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Tomasz Salwa∗, Onno Bokhove and Mark A. Kelmanson

School of Mathematics, University of Leeds, Leeds, UK

E-mails: mmtjs@leeds.ac.uk, o.bokhove@leeds.ac.uk, m.kelmanson@leeds.ac.uk

1 Introduction

We present a novel approach to fluid-structure interactions (FSI) that preserves energy and phase-
space structure owing to the variatonal and Hamiltonian techniques used. We posit a variational
principle (VP), for nonlinear potential-flow wave dynamics coupled to a nonlinear hyperelastic mast,
and derive its linearization. Both linear and nonlinear formulations can then be discretized in a
classical-mechanical VP, using finite element expansions.

2 Nonlinear Variational Formulation

Potential flow water waves: We consider water as an incompressible fluid with density ρ. The vector
velocity field u = u(x, y, z, t) has zero divergence, ∇ · u = 0, with spatial coordinates x = (x, y, z)T ,
and time coordinate t. Gravity acts in the negative z–direction and the associated acceleration of
gravity is g. The velocity is expressed in terms of a scalar velocity potential φ = φ(x, y, z, t) such that
u = ∇φ. In a 3D domain [0, Lx]× [0, Ly]× [0, h(x, y, t)] with solid walls at x = 0 and x = Lx, y = 0
and y = Ly, and the flat bottom z = 0, Luke’s [4] VP for potential-flow water waves reads

0 =δ

∫ T

0

∫ Lx

0

∫ Ly

0

∫ h(x,y,t)

0
−ρ∂tφ dz dx dy −H dt

≡δ

∫ T

0

∫ Lx

0

∫ Ly

0

∫ h(x,y,t)

0
−ρ

(

∂tφ+
1

2
|∇φ|2 + g(z −H0)

)

dz dx dy dt (1)

for a fluid of constant depth and the single-valued free surface at z = h(x, y, t). Here h = h(x, y, t)
is the water depth and H0 the rest-state water level. The energy or Hamiltonian H consists of the
sum of kinetic and potential energies. We use integration by parts in time together with Gauss’ law
with outward normal n̂ = (−∇h, 1)T /

√

1 + |∇h|2 at the free surface. The passive and constant air
pressure is denoted by pa. Then, variation of (1) yields

0 =

∫ T

0

∫ Lx

0

∫ Ly

0

∫ h(x,y,t)

0
ρ∇2φ δφ dz dy dx−

∫

∂Ωw

ρ∇φ · n̂ δφ dS

+

∫ Lx

0

∫ Ly

0
ρ
(

−∂zφ+ ∂xφ∂xh+ ∂yφ∂yh+ ∂th
)

|z=hδφ|z=h + (p− pa)z=h δh dy dx dt, (2)

in which the pressure p−pa here acts as a shorthand placeholder for the Bernoulli expression −ρ
(

∂tφ+
1
2 |∇φ|2 + g(z −H0)

)

. The equations of motion emerge from the above relation (2), together with no-
normal-flow boundary conditions ∇φ · n̂ = 0 with outward normal n̂ at solid walls ∂Ωw, see [4].

Geometrically nonlinear elastic mast. We consider a nonlinear hyperelastic model for an elastic
material in which the geometric nonlinearity of the displacements is also taken into account. The
constitutive law is such that, after linearization, it satisfies a linear Hooke’s law. The choice of this
model is guided by our goal to couple the potential-flow water-wave model to a weakly nonlinear
elastic model.
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We first model the positions X = X(a, b, c, t) = (X,Y, Z)T = (X1, X2, X3)
T of an infinitesimal

3D element of solid material as a function of Lagrangian coordinates a = (a, b, c)T = (a1, a2, a3)
T

and time t. At time t = 0 we take X̃(a, 0) = a. The displacements X̃ follow from the positions as
X̃ = X − a. The velocity of the displacements is ∂tX̃ = U = (U, V,W )T = (U1, U2, U3)

T , where the
displacement velocity U = U(a, t) is again a function of Lagrangian coordinates a and time t. The
variational formulation of the elastic material is close to the variational formulation of a linear elastic
solid obeying Hooke’s law, but with one difference: the material is Lagrangian with finite, rather than
infinitesimal, displacements. The variational formulation then consists of the kinetic and potential
energies in the Lagrangian framework. In the linear case, X = a+ X̃(a, t) ≈ a+ X̃(x, t) since we take
a = x for small X̃. The VP for the hyperelastic model is then as follows [2]

0 =δ

∫ T

0

∫∫∫

Ω0

ρ0U · ∂tX−
1

2
ρ0|U|2 − ρ0gZ −

1

2
λ[tr(E)]2 − µ tr(E2) da db dc dt, (3)

with ρ0 = ρ0(a) and the Green-Lagrangian strain tensor Eij = 1
2(FkiFkj − δij) = Eji with Fij =

∂Xi/∂aj . Evaluation of the variation in (3) yields

0 =δ

∫ T

0

∫∫∫

Ω0

ρ0
(

∂tX−U
)

· δU− ρ0∂tU · δX− ρ0δl3δXl

+ ∂ai
(

λtr(E)Fli + 2µEkiFlk

)

δXl da db dc

−

∫∫

∂Ω0

ni

(

λ tr(E)Fli + 2µEkiFlk

)

δXl dS dt , (4)

in which we have used the temporal end-point conditions δX(0) = δX(T ) = 0.
Given the arbitrariness of the respective variations, the resulting equations of motion become

δU : ∂tX = U in Ω0 (5a)

δXl : ρ0∂tUl = −ρ0gδ3l + ∂ai
(

λtr(E)Fli + 2µEkiFlk

)

= −ρ0gδ3l + ∂aiTli in Ω0 (5b)

δXl : 0 = ni

(

λ tr(E)Fli + 2µEkiFlk

)

= niTli on ∂Ω0 (5c)

with stress tensor Tli = λ tr(E)Fli + 2µEkiFlk.
Linearized elastic dynamics. Given that X = a+ X̃, we find that [3]

E =
1

2

(

(∂X̃

∂a

)T
+
(∂X̃

∂a

)

)

+
1

2

(∂X̃

∂a

)T
·
(∂X̃

∂a

)

. (6)

The linearization entails that a = x such that X̃ = X̃(x, t). To be precise, we define ǫ = (ǫ1, ǫ2, ǫ3)
T =

a− x, Taylor expand around a = x and use Taylor’s remainder theorem to yield

X(a, t) = a+ X̃(a, t) = x+ ǫ+ X̃(x, t) + ǫT
∂X̃

∂(x+ ǫ)

∣

∣

x+ǫ=ζ
(7)

for |a| ≤ ζ ≤ |x|. Hence, we find that

∂X(a, t)

∂a
=I+

∂X̃(a, t)

∂a
= I+

∂X̃(x, t)

∂x
+O(ǫ) and

∂X̃(a, t)

∂a
=

∂X̃(x, t)

∂x
+O(ǫ). (8)

Consequently, the linearized version e of E is [3]

e =
1

2

(

(∂X̃

∂x

)T
+
(∂X̃

∂x

)

)

or eij =
1

2

(∂Xj

∂xi
+

∂Xi

∂xj

)

. (9)

Moreover, tr(E)2 = EiiEjj ≈ eiiejj and tr(E · E) = E2
ij ≈ e2ij , whence the standard VP for linear

elastodynamics emerges:

0 =δ

∫ T

0

∫∫∫

Ω0

ρ0U · ∂tX̃−
1

2
ρ0|U|2 − ρ0gZ −

1

2
λeiiejj − µe2ij dx dy dz dt. (10)

In the limit of small displacements, the following approximations hold

tr(E)Fli = EjjFli ≈ ejjδli, EkiFlk ≈ eikδlk = eil. (11)

Either by linearizing (5) or taking the variation of (10), the linearized equations of motion emerge.
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Figure 1: Geometry of the linearized or rest system: fluid (hatched) and elastic beam (cross-hatched).

2.1 Coupled Model

The domain occupied by the fluid is denoted by Ω and the domain occupied by the hyperelastic
material by Ω0. For simplicity we consider a block of hyperelastic material. The interface between
the fluid and solid domain is parameterized by Xs = X(Ls, b, c, t) and, at rest, X = a for Cartesian
a ∈ [Ls, Lx], b ∈ [0, Ly], c ∈ [0, Lz], while the fluid domain at rest is x ∈ [0, Ls], y ∈ [0, Ly], z ∈
[0, H0]. The (outward-from-fluid) normal at this interface X(Ls, b, c, t) with b ∈ [0, Ly], c ∈ [0, Lz] is
n̂ = ∂bX × ∂cX/|∂bX × ∂cX|. The nonlinear hyperelastic material is assumed to be stiff and nearly
linear, such that at the interface X ≈ Ls, Y ≈ b and Z ≈ c, whence n̂ ≈ (1, 0, 0)T . A sketch of
this linearized domain or domain at rest is given in Fig. 1. This confirms that our expression is the
outward normal to the fluid domain at the fluid-structure interface.

We assume that the elastic material is sufficiently stiff so that the fluid and elastic domains are

Ω: z ∈ (0, h(x, y, t)), y ∈ (0, Ly), x ∈ (0, xs(y, z, t)); Ω0 : a ∈ (Ls, Lx), b ∈ (0, Ly), c ∈ (0, Lz), (12)

where we remark that this is an implicit description of the fluid domain, because the waterline height
z at the fluid-beam interface is defined by z = h(xs(y, z, t), y, t). We therefore introduce a new
horizontal coordinate χ = Lsx/xs(y, z, t) such that Ω : χ ∈ (0, Ls), y ∈ (0, Ly), z ∈ (0, h(χ, y, t)).
Alternatively, we can introduce xs(y, z, t) ◦ Xs(Ls, b, c, t) = Xs(Ls, b, c, t) as an unknown and use a
Lagrange multiplier γ = γ(b, c, t) to equate xs

(

y = Y (Ls, b, c, t), z = Z(Ls, b, c, t)
)

to X(Ls, b, c, t).
As the coupled fluid-structure VP in {x, y, z, t}–coordinates, we take the sum of the two VPs

0 =δ

∫∫∫

Ω
−ρ

(

∂tφ+
1

2
|∇φ|2 + g(z −H0)

)

dz dx dy

+

∫ Ly

0

∫ Lz

0
γ

(

xs
(

Y (Ls, b, c, t), Z(Ls, b, c, t), t
)

−X(Ls, b, c, t)

)

db dc

+

∫∫∫

Ω0

ρ0U · ∂tX−
1

2
ρ0|U|2 − ρ0gZ −

1

2
λ[tr(E)]2 − µtr(E2) da db dc dt. (13)

For non-breaking waves, a coordinate change then becomes suitable, from coordinates {x, y, z, t} to
{χ = Ls

x
xs(y,z,t)

, y, z, t} and fluid domain Ω. In these new coordinates, using transformation formulae,

(13) becomes

0 =δ

∫ T

0

∫ Ls

0

∫ Ly

0

∫ h(χ,y,t)

0
−ρ

(xs
Ls

∂tφ−
χ

Ls
∂txs∂χφ

+
1

2

Ls

xs
(∂χφ)

2 +
1

2

xs
Ls

(∂yφ−
χ

xs
∂yxs∂χφ)

2

+
1

2

xs
Ls

(∂zφ−
χ

xs
∂zxs∂χφ)

2 +
xs
Ls

g(z −H0)
)

dz dy dχ

+

∫ Ly

0

∫ Lz

0
ργ

(

xs
(

Y (Ls, b, c, t), Z(Ls, b, c, t), t
)

−X(Ls, b, c, t)

)

db dc

+

∫ Lx

Ls

∫ Ly

0

∫ Lz

0
ρ0U · ∂tX−

1

2
ρ0|U|2 − ρ0gZ −

1

2
λ[tr(E)]2 − µtr(E2) da db dc dt. (14)



3 Linearized Wave-Beam Dynamics for FSI

We linearize (14) around a state of rest. Small-amplitude perturbations around this rest state are
denoted by tilded variables and introduced as follows

xs =Ls + x̃s, φ = 0 + φ, h = H0 + η, X = x+ X̃, U = 0+ Ũ . (15)

After linearizing (14), we obtain the VP

0 =δ

∫ T

0

∫ Ly

0

∫ H0

0
ρφw∂tx̃s dy dz −

∫ Ls

0

∫ Ly

0

∫ H0

0
ρ
(1

2
(∂χφ)

2 +
1

2
(∂yφ)

2 +
1

2
(∂zφ)

2
)

dz dy dχ

+

∫ Ly

0

∫ Ls

0
ρφs∂tη −

1

2
ρgη2 dy dχ+

∫ Ly

0

∫ H0

0
ργ

(

x̃s
(

y, z, t
)

− X̃(Ls, y, z, t)

)

dy dz

+

∫ Lx

Ls

∫ Ly

0

∫ Lz

0
ρ0Ũ · ∂tX̃−

1

2
ρ0|Ũ|2 −

1

2
λeiiejj − µe2ij dx dy dz dt, (16)

which, being the variation of a quadratic form, yields the dynamics linearized around a state of
rest with φw = φ(Ls, y, z, t) and φs = φ(χ, y,H0, t). After using δX̃(x, 0) = δX̃(x, T ) = 0 and
δη(χ, y, 0) = δη(χ, y, T ) = 0, the variation in (16) yields

δφw : ρ∂tx̃s = ρ∂χφ at χ = Ls, δx̃s : ρ∂tφw = γ at χ = Ls (17a)

δγ : x̃s(y, z, t) = X̃(Ls, y, z, t), δX̃j(Ls, y, z, t) : γδ1j = T1j at x = Ls (17b)

δφs : ∂tη = ∂zφ at z = H0, δη : ∂tφs = −gη at z = H0 (17c)

δφ : (∂χχ + ∂yy + ∂zz)φ = 0 in Ω̄ (17d)

δŨ : ∂tX̃ = Ũ in Ω̄0, δX̃ : ∂tŨj = ∇kTjk in Ω̄0 (17e)

with Ω̄0 : x ∈ [Ls, Lx], y ∈ [0, Ly], z ∈ [0, Lz] and Ω̄ : χ ∈ [0, Ls], y ∈ [0, Ly], z ∈ [0, H0]. Note that we
replaced Lagrangian coordinates (a, b, c) by (x, y, z) in the linearization but kept coordinates (χ, y, z)
in the fluid domain.

4 Discussion and Conclusion

After elimination of the Lagrange multiplier γ, the system (17) of linearized water-wave dynamics
coupled to an elastic beam, i.e., a system of linearized fluid-structure interaction (FSI) equations, is
equivalent to the FSI with ad hoc coupling derived in [5], in which the linear equations are discretized
using dis/continuous variational finite element methods, employing techniques from [1], leading to
fully coupled and stable FSI with overall energy conservation, i.e., without any energy loss between
the subsystems. We shall also present these results. The numerical extension of these FSI to the
nonlinear realm is planned as future research.

References

[1] O. Bokhove, A. Kalogirou 2016: Variational water wave modelling: from continuum to experiment.
In: Bridges, T., Groves, M. and Nicholls, D. (eds.), Lectures on the Theory of Water Waves. LMS

Lecture Note Series, pp. 226-260, Cambridge University Press.

[2] E.H. van Brummelen, M. Shokrpour-Roudbari, G.J. van Zwieten 2015: Elasto-capillarity simula-
tions based on the Navier-Stokes-Cahn-Hilliard equations, http://arxiv.org/abs/1510.02441.

[3] S.C. Hunter 1976: Mechanics of Continuous Media, Ellis Horwood, pp. 108-109.

[4] J.C. Luke 1967: A variational principle for a fluid with a free surface, J. Fluid Mech. 27, 395–397.

[5] T. Salwa, O. Bokhove, M.A. Kelmanson 2016: Variational modelling of wave-structure interactions
for offshore wind turbines. Extended paper for Int. Conf. on Ocean, Offshore and Arctic Eng.,
OMAE2016, Busan, South-Korea, accepted Feb 2016, 10 pp.

http://arxiv.org/abs/1510.02441

	Introduction
	Nonlinear Variational Formulation
	Coupled Model

	Linearized Wave-Beam Dynamics for FSI
	Discussion and Conclusion

