences, as a reduction in community specialisation 43 through population declines may be of greater conservation concern than if it is driven by population increases in generalists, whilst large changes in populations of widespread generalists may have 44 45 implications for ecosystem function. 46 We follow changes in UK bird communities over 18 years (2598 ± 597 SD 1 km squares

47 monitored each year). Our aims are to (1) quantify changes in community specialisation and (2) assess
48 the extent to which these changes reflect changes in the populations of specialist and generalist
49 species.

50

51 METHODS

52

53 Bird density data

54 Data from the UK Breeding Bird Survey (BBS), a national scale survey designed to monitor changes 55 in bird populations in the UK, were used to track changes in community structure. The survey started in 1994, and we used data from this point up to 2012. Survey squares of 1 km² in area were selected 56 57 for the BBS using a stratified random sampling design, with more squares in areas with a higher 58 human population density to maximise utilisation of available volunteers. In each BBS square, a 59 volunteer walks two 1 km line-transects across the square on two visits during the breeding season 60 (April to June), with the visits separated by at least four weeks. Each transect is divided into 200 m 61 long transect sections, and the birds seen in each transect section are recorded in three distance bands 62 (<25 m, 25 - 100 m and >100 m), or as flying. Volunteers also record the habitat in each transect 63 section according to a hierarchical coding system (Crick 1992). Data from 2001 were excluded from 64 analyses as access to the countryside was restricted in that year due to foot-and-mouth disease. In the 65 other years, 1570 to 3718 squares were surveyed each year, with a total of 5155 squares surveyed 66 during the study period.

67 In this study, we used records in the first two bounded distance bands, and excluded records 68 of flying birds, with the exception of swifts, hirundines and raptors, as these species either are aerial 69 feeders or hunt from the air, so flying birds of these species are likely to be using resources within the 70 BBS square. Feral forms of Rock Dove Columba livia, Mallard Anas platyrhynchos and Greylag 71 Goose Anser anser were recorded separately to wild forms by volunteers and are treated separately 72 here. We removed birds that were likely to be transient migrants or lingering winter visitors, with the 73 aim of ensuring the bird community recorded consisted of the species likely to be using the square for 74 breeding. To do this, we removed unusually high counts of waders, indicating flocks away from 75 breeding areas, records of European Golden Plovers Pluvialis apricaria from unsuitable lowland 76 habitat, species that are regular passage migrants or winter visitors to the UK, but that have fewer than 77 ten breeding pairs, and species with fewer than ten records in the entire BBS dataset. Following 78 application of these filters, our dataset consisted of approximately 1.2 million records of 195 bird 79 species (see Table S1 for a list of species).

80 In order to turn raw abundances into estimates of density, we estimated detection probabilities
81 for each species in each BBS square. For each species, the distance band in which each observation

82 was recorded was modelled as a function of visit date (i.e. early or late) and the primary habitat class 83 (the 12 habitat classes are defined in Table S2) in the transect section in which the bird was recorded 84 using a half-normal distance model in the R package MRDS (Laake et al. 2015). If there were fewer 85 than 20 observations in a habitat class, the habitat class was combined with similar habitats to form a 86 broader habitat class to be used as a covariate (for example, if there were fewer than 20 observations 87 in flowing water, that habitat would be grouped with wetlands and standing water to form a broader 88 wetland habitat class; see Table S2 for other broader habitat classes). These covariates allow variation 89 in detectability over the breeding season and between habitats to be modelled. These models were 90 used to predict the probability of individuals of a species being detected in each transect section, and 91 these were averaged per species to obtain the predicted detection probability for that visit to a BBS 92 square. The density of each species in a BBS square was then calculated by dividing the raw count by 93 the detection probability. Detection functions could not be calculated for ten species, so for these 94 species we estimated detection probabilities using models fitted to observations of similar surrogate 95 species (Table S3). Raw counts were used for swifts, hirundines and raptors, as the majority of 96 records of these species related to flying individuals for which distance data were not available. We 97 obtained similar results to those reported in the main paper when we repeated the analysis using raw 98 counts for all species (Fig. S1, Fig. S2).

99

100 Quantifying species specialisation

101 For each species, we calculated a species specialisation index (SSI) as the coefficient of variation of 102 the density of a species across the 12 habitat classes across all BBS squares, with values close to zero 103 indicating little variation in density between habitats (i.e. generalist species), and high values 104 indicating considerable variation between habitats (i.e. specialist species). We grouped species into 105 four habitat specialisation groups based on the quartiles of SSI values; species with SSI values in the 106 first quartile (Q1, SSI < 0.81) can be considered very generalist, species in the second quartile (Q2,107 $SSI \ge 0.81$ and < 1.29) moderately generalist, species in the third quartile (Q3, $SSI \ge 1.29$ and < 1.82) 108 moderately specialist, and species in the fourth quartile (Q4, $SSI \ge 1.82$) very specialist. Changes in

109 the total density of species in each quartile give an indication of differences in general population 110 trends of specialist and generalist species. The total density of birds across all species in a given 111 quartile was calculated by subsetting the dataset so that it only contained species in a given habitat 112 specialisation quartile, and then summing the density of those birds in each BBS square-year 113 combination. Densities were natural log transformed prior to analysis, with a constant of one added 114 prior to transformation as some densities were equal to zero. For each quartile, we modelled the total 115 density across all species in that quartile as a function of year (treated as a continuous variable), with 116 BBS square identity as a random effect, using linear mixed effects models implemented in the R 117 package lme4 (Bates et al. 2014). We also calculated the number of increasing and declining species 118 in each quartile, using national BBS trends from Risely et al. (2013) to identify which species were 119 increasing and declining, to give an indication of how variable population trends were within SSI quartiles. SSI was calculated using data from all years (i.e. 1994 – 2012); however, habitat 120 121 specialisation may have changed during the study period. To ensure this did not affect our results, we also calculated SSI only using data from the start of the study period (1994 – 1997). Both measures of 122 123 SSI were strongly positively correlated (r = 0.847, df = 193, P < 0.001), and changes in the density of 124 birds in each quartile showed similar patterns using both measures of SSI (Fig. S1, Fig. S2). Only SSI 125 values calculated across all years are presented in the main paper.

The community specialisation index (CSI) of each BBS square in each year was calculated as the density weighted mean of SSI values of the bird community in that BBS square. As an alternative, CSI was also calculated as an unweighted mean of SSI values, so that values are only sensitive to the composition of the bird community and not to abundances. A negative trend in CSI is indicative of a reduction in the relative contribution of specialists to generalists, i.e. homogenization.

131

132 Quantifying the contribution of species and groups of species to CSI

Following Davey et al. (2013), a jacknife approach was used to quantify the contribution of species to
temporal trends in CSI. To estimate the overall trend in CSI over the study period, we used a linear

mixed effects model of CSI (natural log transformed prior to analysis) as a function of year (treated as

136 a continuous variable), with BBS square identity as a random effect. The coefficient of the year term 137 indicates the rate of change in CSI. We restricted models to linear effects because our primary intent 138 was to quantify the rate of change in CSI over time, and to investigate the impact of removing species 139 on this rate of change. To quantify the contribution of species/ groups of species, individual species 140 or groups of species were removed from the dataset as appropriate, CSI was recalculated, and the model re-fitted. The percentage change in the year coefficient (Δ_{β}) was calculated as $\Delta_{\beta} = (\beta_2 - \beta_1)/(\beta_2 - \beta_2)/(\beta_2 - \beta_2)/($ 141 142 $|\beta_1| \times 100$, where β_1 is the year coefficient when all species were included in the calculation of CSI 143 and β_2 is the year coefficient when CSI was calculated with a species or group of species removed. Positive values indicate that the slope of the relationship was less negative when the species was 144 145 omitted and therefore that the trend of the species was contributing to homogenisation. Negative 146 values show that the slope of the relationship was more negative when the species was omitted, 147 indicating that the species was reducing the slope of the relationship so countering homogenisation. In 148 order to understand the drivers of any change in community specialisation, these percentage change 149 values were calculated when each individual species and each SSI quartile species group was 150 removed from the dataset, as well as when non-native species were removed.

151 We used a linear model to model individual species' influence on the trend in CSI (Δ_{β}) as a 152 function of their SSI and national BBS trend, and the interaction between SSI and BBS trend. We 153 square-root transformed the response variable (percentage change in CSI trend) to meet model 154 assumptions, and also square-root transformed the explanatory variables, which were strongly 155 positively skewed, in order to improve our sampling of parameter space. Both percentage change in 156 CSI trend and national BBS trend could be negative, so we square-root transformed the absolute 157 values before applying the original sign. This analysis could only be conducted using species for 158 which national BBS trends were available (n = 127). Removing species without BBS trends could 159 mean that we missed the influence of rare species on CSI trend. However, this is unlikely as we 160 found that individual species' influence on the trend in CSI did not vary significantly between species 161 with and without a national BBS trend (Wilcoxon test, W = 3937, P = 0.310). All analyses were 162 carried out using R (R Core Team 2014). R code used for statistical analysis is provided in Appendix

163 S1. Marginal and conditional R² values for mixed-effects models were calculated following Nakagawa

and Schielzeth (2013), implemented in the MuMIn R package (Barton et al. 2014).

165

166 **RESULTS**

167

168	The total density of Q1 (very generalist) and Q4 (very specialist) species in BBS squares increased
169	(Q1: $\beta = 0.018 \pm < 0.001$, $\chi^2_1 = 1397.6$, P < 0.0001, marginal R ² = 0.005, conditional R ² = 0.881; Q4:
170	$\beta = 0.009 \pm 0.001$, $\chi^2_1 = 84.2$, P < 0.0001, marginal R ² = 0.001, conditional R ² = 0.607), while the total
171	density of Q2 (moderately generalist) species decreased over the study period ($\beta = -0.018 \pm 0.001$, χ^{2}_{1}
172	= 556.7.4, P < 0.0001 marginal R^2 = 0.006, conditional R^2 = 0.632). There was no significant trend in
173	the density of Q3 (moderately specialist) species ($\chi^2_1 < 0.1$, P = 0.978, marginal R ² < 0.001,
174	conditional $R^2 = 0.653$). The low marginal R^2 and high conditional R^2 in these models indicates that
175	spatial variation in bird density (captured by the random site effect) is much greater than temporal
176	variation (captured by the fixed year effect). Changes were most pronounced for the increase in the
177	density of Q1 species and the decrease in the density of Q2 species (Fig. 1), with the total density of
178	Q1 species predicted to have increased by 132 birds.km ⁻² and the total density of Q2 species predicted
179	to have declined by 21 birds.km ⁻² over the study period. The total density of Q3 and Q4 species were
180	both predicted to have changed by less than 1 bird.km ⁻² . Within these general trends, there was
181	considerable variation in the direction of individual species trends, with increasing and decreasing
182	species in all quartiles. However, the balance of increasing and decreasing species reflected overall
183	changes in density, with more than half of species in Q2 declining, while more than half of species in
184	the other quartiles were increasing (Fig. S3).

185 CSI declined over the study period ($\beta = -0.004 \pm < 0.001$, $\chi^2_1 = 1255.2$, P < 0.0001, marginal 186 R² = 0.004, conditional R² = 0.885, Fig. 2a). A similar, although slightly less steep trend in CSI was 187 observed when based on an unweighted mean of SSI values across the species present, and therefore 188 indicative of changes in occupancy rather than abundance ($\beta = -0.001 \pm < 0.001$, $\chi^2_1 = 290.6$, P <

189 0.0001, marginal $R^2 = 0.001$, conditional $R^2 = 0.867$, Fig. 2b). The decrease in CSI has thus been

190 driven by both changes in species abundance and changes in species identity. Changes in the densities

191 of Q1 species were largely responsible for driving these trends; when Q1 species were removed, the 192 overall trend in CSI was weakly positive (Fig. 3b). The trend in CSI remained negative when all other 193 quartiles were removed (Fig. 3), although it was significantly less negative when Q2 species were 194 removed (as indicated by non-overlapping trend confidence intervals, Fig. 3b). This indicates that 195 species in Q1 and to a lesser extent Q2 are responsible for driving the negative trend in CSI. The 196 effect of each quartile on the trend of CSI was similar when CSI was calculated as an unweighted 197 mean of SSI (Fig. S2). Changes in the density of non-native species had little effect on CSI (-4.3 % 198 change in year coefficient when removed), despite an overall increase in the density of non-native species over the study period ($\beta = 0.032 \pm 0.001$, $\chi^2_1 = 1260.4$, P < 0.0001, marginal R² = 0.013, 199 conditional $R^2 = 0.641$, Fig. S4). 200

201 Removing individual species and recalculating the trend in CSI allowed the contribution of 202 individual species to be assessed. Changes in the abundance of Starling Sturnus vulgaris (Q2, 30.0% 203 change when removed), Woodpigeon Columba palumbus (Q1, 17.0% change when removed) and 204 Meadow Pipit Anthus pratensis (Q3, 8.3% change when removed) had the greatest contribution to the 205 decline in CSI (Table 1). Across all species, there was a significant interaction between SSI and 206 national BBS trend in influencing species' contributions to change in CSI ($F_{1,124} = 15.7$, P = 0.0001, 207 model $R^2 = 0.129$), with generalist species reducing homogenization when declining, but increasing 208 homogenization when increasing, while specialist species showed the opposite pattern (Fig. 4).

209

210 DISCUSSION

211

We documented a continued decline in CSI in UK bird communities, supporting previous studies
documenting the increasing dominance of generalist species in the UK and elsewhere in Europe
(Davey et al. 2012, Le Viol et al. 2012). However, we showed that despite strong increases in the
density of generalist species, this does not come at the expense of specialist species, as the overall
density of the most specialist quartile of species increased over the study period. Instead, changes in
CSI largely reflected the changing balance of very generalist species (in Q1, which tended to increase)
and moderately generalist species (Q2, which tended to decline).

219 What has driven these patterns? Recent analyses of European bird population trends has 220 shown a similar pattern where common species have tended to decline in abundance, whilst the rarest 221 species have tended to increase (Inger et al. 2015). This was partly attributed to long-term population 222 declines in relatively widespread farmland birds (Donald et al. 2001), and the potential benefits of 223 conservation management for rare species (e.g. Donald et al. 2007, Hoffmann et al. 2010). The 224 pattern we have observed has some similarities to this, but suggests that in the UK, the most 225 widespread species (e.g. Woodpigeon, Great Tit Parus major and Goldfinch Carduelis carduelis) 226 have actually increased in abundance. These are species which occupy the greatest range of habitats, 227 and therefore are potentially most resilient to anthropogenic pressures. The most rapidly declining 228 species were the moderate generalists, which includes many of the farmland birds (e.g. 229 Yellowhammer Emberiza citrinella, Grey Partridge Perdix perdix and Lapwing Vanellus vanellus) 230 that occupy a number of habitat types, but that have declined widely in the UK in response to 231 agricultural intensification (Chamberlain et al. 2000, Eglington & Pearce-Higgins 2012). Declines in 232 CSI have been greatest in UK farmland habitats (Davey et al. 2012), supporting this explanation. 233 There also appear to be divergent impacts of warming upon habitat generalists and specialists, which 234 may have contributed to this pattern (Davey et al. 2012, Pearce-Higgins et al. 2015), although it is 235 unclear how the sensitivity of species to climate change varies between the different SSI quartiles, or 236 how the impacts of warming may interact with land-use change to drive these patterns.

237 Our analyses followed Davey et al. (2012), and defined habitat specialisation based on 238 associations with 12 habitat categories. The inferences we obtained are sensitive to this definition. SSI 239 values obtained by defining habitat specialisation using four habitat categories (woodland, wetland, 240 urban and open) are uncorrelated with those using 12 habitat categories (r = 0.14), and if these SSI 241 values are used, declines are evident in habitat specialists (Q4) and strong generalists (Q1), while the 242 density moderate generalists (Q2) and moderate specialists (Q3) increases (Fig. S1). A consequence 243 of using broader habitat categories is that species primarily associated with one habitat type within a 244 broad habitat will be considered more generalist, while species associated with all habitat-types within 245 a broad habitat will be considered more specialist. For example, Siskins Carduelis spinus are strongly 246 associated with coniferous woodland, but not with other woodland habitats (12 habitat SSI = 2.11,

247 Q4), so appear less strongly associated with any habitat type when all woodland types are combined 248 into one category (four habitat SSI = 1.23, Q1). Yellowhammers, on the other hand, are associated 249 with a wide-range of open habitats (12 habitat SSI = 1.04, Q2), so appear strongly associated with the 250 open broad habitat category (four habitat SSI = 1.99, Q4), despite not being strongly associated with 251 any of the 12 habitat categories. Because of this, we consider that using 12 habitat categories to 252 calculate SSI gives a more meaningful representation of habitat specialisation than using four 253 categories, although it is clear that the precision of measurement of habitat-specialisation has a strong 254 impact on community specialisation metrics.

255 Some individual species had large effects on changes in CSI, demonstrating that changes in 256 the populations of individual species can have a large impact on community level metrics. Starling 257 and Woodpigeon contributed most to the decline in CSI. Both of these species are abundant (Newson 258 et al. 2005) and found throughout most of the UK (Balmer et al. 2013), and show consistent 259 population trends across habitats, with Woodpigeons increasing and Starlings declining in all habitats 260 where population trends could be calculated (Baillie et al. 2014). The role of these species in driving 261 changes in CSI contrasts with the small role of most species, with the exclusion of most individual 262 species changing the trend in CSI by <1% (Table S1). Despite this, the effect of excluding any 263 individual species was considerably smaller than the effect of excluding a whole quartile, indicating 264 that our results reflect the cumulative effect of a broad suite of species, rather than just the effects of a 265 few individual species.

266 We calculated SSI using data on habitat associations pooled across the study period, so 267 treated it as a fixed attribute of a species. This means that our results reflect changes in species 268 abundance and community composition. However, SSI can change through time (Barnagaud et al., 269 2011), with species that exhibit density dependent habitat-selection spreading out into less favourable 270 habitats as their populations increase and retreating to favourable habitats as populations decline 271 (Sullivan et al. 2015a). This can potentially increase rates of community homogenization (Barnagaud et al. 2011), as increasing species become more generalist and declining species become more 272 273 specialist. In this analysis, our interest was in analysing changes in bird communities rather than 274 changes in the attributes of individual species, so we did not investigate this here, except for showing

that similar changes in the density of specialist and generalist species are observed when quartiles are
defined based on habitat specialisation in the initial years of the study period as over the whole study
period (Fig. S1).

278 Change in CSI was partially attributable to changes in the species composition of bird 279 communities, as well as changes in abundance, as a trend in CSI was evident when it was calculated 280 discounting abundance data. One potential source of change in bird community composition is the 281 spread of non-native species in the UK (Balmer et al. 2013). However, the effect of non-native 282 species on change in CSI was limited, with the increase in the density of non-native species over the 283 study period acting to slightly reduce the decline in CSI. This indicates that the observed decline in 284 CSI was due to changes in the abundance and distribution of native species rather than non-native 285 species, as previously found for Europe (Le Viol et al. 2012). However, it is important to note that we 286 may have over-estimated the habitat specialism of non-native species, as we derived estimates of SSI 287 from habitat associations in the UK, whereas non-native species may be dispersal-limited, and thus 288 not currently occupy all the habitats that may be suitable for them (Sullivan et al. 2012). It is also 289 important to note that the limited effect of non-native species on CSI does not mean that they do not 290 impact native bird communities. Some authors would consider their increased dominance within bird 291 communities evidence of biotic homogenization (Olden et al. 2004), and although some studies 292 suggest limited negative impacts on native bird communities (Blackburn et al. 2009, Newson et al. 293 2011, Grundy et al. 2014), negative impacts may be evident when non-native species reach higher 294 population densities.

295 Community weighted means, such as CSI, are often used as indicators of change in 296 communities in time and space (Devictor et al. 2008, Davey et al. 2012, Le Viol et al. 2012, Vimal & 297 Devictor 2015). However, such metrics have been criticized as they only indicate the balance of (in 298 the case of CSI) specialists and generalists, and do not indicate if these changes are due to increases in 299 generalists or declines in specialists (Gosselin 2012). We showed that changes in CSI in UK birds 300 were primarily driven by increases in very generalist species and declines in moderately generalist 301 species, and little affected by changes in the density of specialist species, supporting this criticism. On 302 average, specialist species were found at lower densities than generalist species (Fig. S5), so are likely

to have less influence of community weighted metrics. Our approach of accompanying analysis of
CSI with more detailed analysis of changes in the density of specialists and generalists gave greater
insight into the mechanisms acting on a bird community than analysis of change in CSI alone, and
could be applied to other analyses using community weighted means.

307 Environmental change can act as an environmental filter, with only a subset of the original 308 species pool able to persist in altered conditions (Helmus et al. 2010, Mouillot et al. 2013). Generalist 309 species are expected to be more likely to be able to pass through a given environmental filter due to 310 their greater niche breadth (Clavel et al. 2011). Under this model of biotic homogenisation, 311 environmental change is expected to lead to declines in specialist species, with generalist species 312 increasing to exploit new opportunities. Our results, together with those of Inger et al. (2015), contrast 313 with this expectation by showing that the overall abundance of rare and specialised species has not 314 declined, with declines evident instead in abundant, moderately generalist species. How can these 315 results be reconciled with this model of biotic homogenisation? Natural habitats in the UK have been 316 heavily fragmented and modified by humans for > 2,000 years (Rackham 1986), and this long history 317 of human impact is likely to have considerably reduced populations of habitat specialists so that there 318 was a low baseline in terms of population size at the start of the study. Thus, the modest increase in 319 the overall density of the most specialised quartile of species reported in this study is not inconsistent 320 with the expectation that environmental change negatively affects habitat specialists, and instead is 321 likely to reflect remaining populations of habitat specialists benefiting from conservation actions. 322 Drivers of population change that act across habitats appear to be more important in explaining 323 change in UK bird populations than processes operating within particular habitats (Sullivan et al. 324 2015b), and these landscape scale drivers are likely to particularly affect widespread generalist 325 species (Gaston & Fuller 2007). Patterns of population change amongst these widespread generalists 326 are consistent with the prediction that generalist species are more resistant to environmental change, 327 with increases in the overall density of the most generalist quartile of species and declines in the 328 density of moderate generalists (Fig. 1).

To conclude, despite the continued decline in the habitat specialisation of UK bird
communities, the overall density of specialist species has not declined. This apparent homogenization

331	does not therefore appear to have been at the expense of specialist species of the greatest conservation
332	concern. Instead, the decline in CSI was driven by increases in the density of the most generalist
333	quartile of species, and by declines in the density of moderate generalists. These results reflect
334	previous work comparing changes in the populations of abundant and rare species (Inger et al. 2015),
335	and collectively indicate that recent changes in bird communities across Europe have been
336	characterized by declines in relatively abundant, moderately generalist species.
337	
338	We are grateful to the thousands of volunteers who contributed to the Breeding Bird Survey. The BBS, and this
339	analysis, were jointly funded by the British Trust for Ornithology, the Joint Nature Conservation Committee and
340	the Royal Society for the Protection of Birds. MS is currently funded by the European Research Council grant
341	"Tropical Forests in the Changing Earth System". We thank Richard Inger, the editor, associate editor and an
342	anonymous reviewer for constructive comments on the manuscript.
343	
344	
345	
346	REFERENCES
347	
348	Baillie, S. R., Marchant, J. H., Leech, D. I., Massimino, D., Sullivan, M. J. P., Eglington, S. M.,
349	Barimore, C., Dadam, D., Downie, I., Harris, S. J., Kew, A. J., Newson, S. E., Noble, D.
350	G., Risely, K. & Robinson, R. A. 2014. BirdTrends 2014: trends in numbers, breeding
351	success and survivial of UK breeding birds. Research Report 662. Thetford.
352	Balmer, D. E., Gillings, S., Caffrey, B., Swann, R., Downie, I. & Fuller, R. 2013. Bird Atlas 2007-
353	11: the breeding and wintering birds of Britain and Ireland: BTO Thetford.
354	Barton, K. 2014. MuMIn: Multi-Model Inference. R package version 1.12.1. http://CRAN.R-
355	project.org/package=MuMIn
356	Barnagaud, J. Y., Devictor, V., Jiguet, F. & Archaux, F. 2011. When species become generalists:
357	on-going large-scale changes in bird habitat specialization. Global Ecol Biogeogr. 20: 630-
358	640.

- Bates, D., Maechler, M., Bolker, B. M. & Walker, S. 2014. lme4: Linear mixed-effects models
 using Eigen and S4.
- Blackburn, T., Lockwood, J. & Cassey, P. 2009. Avian invasions: the ecology and evolution of
 exotic birds. Oxford: Oxford University Press.

363 Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. 2000.

364 Changes in the abundance of farmland birds in relation to the timing of agricultural

intensification in England and Wales. J Appl Ecol **37:** 771-788.

- 366 Crick, H. Q. P. 1992. A bird-habitat coding system for use in Britain and Ireland incorporating
 367 aspects of land-management and human activity. Bird Study 39: 1-12.
- 368 Clavel, J., Julliard, R. & Devictor, V. 2010. Worldwide decline of specialist species: toward a
 369 global functional homogenization? Frontiers Ecol Environ 9: 222-228.
- 370 Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. 2012. Rise of the
 371 generalists: evidence for climate driven homogenization in avian communities. Global Ecol

372 Biogeogr **21:** 568-578.

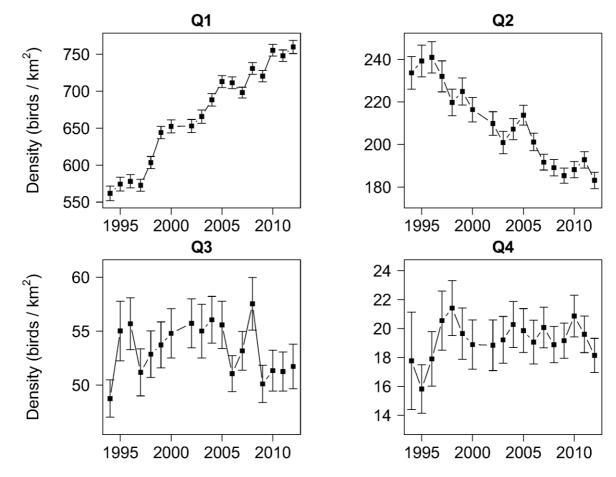
- 373 Davey, C. M., Devictor, V., Jonzén, N., Lindström, Å. & Smith, H. G. 2013. Impact of climate
 374 change on communities: revealing species' contribution. J Anim Ecol 82: 551-561.
- 375 Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. 2008. Birds are tracking climate warming, but
 376 not fast enough. Proc Royal Soc B 275: 2743-2748.
- 377 Donald, P. F., Green, R. E. & Heath, M. F. 2001. Agricultural intensification and the collapse of
 378 Europe's farmland bird populations. Proc Royal Soc B 268: 25-29.

379 Donald, P. F., Sanderson, F. J., Burfield, I. J., Bierman, S. M., Gregory, R. D. & Waliczky, Z.
380 2007. International conservation policy delivers benefits for birds in Europe. Science 317:
381 810-813.

- Eglington, S. M. & Pearce-Higgins, J. W. 2012. Disentangling the Relative Importance of Changes
 in Climate and Land-Use Intensity in Driving Recent Bird Population Trends. PLoS ONE 7:
 e30407.
- 385 Gaston, K.J. & Fuller, R.A. 2007. Commonness, population depletion and conservation biology.
 386 Trends Ecol Evol 23: 14-19

387	Gosselin, F. 2012. Improving approaches to the analysis of functional and taxonomic biotic
388	homogenization: beyond mean specialization. J Ecol 100: 1289-1295.
389	Grundy, J. P. B., Franco, A. M. A. & Sullivan, M. J. P. 2014. Testing multiple pathways for
390	impacts of the non-native Black-headed Weaver Ploceus melanocephalus on native birds in
391	Iberia in the early phase of invasion. Ibis 156: 355-365.
392	Helmus, M.R., Keller, W.B., Paterson, M.J., Yan, N.D., Cannon, C.H. & Rusak, J.A. 2010.
393	Communities contain closely related species during ecosystem disturbance. Ecol Lett 13: 162-
394	174.
395	Hoffmann, M., Hilton-Taylor, C., Angulo, A., Böhm, M., Brooks, T. M., Butchart, S. H. M.,
396	Carpenter, K. E., Chanson, J., Collen, B., Cox, N. A., Darwall, W. R. T., Dulvy, N. K.,
397	Harrison, L. R., Katariya, V., Pollock, C. M., Quader, S., Richman, N. I., Rodrigues, A.
398	S. L., Tognelli, M. F., Vié, JC., Aguiar, J. M., Allen, D. J., Allen, G. R., Amori, G.,
399	Ananjeva, N. B., Andreone, F., Andrew, P., Ortiz, A. L. A., Baillie, J. E. M., Baldi, R.,
400	Bell, B. D., Biju, S. D., Bird, J. P., Black-Decima, P., Blanc, J. J., Bolaños, F., Bolivar-G.,
401	W., Burfield, I. J., Burton, J. A., Capper, D. R., Castro, F., Catullo, G., Cavanagh, R. D.,
402	Channing, A., Chao, N. L., Chenery, A. M., Chiozza, F., Clausnitzer, V., Collar, N. J.,
403	Collett, L. C., Collette, B. B., Fernandez, C. F. C., Craig, M. T., Crosby, M. J.,
404	Cumberlidge, N., Cuttelod, A., Derocher, A. E., Diesmos, A. C., Donaldson, J. S.,
405	Duckworth, J. W., Dutson, G., Dutta, S. K., Emslie, R. H., Farjon, A., Fowler, S.,
406	Freyhof, J., Garshelis, D. L., Gerlach, J., Gower, D. J., Grant, T. D., Hammerson, G. A.,
407	Harris, R. B., Heaney, L. R., Hedges, S. B., Hero, JM., Hughes, B., Hussain, S. A.,
408	Icochea M., J., Inger, R. F., Ishii, N., Iskandar, D. T., Jenkins, R. K. B., Kaneko, Y.,
409	Kottelat, M., Kovacs, K. M., Kuzmin, S. L., La Marca, E., Lamoreux, J. F., Lau, M. W.
410	N., Lavilla, E. O., Leus, K., Lewison, R. L., Lichtenstein, G., Livingstone, S. R.,
411	Lukoschek, V., Mallon, D. P., McGowan, P. J. K., McIvor, A., Moehlman, P. D., Molur,
412	S., et al. 2010. The Impact of Conservation on the Status of the World's Vertebrates. Science
413	330: 1503-1509.

414	Inger, R., Gregory, R., Duffy, J. P., Stott, I., Voříšek, P. & Gaston, K. J. 2015. Common
415	European birds are declining rapidly while less abundant species' numbers are rising. Ecol
416	Lett 18: 28-36.
417	Jiguet, F., Gadot, A. S., Julliard, R., Newson, S. E. & Couvet, D. 2007. Climate envelope, life
418	history traits and the resilience of birds facing global change. Global Change Biol 13: 1672-
419	1684.
420	Julliard, R., Jiguet, F. & Couvet, D. 2004. Common birds facing global changes: what makes a
421	species at risk? Global Change Biol 10: 148-154.
422	Laake, J., Borchers, D., Thomas, L., Miller, D. & Bishop, J. 2015. mrds: Mark-Recapture Distance
423	Sampling. R package version 2.1.12. http:CRAN.R-project.org/package=mrds.
424	Le Viol, I., Jiguet, F., Brotons, L., Herrando, S., Lindström, Å., Pearce-Higgins, J. W., Reif, J.,
425	Van Turnhout, C. & Devictor, V. 2012. More and more generalists: two decades of changes
426	in the European avifauna. Biol Lett 8: 780-782.
427	Matthews, T. J., Cottee-Jones, H. E. & Whittaker, R. J. 2014. Habitat fragmentation and the
428	species-area relationship: a focus on total species richness obscures the impact of habitat loss
429	on habitat specialists. Divers Distrib 20: 1136-1146.
430	McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. 2015. Fifteen forms of biodiversity
431	trend in the Anthropocene. Trends Ecol Evol 30: 104-113.
432	Mouillot, D., Graham, N.A., Villéger, S., Mason, N.W. & Bellwood, D.R. 2013. A functional
433	approach reveals community responses to disturbances. Trends Ecol Evol 28: 167-177.
434	Munday, P. L. 2004. Habitat loss, resource specialization, and extinction on coral reefs. Global
435	Change Biol 10: 1642-1647.
436	Nakagawa, S. & Schielzeth, H. 2013. A general and simple method for obtaining R ² from
437	generalized linear mixed-effects models. Methods Ecol Evol 4: 133-142.
438	Newson, S. E., Johnston, A., Parrott, D. & Leech, D. I. 2011. Evaluating the population-level
439	impact of an invasive species, Ring-necked Parakeet Psittacula krameri, on native avifauna.
440	Ibis 153: 509-516.


441	Newson, S	. E.	, Woodburn,	R.	J. W.	. Noble.	D. G.	Baillie	. S.	R. &	c Gregory	. R.	D.	2005.
			, , ,			,	,	,	,~-			,		

- 442 Evaluating the Breeding Bird Survey for producing national population size and density
 443 estimates. Bird Study 52: 42-54.
- Olden, J. D., Poff, N. L., Douglas, M. R., Douglas, M. E. & Fausch, K. D. 2004. Ecological and
 evolutionary consequences of biotic homogenization. Trends Ecol Evol 19: 18-24.
- 446 Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. 2015. Drivers of
- 447 climate change impacts on bird communities. J Anim Ecol 84: 943-954.
- **R Core Team.** 2014. R: A language and environment for statistical computing. Vienna, Austria: R
 Foundation for Statistical Computing.
- 450 Rackham, O. 1986. The History of the Countryside. London: J.M. Dent.
- 451 Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. 2014. The winners and losers of land
 452 use intensification: pollinator community disassembly is non-random and alters functional
 453 diversity. Divers Distrib 20: 908-917.
- 454 Risely, K., Massimino, D., Newson, S.E., Eaton, M.A., Musgrove, A.J., Noble, D.G., Procter, D.
- **& Baillie, S.R.** 2013. The Breeding Bird Survey 2012. BTO Research Report 645. British
- 456 Trust for Ornithology, Thetford
- 457 Salido, L., Purse, B. V., Marrs, R., Chamberlain, D. E. & Shultz, S. 2012. Flexibility in phenology
 458 and habitat use act as buffers to long-term population declines in UK passerines. Ecography
 459 35: 604-613.
- 460 Shultz, S., Bradbury, R. B., Evans, K. L., Gregory, R. D. & Blackburn, T. M. 2005. Brain size
 461 and resource specialization predict long-term population trends in British birds. Proc Royal
 462 Soc B 272: 2305-2311.
- 463 Sullivan, M. J. P., Davies, R. G., Reino, L. & Franco, A. M. A. 2012. Using dispersal information
 464 to model the species–environment relationship of spreading non-native species. Methods Ecol
 465 Evol 3: 870-879.
- 466 Sullivan, M. J. P., Newson, S. E. & Pearce-Higgins, J. W. 2015a. Evidence for the buffer effect
 467 operating in multiple species at a national scale. Biol Lett 11: 20140930.

468	Sullivan, M.J.P., Newson, S.E. & Pearce-Higgins, J.W. 2015b. Using habitat-specific population
469	trends to evaluate the consistency of the effect of species traits on bird population change.
470	Biol Conserv 192: 343-352.
471	Timmermann, A., Damgaard, C., Strandberg, M. T. & Svenning, J. C. 2015. Pervasive early
472	21st-century vegetation changes across Danish semi-natural ecosystems: more losers than
473	winners and a shift towards competitive, tall-growing species. J Appl Ecol 52: 21-30.
474	Vimal, R. & Devictor, V. 2015. Building relevant ecological indicators with basic data: Species and
475	community specialization indices derived from atlas data. Ecological Indicators 50: 1-7.
476	
477	
478	Supporting material
479	Table S1. Species included in this study, and change in trend in CSI when individual species are
480	removed.
481	Table S2. Definition of habitat classes
482	Table S3. Surrogate species used for species where distance models failed to estimate detection
483	functions.
484	Figure S1. Sensitivity of changes in density of each quartile to different treatment of data.
485	Figure S2. Relationship between population trend and degree of habitat specialization.
486	Figure S3. Sensitivity of effect of each quartile on CSI trend to different treatment of data.
487	Figure S4. Change in density of non-native species.
488	Figure S5. Relationship between population density and habitat specialization.
489	Appendix S1. R code used in statistical analysis.
490	
491	
492	
493	

- **Table 1.** Ten species contributing most to driving the decline in CSI over the study period. % change
- is the percentage change in the trend in CSI when a species is removed, SSI is the species
- 496 specialisation index for a species, while BBS trend is the national population trend for a species over
- the study period.

Species	Scientific name	Trend in	% change	SSI	BBS trend
		CSI when		(quartile)	(1995 – 2011)
		omitted			
Starling	Sturnus vulgaris	-0.0027	30.0	1.23	-52
				(Q2)	
Woodpigeon	Columba palumbus	-0.0032	17.0	0.38	40
				(Q1)	
Meadow Pipit	Anthus pratensis	-0.0035	8.3	1.80	-23
				(Q3)	
Great Tit	Parus major	-0.0037	4.9	0.38	45
				(Q1)	
Yellowhammer	Emberiza citrinella	-0.0037	3.4	1.04	-13
				(Q2)	
Swift	Apus apus	-0.0038	1.5	0.89	-39
				(Q2)	
Goldcrest	Regulus regulus	-0.0038	1.3	1.46	-7
				(Q3)	
Goldfinch	Carduelis carduelis	-0.0038	1.0	0.60	109
				(Q1)	
Yellow Wagtail	Motacilla flava	-0.0038	0.96	1.45	-45
				(Q3)	
Corn Bunting	Emberiza calandra	-0.0038	0.95	1.65	-34
				(Q3)	

Figure 1. Change in density of birds in each quartile of habitat specialisation (SSI). Species in the first quartile (Q1) had SSI values < 0.81, species in the second quartile (Q2) had SSI values \ge 0.81 and <1.29, species in the third quartile (Q3) had SSI values \ge 129 and <1.82, species in the fourth quartile had SSI values \ge 1.82. Points show the mean density of all birds in a given quartile in BBS squares, with error bars showing standard errors.

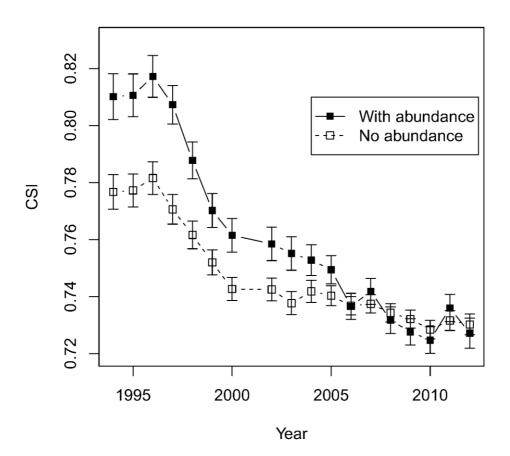


Figure 2. Change in the community specialisation index (CSI) of UK bird communities. CSI has been calculated as the community weighted mean of species specialisation index (SSI), thus incorporating the effect of species abundance (filled squares, solid line), and the unweighted mean of SSI, thus only including the effect of species occurrence (open squares, dashed line). Points show the mean CSI across BBS squares in a given year, with error bars showing standard errors.

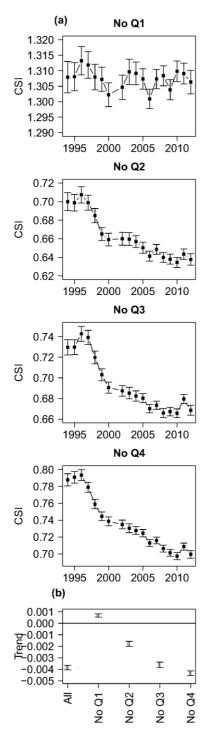
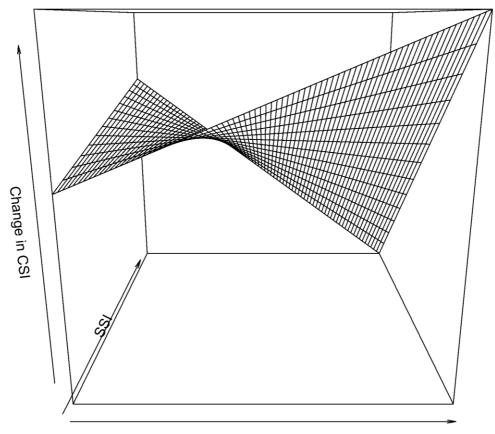



Figure 3. Effect of removing quartiles of species with different degrees of habitat specialisation on
the overall trend in CSI. In (a) points show the mean CSI across BBS squares in a given year, with
error bars showing standard errors. In (b) the mean and 95% confidence intervals of trend in CSI over
time are shown. Removing Q1 species (most generalist) and Q2 species reduced rates of
homogenization (118.0% and 35.9% change in CSI trend when removed), while removing Q3 and Q4
(most specialist) species had little effect (-6.5% and -12.9% change in CSI trend when removed).

BBS trend

524	Figure 4. Modelled surface showing the interaction between SSI and BBS trend in influencing the
525	change in CSI trend when species were removed in a jackknife procedure. The modelled surface
526	shows predicted change in CSI trend when a species is removed from the dataset, with predictions
527	from a linear model where the change in CSI trend when a species was removed from the dataset was
528	modelled as a function of that species' SSI, BBS trend and their interaction. Response and
529	explanatory variables have been square-root transformed while preserving their original sign (see
530	methods), and transformed values have been plotted.
531 532 533 534	

535 Supporting materials

Table S1. Species included in this study, and change in trend in CSI when individual species are

537 removed.

Scientific Name	Common Name	Trend in CSI	% change	SSI	Quartile
		when omitted			
Sturnus vulgaris	Starling	-0.0027	30.03	1.23	Q2
Columba palumbus	Woodpigeon	-0.0032	17.04	0.38	Q1
Anthus pratensis	Meadow Pipit	-0.0035	8.26	1.80	Q3
Parus major	Great Tit	-0.0037	4.85	0.38	Q1
Emberiza citrinella	Yellowhammer	-0.0037	3.44	1.04	Q2
Apus apus	Swift	-0.0038	1.49	0.89	Q2
Regulus regulus	Goldcrest	-0.0038	1.34	1.46	Q3
Carduelis carduelis	Goldfinch	-0.0038	1.02	0.60	Q1
Motacilla flava	Yellow Wagtail	-0.0038	0.96	1.45	Q3
Miliaria calandra	Corn Bunting	-0.0038	0.95	1.65	Q3
Aegithalos caudatus	Long-tailed Tit	-0.0038	0.91	0.43	Q1
Perdix perdix	Grey Partridge	-0.0038	0.89	1.01	Q2
Sylvia atricapilla	Blackcap	-0.0038	0.81	0.53	Q1
Phylloscopus	Willow Warbler	-0.0038	0.67	0.69	Q1
trochilus					
Buteo buteo	Buzzard	-0.0038	0.53	0.42	Q1
Acrocephalus	Sedge Warbler	-0.0038	0.49	1.46	Q3
schoenobaenus					
Numenius arquata	Curlew	-0.0038	0.49	1.28	Q2
Parus palustris	Marsh Tit	-0.0038	0.48	1.07	Q2
Phylloscopus	Chiffchaff	-0.0038	0.46	0.54	Q1
collybita					

Ficedula hypoleuca	Pied Flycatcher	-0.0038	0.32	1.06	Q2
Saxicola rubetra	Whinchat	-0.0038	0.27	1.31	Q3
Phylloscopus	Wood Warbler	-0.0038	0.24	1.10	Q2
sibilatrix					
Tringa totanus	Redshank	-0.0038	0.23	1.75	Q3
Actitis hypoleucos	Common Sandpiper	-0.0038	0.20	1.50	Q3
Certhia familiaris	Treecreeper	-0.0038	0.17	0.82	Q2
Dendrocopos major	Great Spotted	-0.0038	0.17	0.56	Q1
	Woodpecker				
Gallinago gallinago	Snipe	-0.0038	0.16	1.61	Q3
Anthus trivialis	Tree Pipit	-0.0038	0.15	1.35	Q3
Gallinula chloropus	Moorhen	-0.0038	0.12	1.31	Q3
Vanellus vanellus	Lapwing	-0.0038	0.11	0.89	Q2
Oxyura jamaicensis	Ruddy Duck*	-0.0038	0.10	2.42	Q4
Haematopus	Oystercatcher	-0.0038	0.10	0.99	Q2
ostralegus					
Picus viridis	Green Woodpecker	-0.0038	0.10	0.45	Q1
Motacilla cinerea	Grey Wagtail	-0.0038	0.09	1.05	Q2
Carduelis flavirostris	Twite	-0.0038	0.09	1.40	Q3
Tadorna tadorna	Shelduck	-0.0038	0.09	1.36	Q3
Calidris alpina	Dunlin	-0.0038	0.07	2.02	Q4
Catharacta skua	Great Skua	-0.0038	0.07	2.86	Q4
Prunella modularis	Dunnock	-0.0038	0.07	0.44	Q1
Sylvia undata	Dartford Warbler	-0.0038	0.07	2.37	Q4
Luscinia	Nightingale	-0.0038	0.06	1.16	Q2
megarhynchos					
Parus montanus	Willow Tit	-0.0038	0.06	0.68	Q1

Turdus torquatus	Ring Ouzel	-0.0038	0.05	2.00	Q4
Strix aluco	Tawny Owl	-0.0038	0.05	0.87	Q2
Turdus philomelos	Song Thrush	-0.0038	0.04	0.36	Q1
Charadrius dubius	Little Ringed Plover	-0.0038	0.03	2.23	Q4
Aythya ferina	Pochard	-0.0038	0.03	2.51	Q4
Sterna sandvicensis	Sandwich Tern	-0.0038	0.03	1.49	Q3
Bucephala clangula	Goldeneye	-0.0038	0.03	1.87	Q4
Lagopus mutus	Ptarmigan	-0.0038	0.03	3.18	Q4
Corvus cornix	Hooded Crow	-0.0038	0.03	0.77	Q1
Fulmarus glacialis	Fulmar	-0.0038	0.03	1.05	Q2
Stercorarius	Arctic Skua	-0.0038	0.02	2.13	Q4
parasiticus					
Charadrius hiaticula	Ringed Plover	-0.0038	0.02	1.33	Q3
Locustella naevia	Grasshopper Warbler	-0.0038	0.02	0.93	Q2
Chrysolophus pictus	Golden Pheasant*	-0.0038	0.02	1.41	Q3
Athene noctua	Little Owl*	-0.0038	0.02	0.72	Q1
Corvus corax	Raven	-0.0038	0.02	0.72	Q1
Netta rufina	Red-crested Pochard*	-0.0038	0.02	2.02	Q4
Coccothraustes	Hawfinch	-0.0038	0.02	1.37	Q3
coccothraustes					
Podiceps cristatus	Great Crested Grebe	-0.0038	0.02	1.82	Q4
Caprimulgus	Nightjar	-0.0038	0.02	1.95	Q4
europaeus					
Phalacrocorax	Shag	-0.0038	0.02	1.81	Q3
aristotelis					
Cygnus cygnus	Whooper Swan	-0.0038	0.02	1.43	Q3
Asio otus	Long-eared Owl	-0.0038	0.01	1.42	Q3

Rallus aquaticus	Water Rail	-0.0038	0.01	2.11	Q4
Mergus serrator	Red-breasted	-0.0038	0.01	1.13	Q2
	Merganser				
Tyto alba	Barn Owl	-0.0038	0.01	0.63	Q1
Anthus petrosus	Rock Pipit	-0.0038	0.01	1.02	Q2
Coturnix coturnix	Quail	-0.0038	0.01	0.94	Q2
Dendrocopos minor	Lesser Spotted	-0.0038	0.01	0.71	Q1
	Woodpecker				
Falco peregrinus	Peregrine	-0.0038	0.01	1.06	Q2
Hirundo rustica	Swallow	-0.0038	0.01	0.55	Q1
Falco columbarius	Merlin	-0.0038	0.01	1.88	Q4
Arenaria interpres	Turnstone	-0.0038	0.00	1.01	Q2
Certhia	Short-toed Treecreeper	-0.0038	0.00	1.39	Q3
brachydactyla					
Charadrius	Dotterel	-0.0038	0.00	2.72	Q4
morinellus					
Scolopax rusticola	Woodcock	-0.0038	0.00	1.21	Q2
Alcedo atthis	Kingfisher	-0.0038	0.00	1.45	Q3
Anas penelope	Wigeon	-0.0038	0.00	1.83	Q4
Anas clypeata	Shoveler	-0.0038	0.00	2.27	Q4
Turdus iliacus	Redwing	-0.0038	0.00	0.95	Q2
Burhinus oedicnemus	Stone-curlew	-0.0038	0.00	1.24	Q2
Pandion haliaetus	Osprey	-0.0038	0.00	1.92	Q4
Cygnus atratus	Black Swan*	-0.0038	0.00	1.60	Q3
Cairina moschata	Muscovy Duck*	-0.0038	0.00	1.10	Q2
Anser caerulescens	Snow Goose*	-0.0038	0.00	1.30	Q3
Aix sponsa	Wood Duck*	-0.0038	0.00	0.81	Q2

Numenius phaeopus	Whimbrel	-0.0038	0.00	1.07	Q2
Cinclus cinclus	Dipper	-0.0038	0.00	1.42	Q3
Anas querquedula	Garganey	-0.0038	0.00	2.24	Q4
Panurus biarmicus	Bearded Tit	-0.0038	0.00	2.59	Q4
Phoenicurus	Black Redstart	-0.0038	0.00	1.10	Q2
ochruros					
Asio flammeus	Short-eared Owl	-0.0038	0.00	1.37	Q3
Larus	Mediterranean Gull	-0.0038	0.00	0.89	Q2
melanocephalus					
Crex crex	Corncrake	-0.0038	0.00	1.60	Q3
Pluvialis squatarola	Grey Plover	-0.0038	0.00	1.42	Q3
Tringa ochropus	Green Sandpiper	-0.0038	0.00	1.76	Q3
Tringa nebularia	Greenshank	-0.0038	0.00	1.93	Q4
Tetrao tetrix	Black Grouse	-0.0038	0.00	1.52	Q3
Phoenicurus	Redstart	-0.0038	0.00	0.71	Q1
phoenicurus					
Limosa limosa	Black-tailed Godwit	-0.0038	-0.01	2.03	Q4
Falco subbuteo	Hobby	-0.0038	-0.01	0.89	Q2
Sterna hirundo	Common Tern	-0.0038	-0.01	1.89	Q4
Podiceps nigricollis	Black-necked Grebe	-0.0038	-0.01	3.16	Q4
Numida meleagris	Helmeted	-0.0039	-0.01	0.65	Q1
	Guineafowl*				
Accipiter gentilis	Goshawk	-0.0039	-0.01	1.95	Q4
Columba livia	Rock Dove	-0.0039	-0.01	1.35	Q3
Gavia stellata	Red-throated Diver	-0.0039	-0.01	2.07	Q4
Loxia scotica	Scottish Crossbill	-0.0039	-0.01	2.78	Q4
Circus cyaneus	Hen Harrier	-0.0039	-0.01	1.83	Q4

Gavia arctica	Black-throated Diver	-0.0039	-0.01	2.18	Q4
Sterna albifrons	Little Tern	-0.0039	-0.02	2.25	Q4
Recurvirostra	Avocet	-0.0039	-0.02	2.14	Q4
avosetta					
Mergus merganser	Goosander	-0.0039	-0.02	1.27	Q2
Pyrrhula pyrrhula	Bullfinch	-0.0039	-0.02	0.38	Q1
Pyrrhocorax	Chough	-0.0039	-0.02	1.40	Q3
pyrrhocorax					
Emberiza cirlus	Cirl Bunting	-0.0039	-0.02	0.83	Q2
Garrulus glandarius	Jay	-0.0039	-0.02	0.56	Q1
Circus aeruginosus	Marsh Harrier	-0.0039	-0.03	1.82	Q3
Cepphus grylle	Black Guillemot	-0.0039	-0.03	3.23	Q4
Larus canus	Common Gull	-0.0039	-0.03	0.92	Q2
Parus cristatus	Crested Tit	-0.0039	-0.03	3.09	Q4
Tachybaptus	Little Grebe	-0.0039	-0.03	1.96	Q4
ruficollis					
Lullula arborea	Woodlark	-0.0039	-0.03	1.58	Q3
Erithacus rubecula	Robin	-0.0039	-0.03	0.39	Q1
Larus marinus	Great Black-backed	-0.0039	-0.03	0.93	Q2
	Gull				
Milvus milvus	Red Kite	-0.0039	-0.04	0.68	Q1
Calidris alba	Sanderling	-0.0039	-0.04	3.23	Q4
Phalacrocorax carbo	Cormorant	-0.0039	-0.05	1.53	Q3
Pavo cristatus	Indean Peafowl*	-0.0039	-0.07	1.04	Q2
Alopochen	Egyptian Goose*	-0.0039	-0.07	1.35	Q3
aegyptiacus					
Larus ridibundus	Black-headed Gull	-0.0039	-0.07	0.92	Q2

Ardea cinerea	Grey Heron	-0.0039	-0.07	1.17	Q2
Egretta garzetta	Little Egret	-0.0039	-0.08	1.28	Q2
Delichon urbica	House Martin	-0.0039	-0.09	0.66	Q1
Riparia riparia	Sand Martin	-0.0039	-0.10	1.21	Q2
Corvus corone	Carrion Crow	-0.0039	-0.10	0.35	Q1
Branta leucopsis	Barnacle Goose*	-0.0039	-0.11	1.87	Q4
Regulus ignicapillus	Firecrest	-0.0039	-0.11	1.30	Q3
Aythya fuligula	Tufted Duck	-0.0039	-0.12	1.79	Q3
Anas strepera	Gadwall	-0.0039	-0.13	1.93	Q4
Streptopelia turtur	Turtle Dove	-0.0039	-0.13	0.62	Q1
Columba oenas	Stock Dove	-0.0039	-0.13	0.50	Q1
Passer montanus	Tree Sparrow	-0.0039	-0.14	0.80	Q1
Anas crecca	Teal	-0.0039	-0.15	2.09	Q4
Sylvia borin	Garden Warbler	-0.0039	-0.16	0.57	Q1
Somateria	Eider	-0.0039	-0.16	2.13	Q4
mollissima					
Sylvia curruca	Lesser Whitethroat	-0.0039	-0.17	0.70	Q1
Sterna paradisaea	Arctic Tern	-0.0039	-0.17	2.60	Q4
Muscicapa striata	Spotted Flycatcher	-0.0039	-0.18	0.56	Q1
Aix galericulata	Mandarin*	-0.0039	-0.18	1.19	Q2
Anser anser	Greylag Goose (feral)	-0.0039	-0.19	1.89	Q4
Cuculus canorus	Cuckoo	-0.0039	-0.20	0.40	Q1
Oenanthe oenanthe	Wheatear	-0.0039	-0.21	1.25	Q2
Larus fuscus	Lesser Black-backed	-0.0039	-0.22	1.06	Q2
	Gull				
Lagopus lagopus	Red Grouse	-0.0039	-0.25	2.82	Q4
Carduelis cabaret	Lesser Redpoll	-0.0039	-0.26	1.25	Q2

Phasianus colchicus	Pheasant*	-0.0039	-0.26	0.58	Q1
Alauda arvensis	Skylark	-0.0039	-0.28	0.93	Q2
Cygnus olor	Mute Swan	-0.0039	-0.29	1.68	Q3
Cettia cetti	Cetti's Warbler	-0.0039	-0.29	2.28	Q4
Saxicola torquata	Stonechat	-0.0039	-0.33	1.42	Q3
Pluvialis apricaria	Golden Plover	-0.0039	-0.37	2.13	Q4
Fulica atra	Coot	-0.0039	-0.51	1.78	Q3
Anas platyrhynchos	Mallard (feral)	-0.0039	-0.52	1.38	Q3
Psittacula krameri	Ring-necked Parakeet*	-0.0039	-0.55	1.38	Q3
Accipiter nisus	Sparrowhawk	-0.0039	-0.60	0.36	Q1
Emberiza	Reed Bunting	-0.0039	-0.73	1.28	Q2
schoeniclus					
Acrocephalus	Reed Warbler	-0.0039	-0.81	1.53	Q3
scirpaceus					
Sitta europaea	Nuthatch	-0.0039	-0.83	0.83	Q2
Carduelis chloris	Greenfinch	-0.0039	-1.10	0.78	Q1
Motacilla alba	Pied Wagtail	-0.0039	-1.20	0.50	Q1
Pica pica	Magpie	-0.0039	-1.25	0.70	Q1
Falco tinnunculus	Kestrel	-0.0039	-1.26	0.27	Q1
Fringilla coelebs	Chaffinch	-0.0039	-1.37	0.35	Q1
Branta canadensis	Canada Goose*	-0.0039	-1.49	1.63	Q3
Anser anser	Greylag Goose	-0.0039	-1.52	2.26	Q4
Larus argentatus	Herring Gull	-0.0039	-1.57	1.41	Q3
Turdus viscivorus	Mistle Thrush	-0.0039	-1.58	0.29	Q1
Loxia curvirostra	Crossbill	-0.0039	-1.60	2.32	Q4
Alectoris rufa	Red-legged Partridge*	-0.0039	-1.60	1.02	Q2
Carduelis cannabina	Linnet	-0.0039	-1.92	0.64	Q1

	~	~				
	Corvus monedula	Jackdaw	-0.0039	-1.95	0.66	Q1
	Parus ater	Coal Tit	-0.0039	-2.02	1.39	Q3
	Sylvia communis	Whitethroat	-0.0039	-2.53	0.75	Q1
	Carduelis spinus	Siskin	-0.0039	-2.55	2.11	Q4
	Corvus frugilegus	Rook	-0.0040	-2.66	0.51	Q1
	Turdus merula	Blackbird	-0.0040	-3.38	0.54	Q1
	Streptopelia	Collared Dove	-0.0040	-3.87	1.29	Q3
	decaocto					
	Anas platyrhynchos	Mallard	-0.0040	-4.13	1.29	Q3
	Columba livia	Feral Pigeon	-0.0040	-4.22	1.96	Q4
	Troglodytes	Wren	-0.0040	-4.26	0.34	Q1
	troglodytes					
	Parus caeruleus	Blue Tit	-0.0040	-4.40	0.41	Q1
	Passer domesticus	House Sparrow	-0.0041	-7.30	1.29	Q3
538	* Non-native species.					
539						
540						
541						
542						
543						
544						
545						
546						
547						
548						
549						
550						
551						
	32					

552 Table S2. Definition of habitat classes

Habitat class	Constituent habitat classes from Crick (1992)
Broadleaved woodland	Broadleaved, broadleaved water-logged, regenerating natural
	or semi-natural wood ¹ , young coppice ¹ , new plantation ¹ , clear
	felled woodland ¹
Coniferous woodland	Coniferous, coniferous water-logged, regenerating natural or
	semi-natural wood ¹ , young coppice ¹ , new plantation ¹ , clear-
	felled woodland ¹
Mixed woodland	Mixed (10% of each), mixed water-logged, regenerating
	natural or semi-natural wood ¹ , young coppice ¹ , new plantation
	¹ , clear-felled woodland ¹
Semi-natural grass, heath and bog	Chalk downland, downland chalk scrub, grass moor
Upland if mean altitude of BBS	(unenclosed), grass moor mixed with heather (unenclosed),
square ≥300m	other dry grassland, dry heath, wet heath, mixed heath, bog,
Lowland if <300m	breckland, drained bog, bare peat, heath scrub,
Arable farmland	Tilled land
Pastoral farmland	Improved grassland, unimproved grassland
Mixed farmland	Mixed grassland / tilled land, orchard other farming
Rural settlement	Rural settlement
Urban and suburban settlement	Urban settlement, suburban settlement
Wetlands and standing water	Pond (less than 50 m ²), small water-body (50-450 m ²),
	lake/unlined reservoir, lined reservoir, gravel pit, sand pit,
	water-meadow/grazing marsh, reed swamp, other open marsh
Flowing water	Stream (less than 3 m wide), river (more than 3 m wide), ditch
	with water (less than 2 m wide), small canal (2-5 m wide),
	large canal (more than 5 m wide)

553 $\overline{}^{1}$ Of the appropriate habitat type (i.e. broadleaved, coniferous or mixed)

554 For the habitat covariate in detection models, upland and lowland semi-natural grassland, heath and

bog were treated as a single habitat class. Where there were fewer than 20 observations in a habitat,

- babitat classes were grouped with similar habitat classes to form broader classes. These broader
- 557 classes were woodland (consisting of the broadleaved, mixed and coniferous woodland classes),
- 558 farmland (arable, pastoral and mixed farmland), human settlement (urban and rural settlement) and

559 wetland (wetlands and standing water and flowing water).

561	Table S3.	Surrogate spec	ies used fo	or species	where di	istance n	nodels	failed to	estimate	detection

562 functions. Surrogate species were chosen based on the authors' field experience with these species.

Species		Surrogate species	
Goldeneye	Bucephala clangula	Goosander	Mergus merganser
Ptarmigan	Lagopus mutus	Red Grouse	Lagopus lagopus
Dotterel	Charadrius morinellus	Golden Plover	Pluvialis apricaria
Green Sandpiper	Tringa ochropus	Common Sandpiper	Actitis hypoleucos
Stone-curlew ¹	Burhinus oedicnemus	Curlew	Numenius arquata
Little Tern	Sterna albifrons	Arctic Tern ²	Sterna paradisaea
Sandwich Tern	Sterna sandvicensis	Arctic Tern ²	Sterna paradisaea
Long-eared Owl ¹	Asio otus	Tawny Owl	Strix aluco
Black Redstart	Phoenicurus ochruros	Common Redstart	Phoenicurus phoenicurus
Hawfinch ¹	Coccothraustes	Bullfinch	Pyrrhula pyrrhula
	coccothraustes		
We note that these	species are likely to be ha	rder to detect than their	r surrogates.
Common Tern Ster	na hirundo was not select	ed due to their associat	ion with inland waterbodie

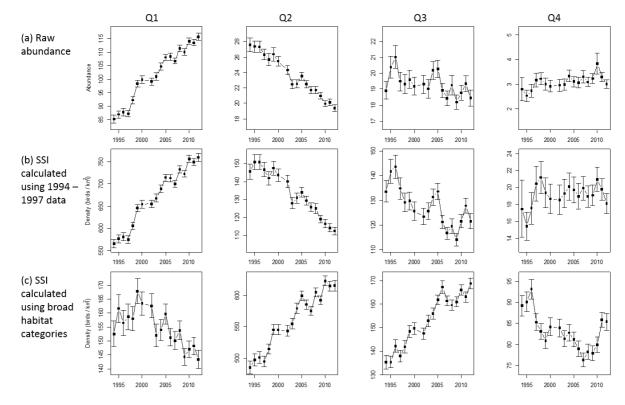


Figure S1. Sensitivity of changes in density of each quartile (Fig. 1) to different treatment of data. In
(a), observed abundances of all species have been used rather than converting these to density
estimates using detection probabilities. In (b), species have been divided into quartiles based on SSI
values calculated using data from 1994-1997. In (c), species have been divided into quartiles based on
SSI values calculated based on species' associations with four broad habitat types.

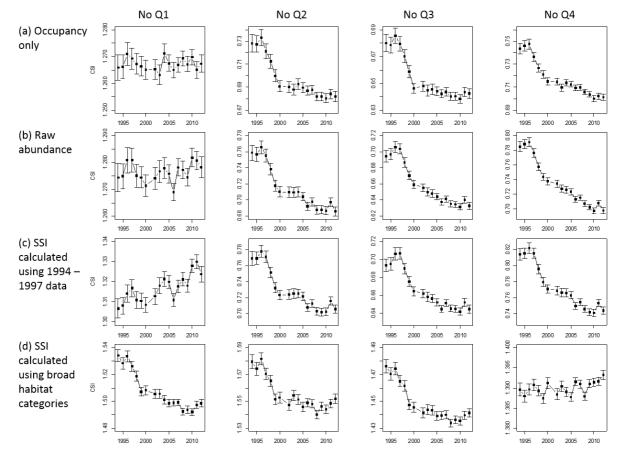
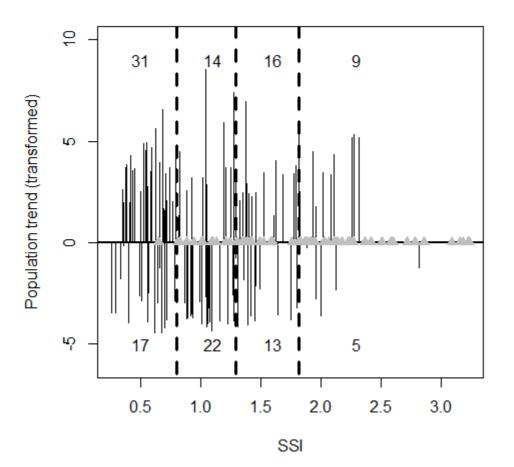



Figure S2. Sensitivity of effect of each quartile on CSI trend (Fig. 3) to different treatment of data. In
(a), CSI was calculated as the unweighted mean of SSI across species found in each community, so
reflects occupancy rather than abundance. In (b), observed abundances of all species have been used
rather than converting these to density estimates using detection probabilities. In (c), SSI values have
been calculated using data from 1994-1997. In (d), SSI values have been calculated based on species'
associations with four broad habitat types.

595 Figure S3. Relationship between population trend and degree of habitat specialization (SSI). Lines 596 show the population trend of each species from the BBS, with values obtained from Risely et al. 597 (2013). Grey triangles show species that were recorded too infrequently to calculate robust population 598 trends. Species are positioned along the x-axis according to their SSI value. Population trends have 599 been transformed to aide presentation. For positive population trends, ln(population trend +1) have 600 been shown, while for negative population trends -ln(population trend -1) have been shown. Dashed 601 lines show quartile boundaries, with text in each quartile indicating the total number of increasing and 602 declining species in that quartile.

603

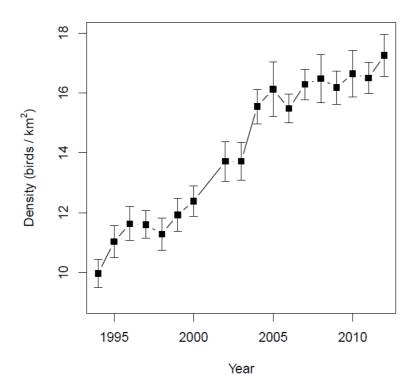


Figure S4. Change in density of non-native species. Points show the mean density of non-native
species in BBS squares in a given year, with error bars showing standard errors. Densities were
calculated by subsetting the BBS data to only include non-native species, and then summing the
density of non-native birds in each BBS square-year combination. BBS square-year combinations
where no non-native species was recorded were assigned a density value of zero.

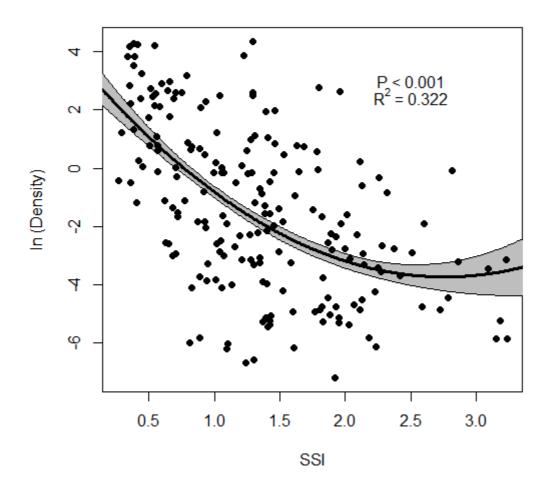


Figure S5. Relationship between species' population density and habitat specialization (SSI). Density
(birds.km⁻²) was calculated as the mean density of a species across all BBS square – year
combinations. The polynomial fit shown was better supported than the nested linear fit (F = 10.2, P =
0.002).