
This is a repository copy of Nonlinear projection filter with parallel algorithm and parallel
sensors.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/96766/

Version: Accepted Version

Proceedings Paper:
Single-Liertz, T, Kim, J and Richardson, R (2015) Nonlinear projection filter with parallel
algorithm and parallel sensors. In: 2015 54th IEEE Conference on Decision and Control
(CDC). 54th Conference on Decision and Control, 15-18 Dec 2015, Osaka. IEEE , pp.
2432-2437. ISBN 978-1-4799-7884-7

https://doi.org/10.1109/CDC.2015.7402572

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Nonlinear projection filter with parallel algorithm and parallel sensors *

Tama Single-Liertz1, Jongrae Kim1, and Robert Richardson1

Abstract— Over the past few decades, the computational
power has been increasing rapidly. With advances of the
parallel computation architectures it provides new opportu-
nities for solving the optimal estimation problem in real-
time. In addition, sensor miniaturization technology enables us
to acquire multiple measurements at low cost. Kolmogorov’s
forward equation is the governing equation of the nonlinear
estimation problem. The nonlinear projection filter presented
in the late 90’s is an almost exact solution of the nonlinear
estimation problem, which solves the governing equation us-
ing Galerkin’s method. The filter requires high-dimensional
integration in several steps and the complexity of the filter
increases exponentially with the dimension of systems. The
current parallel computation speed with the usage of many
sensors at the same time make it feasible to implement the
filter efficiently for practical systems with some mild dimension
sizes. On-line or off-line multi-dimensional integration is to
be performed over the parallel computation using the Monte-
Carlo integration method and random samples for the state
update are obtained more efficiently based on the multiple
sensor measurements. A few simplifications of the filter are
also derived to reduce the computational cost. The methods
are verified with two numerical examples and one experimental
example.

I. INTRODUCTION

Optimal estimation has been one of the most important

research topics in control engineering since the optimal

estimator for linear time-invariant systems, Kalman filter,

was developed [1]. The filter has been successfully applied to

many dynamical systems. The major successful applications

of Kalman filter are, on the other hand, for nonlinear systems

in Aerospace Engineering such as the navigation problem of

spacecraft for the Apollo mission [2] and attitude estimation

problem for satellite [3]. The derivation of extended Kalman

filter for nonlinear systems was the beginning of a plethora

applications for the filter. As the extended Kalman filter relies

on the accuracy of the first-order derivatives of nonlinear

systems, the estimation could have some convergence issues

depending on the initialisation error. In order to circumvent

the divergence problem, the unscented Kalman filter was pro-

posed [4]. Using a set of samples during the state propagation

step, the unscented Kalman filter achieves the accuracy up

to the 3rd-order in Taylor series expansion [5].

These filters are not, however, nonlinear filters and they

suffer when the measurement are non-Gaussian and/or non-

linearities in the system becomes significant. To tackle the

*This work was supported by School of Mechanical Engineering, Uni-
versity of Leeds, Leeds LS2 9JT UK.

1Tama Single-Liertz, Jongrae Kim and Robert Richardson are with
Institute of Design, Robotics & Optimisation (iDRO), School of
Mechanical Engineering University of Leeds, Leeds LS2 9JT, UK.
mntrks,menjkim,r.c.richardson@leeds.ac.uk

nonlinear estimation problem directly, solving the Chapman-

Kolmogorov equation and exploitations of Bayes’ rule are

considered [6]. These are the main focus of particle filters for

nonlinear and non-gaussian systems. Particle filters estimate

the posterior probability density function using a set of

samples in the state space. In a special case, the Chapman-

Kolmogorov equation becomes the Kolmogorov forward

equation, also known as the Fokker-Plank equation [7]. The

nonlinear projection filter presented in [8] solves the equation

by assuming the solution as the sum of basis functions. The

filter provides an elegant form of the solution for the Fokker-

Plank equation. It requires multi-dimensional integration in

several steps of the filter implementation and the number of

basis function increases very fast as the system dimension

increases. These are the main obstacles to any practical usage

up to now. The most recent application was a 2D target-

tracking problem in [9].

To resolve the practicality of the filter, new implementation

methods are to be proposed, which are based on parallel

computation and parallel sensors. The parallel computational

power has been increased tremendously by multi-core

technology in CPU (Central Processing Unit) and GPU

(Graphical Processing Unit) [10], and FPGA (Field

Programmable Gate Array). These are the perfect platform

to implement Monte-Carlo integration, which is naturally

parallel. In addition, sensor technology has been advanced

rapidly in terms of the miniaturising the size of the sensors

and the minimised power consumption. This enables us to

accumulate many sensors and use them at the same time,

i.e. massively parallel sensor usage.

This paper is organised as follows: firstly, a summary of

the nonlinear projection filter with compact expressions is

presented; secondly, the filter implementation is improved

using Monte-Carlo integration and multiple sensors; thirdly,

two numerical and one experimental examples are presented,

demonstrating the effectiveness of the proposed algorithms;

finally conclusions and future works are presented.

II. NONLINEAR PROJECTION FILTER

A nonlinear stochastic differential equation is given by

dx = f(x)dt +G(x)dβ (1)

for t ≥ t0, where x is an n-dimensional state vector in

R
n, which is the n-dimensional real number space, n is a

positive integer, β (t) is a q-dimensional Brownian motion

in R
q, whose covariance matrix, i.e. E(ββ T), is equal to

Q(t)dt, q is a positive integer, E(·) is the expectation, (·)T

is the transpose, f(·) is an n-dimensional nonlinear function,

and G(·) is an n × q matrix. In addition, noisy discrete

measurements are obtained from the following nonlinear

observation:

yk = h(xk)+vk (2)

for k ≥ 1, where yk is in R
m, m is a positive integer, vk is a

white Gaussian noise independent of dβ , whose covariance

is Rk, and h(·) is the m-dimensional measurement function.

Probability density function (pdf) conditioned by the mea-

surement is given by

p(t,x| Yk) =
p(t,x,Yk)

p(Yk)
,

where Yk is the collection of all measurement up to tk ≤ t, i.e.

Yk := {yk| tk ≤ t}. p(t,x| Yk) includes all possibly required

information conditioned by all available measurements. The

conditional pdf follows Kolmogorov’s forward equation:

∂ p

∂ t
= −

n

∑
i=1

∂ (p fi)

∂xi

+
1

2

n

∑
i=1

n

∑
j=1

∂ 2
[

p
(

GQGT
)

i, j

]

∂xi∂x j

(3)

where xi and fi are i-th element of x and f(x), respectively,

(GQGT)i, j is i-th row and j-th column element of the matrix,

GQGT , and the initial condition is given by p(t0,x). Once

the pdf is obtained, the first moment, for example, can be

calculated as follows:

E(x) =
∫

Ω
x p(x, t| Yk)dx,

where Ω is a closed bounded subset of R
n. Unlike in the

Kalman filter, which tracks only first two moments, any

moments can be calculated from the pdf.

Solving the above partial differential equation, (3), is

computationally demanding. The closed form solution of (3)

is not available in general except some special cases. The

nonlinear projection filter proposed in [8] is a method to

solve (3) using Galerkin’s approximation, which is one of

the common methods to solve partial differential equations

[11]. Assume that the solution is a linear combination of

basis functions, φℓ(x), for ℓ = 1,2, . . . ,N, as follows:

p(t,x| Yk) ≈ pN(t,x| Yk) =
N

∑
ℓ=1

cℓ(t)φℓ(x), (4)

where the basis functions are orthogonal, i.e.,

∫

Ω
φi(x) φ j(x)dx =

{

1 for i = j,

0 for i 6= j
(5)

for i, j = 1,2,3, . . . ,N −1,N.

In the following, propagation and update parts of non-

linear projection filter are summarised. More details about

nonlinear projection filter derivation can be found in [8].

A. Propagation

Substituting (4) into (3), projecting onto φq and integrating

over Ω provide

∫

Ω

{

∂ pN

∂ t
+

n

∑
i=1

∂ (pN fi)

∂xi

−1

2

n

∑
i=1

n

∑
j=1

∂ 2
[

pN

(

GQGT
)

i, j

]

∂xi∂x j







φqdx = 0 (6)

for q = 1,2, . . . ,N, which is the projection condition that c(t)
must satisfy, where c(t) = [c1(t), c2(t), . . . , cN(t)]T . From

the projection equation, (6), the differential equation for c(t)
is obtained as follows:

ċ(t) = (A1 +A2)c(t), (7)

where the initial condition is given by

c(t0) =
∫

Ω
p(t0,x)φ(x)dx,

p(t0,x) is the pdf of the initial state x(t0), φ(x) =
[φ1(x), φ2(x), . . . , φN(x)]T , and A1 and A2 are the matrices,

whose i-th row and j-th column element is given by

[A1]i, j = −
n

∑
k=1

∫

Ω

∂ [φ j fk]

∂xk

φidx,

[A2]i, j =
1

2

n

∑
k=1

n

∑
ℓ=1

∫

Ω

∂ 2
[

φ j

(

GQGT
)

k,ℓ

]

∂xk∂xℓ
φidx.

A1 can be written in a compact form as follows:

Lemma 2.1:

A1 = −
∫

Ω
φ

[

fT (∇φ)T +
(

∇T f
)

φ T
]

dx, (9)

where

∇ :=

[

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

]T

, (10)

and ∇φ is N × n Jacobian matrix, whose i-th row and j-th

column element is given by

[∇φ]i, j =
∂φi

∂x j

(11)

for i = 1,2, . . . ,N, and j = 1,2, . . . ,n.

Proof : As the summation and integration are commutable,

[A1]i, j = −
∫

Ω

n

∑
k=1

∂ [φ j fk]

∂xk

φidx

and the summation is written in vector dot products,

[A1]i, j = −
∫

Ω

[

φi

(

fT ∇φ j

)

+
(

∇T f
)

φiφ j

]

dx.

And, A1 is constructed as

A1 =−
∫

Ω

{

φ fT
[

∇φ1, ∇φ2, . . . , ∇φN

]

+
(

∇T f
)

φφ T
}

dx. �

And, A2 can be also written in a compact form as follows:

Lemma 2.2:

A2 = A21 +A22, (12)

where

A21 =
1

2

∫

Ω
φ

(

λ ◦φ T
)

dx (13a)

A22 =
1

2

∫

Ω
γ φφ T dx, (13b)

λ is an operator defined by λ := 1T
(

GQGT
)

⊙ H1, the

operator applies to each term of φ in λ ◦φ , and γ := 1T H ⊙
(

GQGT
)

1, H is the Hessian matrix equal to ∇∇T , ⊙ is the

Hardamard product, i.e., an element-wise multiplication of

two same dimensional matrices, and 1 is the column vector

whose elements are all 1 with an appropriate dimension.

Proof : As the summation and integration are commutable,

[A2]i, j =
1

2

∫

Ω

n

∑
k=1

n

∑
ℓ=1

∂ 2
[

φ j

(

GQGT
)

k,ℓ

]

∂xk∂xℓ
φidx,

where

n

∑
k=1

n

∑
ℓ=1

∂ 2
[

φ j

(

GQGT
)

k,ℓ

]

∂xi∂x j

= 1T (∇∇T)⊙ (φ jGQGT)1.

In addition,

1T (∇∇T)⊙ (φ jGQGT)1

= 1T
{

(Hφ j)⊙
(

GQGT
)

+
[

H ⊙
(

GQGT
)]

φ j

}

1

= 1T
[(

GQGT
)

⊙H
]

φ j1+1T
[

H ⊙
(

GQGT
)]

φ j1

= λ ◦φ j + γφ j

Therefore,

A2 =
1

2

∫

Ω
φ(λ ◦φ T)+φγφ T dx. �

Remark 2.3: A22 is symmetric and it is equal to zero if

G and Q are constant matrices.

Remark 2.4: f and G in (1) are not function of time, A1

and A2 in (9) and (12) are constant matrices and they are

calculated off-line and stored a priori.

B. Update

Whenever the measurement is available, the conditional

probability density function is updated followed by Bayes’

rule [6]:

p(t+k ,x|Yk) =
p(yk|x) p(t−k ,x|Yk−1)

∫

Ω p(yk|ξ)p(t−k ,ξ |Yk−1)dξ
, (14)

where t+k and t−k are the instances just after and before

the k-th measurement is available, respectively, p(yk|x) is

the sensor model, which could be given by the normal

distribution,

p(yk|x) =
e
−

1

2
[yk−h(xk)]

T R−1
k

[yk−h(xk)]

√

(2π)m|Rk|
,

p(t−k ,x|Yk−1) is the pdf propagated from the previous step.

The sensor model does not necessarily have the Gaussian

distribution. Other distribution can be easily incorporated

with the update equation. Substituting p(t,x|Yk)≈ pN(t,x|Yk)
into (14) the following update equation for c(t) is obtained

[8]:

c(t+k) =
[

Y (yk) c(t−k)
]

/
[

υ(yk)
T c(t−k)

]

(15)

where Y (yk) =
∫

Ω p(yk|x)φφ T dx, υ(yk) =
∫

Ω p(yk|x)φdx.

III. FILTER IMPLEMENTATION

A discrete implementation of (7) can be done by

c(tk+1) = Φ(tk+1, tk)c(tk), (16)

where Φ(tk+1, tk) is the state transition matrix given by

Φ(tk+1, tk) = e(A1+A2)(tk+1−tk). (17)

In [8], it was recommended to use Discrete Cosine Trans-

formations (DCT) algorithm to perform the integrals to

obtain A1 and A2. Although there is some research in multi-

dimensional implementation of DCT [12], [13], to the best

knowledge of the authors, the DCT algorithm implemen-

tation for general multi-dimensional cases is not available.

Instead, Monte-Carlo integration is proposed for all multi-

dimensional integrations required. Monte-Carlo integration is

very simple and powerful for integrating complex functions

and it does not cause exponential increase of the computa-

tional cost from the curse of dimensionality.

Algorithm 3.1: (Calculation A1 and A2)

1) Set the number of samples, Ns, the tolerance, εA, the

iteration number, k = 1, and A0
1 and A0

2 to be zero

matrices.

2) Generate Ns random samples of xi uniformly dis-

tributed in Ω, where i = 1,2, . . . ,Ns.

3) Calculate

Ak
1 = − VΩ

kNs

Ns

∑
i=1

φ(xi)
{

fT (xi)
[

∇φ(xi)
]T

+
[

∇T f(xi)
]

φ T (xi)
}

+
k−1

k
Ak−1

1 ,

Ak
2 =

VΩ

kNs

Ns

∑
i=1

[

A21(x
i)+A22(x

i)
]

+
k−1

k
Ak−1

2 ,

where VΩ is the volume of Ω.

4) If ‖Ak
1−Ak−1

1 ‖ ≤ εA and ‖Ak
2−Ak−1

2 ‖ ≤ εA, then stop.

Otherwise, go to step 2).

Monte-Carlo integration is embarrassingly parallel and can

be easily implemented on parallel computational architecture

including parallel computation nodes and GPU [10].

Proof of step 3): Monte-Carlo integration with uniform

samples of a scalar function, w(x) is given by

W 1
1 =

∫

Ω
w(x)dx ≈ VΩ

Ns

Ns

∑
i=1

w(xi)

If this calculation is repeated (k−1)-times, then

W k−1
1 =

VΩ

(k−1)Ns

(k−1)Ns

∑
i=1

w(xi).

Add Ns samples at k-th step,

W k
0 =

VΩ

kNs

kNs

∑
i=1

w(xi)

=
VΩ

kNs

[

kNs

∑
i=(k−1)Ns+1

w(xi)+
(k−1)Ns

∑
i=1

w(xi)

]

=
VΩ

kNs

kNs

∑
i=(k−1)Ns+1

w(xi)+
k−1

k
W k−1

1 . �

Instead of a single sensor, Nms number of multiple sensors

can be deployed, where each sensor provides a measurement

yi
k for k-th step for i = 1,2, . . . ,Nms, and yi

k could be empty if

i-th sensor measurement is not available. The sensor model

for each is given by pi(yi
k|x). Assume that each sensor

measurement is independent of each other, then the combined

sensor measurement model becomes

p(y1
k ,y

2
k , . . . ,y

Nms
k |x) =

Nms

∏
i=1

pi(yi
k|x). (18)

Each pi(yi
k|x) is less than or equal to 1, and the product

quickly approaches zero. If the above is implemented di-

rectly, the result of the multiplication might be always zero

for most of the time as underflow in the calculation occurs. In

order to avoid the underflow, the calculation is implemented

in the following way:

Algorithm 3.2: (Calculation of multiple sensor likelihood)

1) Take log(·) of (18) and set

pms =
Nms

∑
i=1

log
[

pi(yi
k|x)

]

2) p(y1
k ,y

2
k , . . . ,y

Nms
k |x) = epms

In Update step, (14) and (15), some improvements in terms

of computation are possible.

Lemma 3.3: The update equation, (15), is equivalent to

c(t+k+1) = α Y (yk+1) c(t−k+1) (19)

where

α =
1

cT (t−k+1) Y T (yk+1)φ I

, (20)

φ I :=
∫

Ω
φdx, (21)

Proof : The integration of the conditional pdf over Ω is equal

to one,
∫

Ω
pN(t+k+1)dx =

∫

Ω
cT (t+k+1)φ(x)dx = 1,

and

α cT (t−k+1) Y T (yk+1)
∫

Ω
φdx = 1. �

Note that (21) is to be calculated a priori and stored.

In addition, consider Y (yk+1) for a multiple sensor case

Y (yk+1) =
∫

Ω

[

s

∏
i=1

pi(y
i
k+1|x)

]

φφ T dx, (22)

Lemma 3.4: The Monte-Carlo integration is obtained by

Y (yk+1) ≈
1

Ns

Ns

∑
i=1

φ(xi)φ T (xi).

where Ns random samples of xi in Ω is drawn from the sensor

likelihood pdf as follows:

xi ∼
[

s

∏
i=1

pi(y
i
k+1|x)

]

.

Proof : By the property of Monte-Carlo integration,

Y (yk+1) ≈
1

Ns

Ns

∑
i=1

[

∏
s
i=1 pi(y

i
k+1|xi)

]

φ(xi)φ T (xi)

pdf(xi)

=
1

Ns

Ns

∑
i=1

φ(xi)φ T (xi). �

In this Monte-Carlo integration, the samples are now more

efficiently used as they are concentrated around regions

where the sensor likelihood is higher.

For the n-dimensional case, Ω is defined as a hyper-

rectangle,

Ω = {x|x ∈ [b1,a1]× [b2,a2]× . . . [bn,an]} , (23)

where xi ∈ [bi,ai], xi is the i-th element of x, and bi < ai for

i = 1,2, . . . ,n. For each xi,

ψp(xi) =















1√
bi −ai

for p = 1,
√

2

bi −ai

cos

[

(p−1)π

bi −ai

(xi −ai)

]

for 2 ≤ p ≤ Nb,

and the basis functions are generated by multiplication of ψp

functions as follows:

φl (x) =
n

∏
q=1

ψIq

(

xq

)

, (24)

for ℓ = 1,2, . . . ,N, where N = Nn
b , Iq is an index such that

ℓ = I1 +Nb [I2 −1]+N2
b [I3 −1]+ . . .+Nn−1

b [In −1] ,

and Iq is in [1,Nb].

IV. EXAMPLES

A. First-order System

A first-order nonlinear system is given by [8]

dxt = sin(xt)dt +dβt ,

yi
k = x(tk)+ vi

k

with Q = 0.5 and Ri = 0.5 for i = 1,2, . . . ,10, i.e., 10 identical

sensors provide the measurement at every 0.1s interval. The

sample space, Ω, is defined by [−6.5,6.5]π , the number of

Fig. 1. First-order example, where sensor measurements are green dots;
the estimated mean value is in red solid line; and the true state is in dashed
line.

Fig. 2. Evolution of pdf at 1s interval with true state (red line)

basis functions is equal to 128. Fig. 1 shows the estimated

state trajectory compared to the true state trajectory, where

the estimate is calculated using the pdf obtained. Fig. 2

shows the evolution of the approximate probability density

function pN(t,x| Yk), at 1s interval, along with the true state

trajectory indicated by the solid red line. Initially, it is a

uniform distribution over Ω as no information is available.

B. Van der Pol Oscillator

A modified Van der Pol oscillator is used to test the

algorithm for a second-order system. The system dynamics

is as follows [8]:

d

[

x1

x2

]

=

[

−x2

0.2(x2
1 −1)x2 + x1

]

+dβ ,

yi
k = x2(tk)+ vi

k,

where Q is the 2×2 diagonal matrix whose diagonal term is

equal to 0.05, the measurement noise variance, Ri, is equal

to 0.02 for i = 1,2, . . . ,10, and the number of basis functions

is 16. Fig. 3 shows the estimated and true state trajectories

Fig. 3. Second-order example, where the estimated mean values are in
read solid lines and the true are in dashed lines.

Fig. 4. Evolution of pdf at 10s intervals

for x1, and for x2. Fig. 4 shows the evolution of approximate

probability density function at 10s intervals. At t=0s, the

pdf is uniform over Ω and E(x1) = 0 and E(x2) = 0, while

the true states are: x1(0) = −1 and x2(0) = 1. As the pdf at

t = 0.1s shown in Fig. 4, E(x1) and E(x2) converge to the true

value reasonably close. The white areas in Fig. 4 represent

sections where the probability density function value is below

zero, which is an unavoidable effect caused by the finite

number of the basis functions. More basis functions will

reduce the size of these undesirable regions with additional

computations. The integration of whole region is equal to one

as the pdf is normalized. Any moment of the states are the

results of integration over the whole sample space, Ω, and

they are less affected by these negative pdf values. It should

#4 IMU
Sensorsx

y
θ

(ax, ay)

Fig. 5. Four IMU sensor configuration, where x and y axes are indicated.

be very careful in using the pdf integration over a subsection

of Ω. There will be some resolution limit in terms of the size

of subsection area over Ω to calculate the probability.

C. Pointing estimation

Four inertial measurement unit (IMU) sensors are con-

nected and kept stationary while they measure the accelera-

tions, as shown in Fig. 5. In order to use the sensor measure-

ments for a nonlinear estimation problem, a virtual pointing

platform, where four sensors are attached, is assumed and

its dynamics are given by

dθ = dβ ,

yi
k = tan(θ i

k)+ vi
k,

where yi
k is the k-th measurement of the i-th sensor, Q = 0.05,

R for each sensor is 0.618, 0.645, 0.404, 0.146, respectively,

Ω = [−85◦, 85◦], and the virtual sensor providing the mea-

surement is constructed using the accelerometers as follows:

yi
k = ai

y/ai
x, where ai

x and ai
y are x and y directional accel-

eration measurements respectively, from i-th IMU sensor.

Ideally, if the platform is in the perfectly perpendicular to

the gravitational acceleration, ai
x and ai

y are equal to zero.

It is more likely that the surface is slightly tilted from

the horizontal and both accelerations are affected by noise.

Hence, the measurement provided by the virtual sensor, yi
k,

would have very strong noise effects as shown in Fig. 6.

All dots in Fig. 6 are the measurements at each instance,

where each colour represents the measurement from each

sensor. The measurements are available from around 5s, the

true angle is zero and the estimated is indicated by the blue

solid line, where the number of basis functions for the filter

is 64. As shown by the measurements, the estimate of θ is

a lot better than the individual measurements and it is also

better than a direct average of the four sensor outputs (not

indicated).

V. CONCLUSIONS & FUTURE WORKS

Nonlinear projection filter was presented in the late 90’s

and the computational complexity was the main obstacle for

any practical implementations of the filter. Current increasing

computational power and parallel architectures allow the

practical application of the exact nonlinear filter. Several

ways to improve the computation of the filter are presented

based on Monte-Carlo integration and the usage of multiple

parallel sensors. The performance of the proposed methods

are demonstrated by two numerical examples and one exper-

imental example. Future works will include: 1) applying the

Fig. 6. Pointing angle (θ) estimation, where all dots are the measurements.

filter for indoor navigation problem, whose state dimension

could be up to twelve; 2) real-time re-positioning algorithm

for the sampling space, Ω, while the states are progressed;

and 3) implement the algorithms in GPU or FPGA.

ACKNOWLEDGEMENT

This research is supported by School of Mechanical En-

gineering, University of Leeds, Leeds, UK.

REFERENCES

[1] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Transactions of the ASME Journal of Basic Engineering,
no. 82 (Series D), pp. 35–45, 1960.

[2] M. S. Grewal and A. P. Andrews, “Applications of Kalman Filtering
in Aerospace 1960 to the Present [Historical Perspectives],” Control

Systems, IEEE, vol. 30, pp. 69–78, June 2010.
[3] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering

for spacecraft attitude estimation,” Journal of Guidance, Control, and

Dynamics, vol. 5, pp. 417–429, September-October 1982.
[4] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear

estimation,” Proceedings of the IEEE, vol. 92, pp. 401–422, Mar. 2004.
[5] E. Wan and R. Van Der Merwe, “The unscented Kalman filter for

nonlinear estimation,” in Adaptive Systems for Signal Processing,

Communications, and Control Symposium 2000. AS-SPCC. The IEEE

2000, pp. 153–158, IEEE, Aug. 2000.
[6] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A

tutorial on particle filters for online nonlinear/non-Gaussian Bayesian
tracking,” Signal Processing, IEEE Transactions on, vol. 50, pp. 174–
188, Feb. 2002.

[7] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry,

Third Edition (North-Holland Personal Library). North Holland, 3 ed.,
May 2007.

[8] R. Beard, J. Kenney, J. Gunther, J. Lawton, and W. Stirling, “Nonlin-
ear Projection Filter Based on Galerkin Approximation,” Journal of

Guidance, Control, and Dynamics, vol. 22, pp. 258–266, Mar. 1999.
[9] G. Qian, K. Shafique, and P. Wang, “Fusion of nonlinear motion

dynamics using fokker-planck equation and projection filter,” in In-

formation Fusion (FUSION), 2014 17th International Conference on,
pp. 1–7, July 2014.

[10] NVIDIA, “CUDA parallel computing platform,” Mar. 2015.
[11] L. Meirovitch, Analytical Methods in Vibrations. Macmillan Publish-

ing Co., Inc., 1967.
[12] X. Chen, Q. Dai, and C. Li, “A fast algorithm for computing

multidimensional DCT on certain small sizes,” Signal Processing,

IEEE Transactions on, vol. 51, pp. 213–220, Jan. 2003.
[13] S. Boussakta and H. O. Alshibami, “Fast algorithm for the 3-D DCT-

II,” Signal Processing, IEEE Transactions on, vol. 52, pp. 992–1001,
Apr. 2004.

