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ABSTRACT

We develop a model of coronal-loop oscillations that treats the observed bright

loops as an integral part of a larger 3-D magnetic structure comprised of the en-

tire magnetic arcade. We demonstrate that magnetic arcades within the solar

corona can trap MHD fast waves in a 3-D waveguide. This is accomplished

through the construction of a cylindrically symmetric model of a magnetic ar-

cade with a potential magnetic field. For a magnetically dominated plasma, we

derive a governing equation for MHD fast waves and from this equation we show

that the magnetic arcade forms a 3-D waveguide if the Alfvén speed increases

monotonically beyond a fiducial radius. Both magnetic pressure and tension act

as restoring forces, instead of just tension as is generally assumed in 1-D mod-

els. Since magnetic pressure plays an important role, the eigenmodes involve

propagation both parallel and transverse to the magnetic field.

Using an analytic solution, we derive the specific eigenfrequencies and eigen-

functions for an arcade possessing a discontinuous density profile. The disconti-

nuity separates a diffuse cylindrical cavity and an overlying shell of denser plasma

that corresponds to the bright loops. We emphasize that all of the eigenfunctions

have a discontinuous axial velocity at the density interface; hence, the interface

can give rise to the Kelvin-Helmholtz instability. Further, we find that all modes

have elliptical polarization with the degree of polarization changing with height.

However, depending on the the line of sight, only one polarization may be clearly

visible.

Subject headings: magnetohydrodynamics (MHD) — Sun: corona — Sun: mag-

netic fields — Sun: oscillations— waves



– 2 –

1. Introduction

The loops of bright plasma revealed in EUV images of the solar corona often sway back

and forth in response to nearby solar flares (e.g., Aschwanden et al. 1999; Nakariakov et al.

1999). A flurry of observational and theoretical efforts has been devoted to the explanation

and exploitation of these oscillations (see the review by Andries et al. 2009). In particular,

the detection of multiple, co-existing frequencies (Verwichte et al. 2004; Van Doorsselaere et

al. 2007; De Moortel & Brady 2007) has encouraged the hope that seismic methods might be

developed to measure loop properties, as first suggested by Roberts et al. (1984). However,

before seismic techniques can be fruitfully applied, we must have a firm grasp on the nature

of the wave cavity in which the waves reside. A commonly accepted viewpoint is that each

visible loop is a separate wave cavity for MHD kink waves. The waves are presumed to have

a group velocity that is parallel to the axis of the magnetic field and each loop oscillates as

a coherent, independent entity. Thus, the problem can be reduced to a 1-D wave problem

with boundary conditions at the two foot points of the loop in the photosphere.

There are several lines of evidence that suggest that the entire 3-D magnetic arcade in

which the bright loops reside participates in the oscillation. Thus, the true wave cavity is

much larger than the individual loop and probably multi-dimensional. One of these lines of

evidence comes from viewing an arcade on the limb where the loops have higher visibility

(see Figure 1). With high cadence data from TRACE and AIA it is clear that multiple loops

within a single magnetic arcade often oscillate in concert (Verwichte et al. 2009; Jain et al.

2015). Further, one sees oscillations traveling down the axis of the arcade, crossing from one

loop top to another, almost perpendicular to the field lines. To see for yourself, we suggest

that the reader should examine the online material associated with Figure 1. This material

consists of a movie of AIA images which shows the response of a magnetic arcade to a flare.

A second line of evidence comes from the power spectrum of the oscillations. Jain

et al. (2015) observed a pair of loops embedded within a common arcade. From the time

series of loop positions, they found that the spectral power was sharply peaked around

the oscillation frequency, but with a noticeable enhancement of the high-frequency wing of

the peak compared to the low-frequency wing. Any scattering process usually results in

symmetric broadening of the power peak. Therefore, Jain et al. (2015) suggest that the

asymmetry in the power spectrum is evidence for the existence of a 2D or 3D waveguide

with a continuum of eigenmodes propagating transverse to the field as well as parallel. Each

of the modes with transverse propagation has a higher frequency than the mode with purely

parallel propagation. Hence the integral over all possible transverse wavenumbers results in

preferential enhancement of the high-frequency wing of the spectral peak. Such asymmetry

was previously predicted in a theoretical model by Hindman & Jain (2014) who explored the
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propagation of fast MHD waves within a 2-D waveguide.

Our goal here is to perform the initial theoretical analysis demonstrating that magnetic

arcades form 3-D waveguides and to elucidate the basic properties of the resulting 3-D

wave modes. In section 2, we present a simple model that treats a magnetic arcade as a

cylindrically symmetric, potential magnetic field. In section 3, we develop general governing

equations for fast MHD waves within the prescribed magnetic field. In Section 4, we present

and discuss an analytic solution for the eigenmodes for special profiles of the mass density

and Alfvén speed. Finally, in section 5, we discuss the observational implications of our

work.

2. Model of a coronal arcade as a magnetized cylinder

A coronal loop is believed to be bright because preferential heating on a thin bundle

of field lines causes hot, dense plasma to fill that bundle. Therefore, an arcade of bright

loops is probably a magnetic structure where a density inversion has occurred. A dim cavity

of diffuse magnetized plasma underlies a thin region of dense overlying fluid which radiates

profusely creating the visible loops. Thus, when modeling a coronal loop, one should attempt

to construct a model that possesses a density enhancement suspended within the corona.

We choose to keep the magnetic field itself relatively simple and consider a 3-D model

which assumes that the magnetic field lines form a set of semi-circular arches. The magnetic

structure possesses cylindrical geometry with the axis of the cylinder pointing horizontally

and embedded in the photospheric plane. The half of the cylinder lying above the photo-

sphere corresponds to the arcade, with the field lines being circles centered on the axis. We

define a cylindrical coordinate system (r, θ, y) whose axis is co-aligned with the axis of the

arcade. The axial coordinate is y, the distance from the axis is r, and the angle between the

position vector and the photospheric plane is θ. The range of azimuths θ ∈ (0, π) lies above

the photosphere.

The magnetic field is purely toroidal and force free. The only field that meets these two

conditions is the potential field generated by a line current of strength I located on the y

axis,

B = B(r) θ̂ =
2I

r
θ̂ . (2.1)

The field strength B(r) is a decreasing function of radius that only depends on radius.

Figure 2 illustrates the magnetic geometry.
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3. Governing Wave Equations

If we assume that the plasma is magnetically dominated, so that we can safely ignore

gas pressure and buoyancy forces, the wave motions become purely transverse because the

Lorentz force itself is transverse. Therefore, the azimuthal component, uθ, of the fluid’s

velocity vector will be identically zero, and only the radial and axial components are nonzero,

u = ur r̂ + uy ŷ. For such transverse motions, the induction equation dictates that the

fluctuating magnetic field b is as follows:

∂b

∂t
=

B

r

∂ur

∂θ
r̂ + BΦ θ̂ +

B

r

∂uy

∂θ
ŷ , (3.2)

Φ ≡ −∇ · u +
2ur

r
. (3.3)

The variable Φ is proportional to the temporal derivative of the magnetic-pressure fluctua-

tion, Π,

∂Π

∂t
=

∂

∂t

(

B · b

4π

)

=
B2

4π
Φ . (3.4)

For the magnetically dominated plasma discussed previously, the MHD momentum equation

takes on a relatively simple form,

∂2u

∂t2
=

V 2
A

r2

(

∂2ur

∂θ2
r̂ +

∂2uy

∂θ2
ŷ

)

− V 2

A
∇⊥Φ , (3.5)

where VA is the Alfvén speed and ∇⊥ is the component of the gradient operator that is

transverse to the magnetic field,

∇⊥ ≡ r̂
∂

∂r
+ ŷ

∂

∂y
. (3.6)

In equation (3.5) the term involving Φ represents the effects of magnetic pressure forces and

the two terms in parentheses comprise the magnetic tension.

In order to ensure that equation (3.5) is tractable and has separable solutions, we assume

that the Alfvén speed is a function of radius alone, VA = VA(r). Since the magnetic-field

strength is also a function of only radius, B(r) = 2I/r, the mass density must also vary only

with radius, ρ = ρ(r). This density variation is consistent with hydrostatic balance along
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field lines as long as the corona is exceedingly hot such that the density scale height due to

gravitation is much larger than the height of the loops in the arcade.

For an atmosphere possessing the cylindrical symmetry discussed above, the eigensolu-

tions to equation (3.5) have a separable form,

∼ sin (mθ) eiky e−iωt . (3.7)

In this expression ω is the temporal frequency, k is the axial wavenumber, and m is the

azimuthal order. We have selected this solution in order to satisfy a line-tying boundary

condition (i.e., stationary field lines) at the photosphere (θ = 0 and θ = π). Further, we

have also assumed that the arcade is sufficiently long in the axial y-direction that we can

ignore edge effects and presume invariance in the y coordinate. Hence, the eigenfunctions

are propagating waves in the y direction. We recognize that this assumption is problematic

for many arcades, but we adopt it despite these reservations for reasons of tractability and

simplicity of argument.

Given solutions with the separable form posited by equation (3.7), the two components

of equation (3.5) become a set of coupled ODEs,

(

ω2 −
m2

r2
V 2

A

)

ur = V 2

A

dΦ

dr
, (3.8)

(

ω2 −
m2

r2
V 2

A

)

uy = V 2

A
ikΦ , (3.9)

Φ = −
dur

dr
+

ur

r
− ikuy . (3.10)

These equations can be combined into a single ODE for the variable Φ,

d2Φ

dr2
+

(

1

r
−

1

Λ

)

dΦ

dr
+

(

ω2

V 2
A

−
m2

r2
− k2

)

Φ = 0 , (3.11)

where Λ is a scale length

Λ−1 ≡
d

dr
ln

(

ω2r2

V 2
A

− m2

)

. (3.12)

Depending on the profile of the Alfvén speed as a function of radius, VA(r), equa-

tion (3.11) may possess turning points and critical points. If turning points exist, there is
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a possibility that the arcade forms a waveguide. For example, there might be two turning

radii between which the waves are trapped. In such a circumstance each eigenmode would

be a standing wave in radius r and azimuth θ, while being a propagating wave in the axial

coordinate y. The nature of this type of waveguide will be discussed more fully when we

consider specific Alfvén speed profiles in section §4.2.

Potential critical points correspond to cylindrical sheets where the Alfvén resonance

condition is satisfied,

ω2 =
m2

r2
V 2

A
(r) . (3.13)

Since the scale length Λ is divergent at these resonances, the coefficient of the first-order

derivative term in equation (3.11) becomes singular at these critical radii. Critical layers of

this sort often act as internal reflecting or scattering interfaces. But, since our subsequent

arcade models will be intentionally constructed such that no critical radii exist, we defer

further exploration of their behavior.

4. Analytic Solution

In order to provide a specific example of the waveguides that can form within these

magnetic arcades, we present an analytic solution to equation (3.11). First, we note that if the

waves are to be trapped in the radial direction, the Alfvén speed must increase monotonically

beyond a fiducial radius. This is necessary so that refraction occurs and turns outward

propagating waves back toward the interior. This places a restriction on the density profile

of any model atmosphere that one proposes. Since, the magnetic-field strength decreases as

1/r, in order for the Alfvén speed to increase with radius, the density must decrease with

radius faster than 1/r2.

The analytic solution that we present here is predicated on the removal of all critical

radii and is accomplished by specifying a particular profile for the Alfvén speed. Consider

an Alfvén speed profile that increases linearly with cylindrical radius (thus satisfying the

condition required for a refractive turning point). For such a profile the Alfvén resonances

disappear, the density decreases with radius as 1/r4, and the scale length Λ disappears from

equation (3.11),

VA(r) = V

(

r

r0

)

, (4.14)
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ρ(r) =
I2

πr2
0
V 2

(r0

r

)4

, (4.15)

Λ−1 = 0 . (4.16)

In these expressions, V and r0 are constant reference values that provide the constant

of proportionality such that VA = V at radius r = r0. Since the reciprocal of Λ vanishes, the

ODE describing the radial behavior of the eigenfunctions can be recognized as a modified

Bessel function equation,

d2Φ

dr2
+

1

r

dΦ

dr
−

(

k2 +
ν2

r2

)

Φ = 0 , (4.17)

where the order ν is potentially imaginary for sufficiently high frequency ω,

ν2 = m2 −
ω2r2

0

V 2
. (4.18)

The two linearly independent solutions for Φ are just the modified Bessel functions Iν(kr) and

Kν(kr). The velocity components can be derived from the dimensionless pressure fluctuation,

Φ, by using equations (3.8) and (3.9),

ur = −
r2

ν2

dΦ

dr
, (4.19)

uy = −
r2

ν2
ikΦ . (4.20)

4.1. Nature of the Solutions

The order ν of the modified Bessel functions can be either purely real or purely imaginary

and there is a transition frequency which marks the change between real and imaginary

values. For low frequencies, ω < mV/r0, the order ν is purely real, while for high frequencies,

ω > mV/r0, the order is purely imaginary. For real orders, the K modified Bessel function is

the solution that remains finite as r → ∞, whereas the I modified Bessel function diverges.

At the origin, the I Bessel function remains finite and the K Bessel function diverges.

However, for imaginary order the K Bessel function is a real function, it vanishes at infinity,

and is finite but recessive at the origin. The recessive behavior (i.e., oscillatory with an

infinite number of zeros on the approach to the origin) arises because the wave speed vanishes



– 8 –

at the accumulation point. The I Bessel function is a complex function when the order

is imaginary and is rather badly behaved. If needed, an additional real solution can be

constructed by taking a specific linear combination of I modified Bessel functions. This new

real function is known as the L modified Bessel function (Dunster 1990),

Lν(z) =
iπ

2 sin (νπ)
[Iν(z) + I−ν(z)] . (4.21)

For imaginary order ν, the L Bessel function has the properties that it is divergent at

infinity but remains finite at the origin; although like the K Bessel function, it is recessive

with an infinite number of zeros piling up at the origin. We note, that neither of these

solutions is particularly realistic because of the recessive behavior at the origin. However, if

we had permitted the Alfvén speed to remain nonzero at the origin, these difficulties would

have been automatically avoided. In section §4.2, we solve this problem in another manner

by constructing piece-wise continuous models of the atmosphere such that the waves are

excluded from the origin by enforcing their evanescence in the inner shell.

The behavior of these solutions can be predicted and more fully understood by deriving

a local radial wavenumber κr for equation (4.17). We do this by performing a change of

variable, Ψ = r1/2Φ, such that the transformed equation becomes a Helmholtz equation

lacking a first derivative term,

d2Ψ

dr2
−

(

ν2 − 1/4

r2
+ k2

)

Ψ = 0 . (4.22)

The local radial wavenumber can be read-off from this equation and if expressed in terms of

frequency ω instead of ν, we find

κ2

r =
ω2 − ω2

c

V 2
A

− k2 , (4.23)

ω2

c ≡
(

m2 − 1/4
) V 2

r2
0

. (4.24)

This local dispersion relation has been written in terms of a spatially constant (m-dependent)

cut-off frequency, ωc. High frequency waves, ω2 > ω2
c +k2V 2

A
, propagate, while low frequency

waves, ω2 < ω2
c + k2V 2

A
, are evanescent. Figure 3 provides a propagation diagram which

illustrates those combinations of frequency ω and axial wavenumber k that correspond to

propagating waves and those associated with evanescent waves.
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From the local wavenumber we can immediately deduce that there can only be one

turning point and it is located at

rturn =

√

1/4 − ν2

k
=

√

ω2 − ω2
c

k

r0

V
. (4.25)

Thus, we only have oscillatory solutions if ω2 > ω2
c (or equivalently ν2 < 1/4). The extent of

the waveguide, or the regime of propagation, will span the range r ∈ [0, rturn], as there is only

one turning point. We can further deduce that the solutions will be recessive at the origin

by noting that the local radial wavenumber is divergent as r → 0 (i.e., the local wavelength

vanishes at the origin).

4.2. A Waveguide Comprised of Two Shells

Since our goal here is to examine loop models that consist of a density enhancement

suspended above a diffuse cavity, we choose to construct a piece-wise continuous model that

is comprised of two cylindrical shells joined at r = r0. Each shell possesses the Alfvén

speed profile that permits the analytic solution, but there is a pycnocline at the cylindrical

interface between the two shells. This interface is currentless such that the magnetic field

is continuous and unmodified from equation (2.1). However, the Alfvén speed VA and mass

density ρ are discontinuous at the interface and given by

V 2

A
(r) =















V 2

0

(

r

r0

)2

if r < r0 ,

V 2

1

(

r

r0

)2

if r > r0 ,

(4.26)

ρ(r) =















I2

πr2
0V

2
0

(r0

r

)4

if r < r0 ,

I2

πr2
0V

2
1

(r0

r

)4

if r > r0 ,
(4.27)

where V0 is the reference speed in the inner region (r < r0) and V1 is the reference speed in

the outer region (r > r0).

Since the Alfvén speed drops as r increases across the interface (i.e., V1 < V0), the cut-off

frequency, ωc, is larger in the inner shell than it is in the outer shell—see equation (4.24).

This has the salutary property that there exists a band of frequencies for which the solutions
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are evanescent in the inner shell and potentially propagating in regions of the outer shell.

Thus, we have the possibility of trapped waves that lack recessive behavior at the origin.

Since the cut-off frequencies differ in the two regions, the order of the Bessel functions in the

inner region, ν0, and in the outer region, ν1, also differ, ν2
j = m2 − ω2r2

0
/V 2

j .

A transcendental dispersion relation can be derived for this model by requiring the

continuity of both the magnetic pressure and the radial velocity across the interface at

r = r0. However, we must first choose the proper solutions within the two regions such

that boundary conditions at r → ∞ and r = 0 are satisfied. In order to avoid divergent or

recessive solutions at the origin, the solution within the inner region must correspond to an

I modified Bessel function and the order ν0 in that region must be purely real (i.e., ν2
0

> 0).

This places an upper bound on the mode frequencies,

ω2 <
m2

r2
0

V 2

0
. (4.28)

Similarly, a boundary condition of finiteness as r → ∞ selects the proper solution in the

outer region. The only solution that remains finite in this limit is the K modified Bessel

function and it does so for either real or imaginary order ν1.

Given that the solution must be an Iν0
(kr) function for r < r0 and a Kν1

(kr) function

for r > r0, the continuity of magnetic pressure and radial velocity mandate the following

dispersion relation,

ν2

0

K ′

ν1
(kr0)

Kν1
(kr0)

= ν2

1

I ′

ν0
(kr0)

Iν0
(kr0)

, (4.29)

and eigenfunction

Φ(r) =

{

A Kν1
(kr0) Iν0

(kr) if r < r0 ,

A Iν0
(kr0) Kν1

(kr) if r > r0 ,
(4.30)

where the primes indicate differentiation with respect to the argument of the Bessel function

and A is a normalization constant.

If one assumes a priori that ν2
1 ≥ 0 one can quickly demonstrate that the left-hand side

of equation (4.29) is negative and the right-hand side is positive. Hence, a contradiction

occurs and only solutions with ν2
1

< 0 are allowed. This places a further restriction on the

mode frequencies, imposing a lower limit,
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ω2 >
m2

r2
0

V 2

1 . (4.31)

Thus, the eigenfrequencies exist within a band, namely mr0/V1 < ω < mr0/V0, whose extent

depends on the wave speeds within each region, V0 and V1. Clearly, for the band to exist,

we must have the ordering V1 < V0; so, the Alfvén speed must decrease across the interface.

This implies that the mass density must increase across the interface and modes only exist

when the inner region forms a diffuse cavity with denser plasma overlaid. In all subsequent

figures we adopt a value of V 2
1
/V 2

0
= 0.1, corresponding to a tenfold jump in density across

the interface.

The waves can be further decomposed into body waves and surface waves based on

their propagation properties. Body waves will possess a zone of propagation just above the

interface, whereas surface waves with be evanescent throughout both shells. If rturn > r0 the

mode will be a body wave and, conversely, if rturn < r0 the mode corresponds to a surface

wave. The demarcation can be expressed in terms of frequencies and wavenumbers through

the use of equation (4.25),

ω2 >
(

m2 − 1/4 + k2r2

0

) V 2
1

r2
0

. (4.32)

Figure 3 illustrates the regimes of allowed solutions and the zones of propagation and evanes-

cence in a propagation diagram for m = 1. Other m have similar but not identical diagrams.

The orange region corresponds to body waves and the turquoise region to surface waves.

The white regions of the diagram correspond to either recessive waves (at high frequency)

or a zone of nonresonant oscillations (at low frequency).

Since the dispersion relation is transcendental, we must solve it numerically if we wish

to calculate the mode frequencies as a function of axial wavenumber k and azimuthal order

m. We use the numerical codes developed by Gil et al. (2004) to numerically compute

the K Bessel functions of imaginary order and Press et al. (2007) to evaluate the I Bessel

functions. Figure 4 illustrates dispersion curves for the fundamental mode (m = 1) and the

first few azimuthal overtones (m > 1). Naturally, the solutions possess an integer number

of nodes with radius, and the number of nodes (or the radial order n) labels each family of

solutions. Each curve in Figure 4 corresponds to a mode of specific radial order, n ∈ [0, 7],

but different axial wavenumber k, which is of course continuous. Note, as a function of k,

each modal curve begins near the cut-off frequency of the outer shell. The radial overtones

n > 0 continue to increase with wavenumber until they disappear as they cross the high-

frequency limit demarking recessive behavior at the origin. The gravest mode (n = 0) on
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the other hand rapidly flattens as k increases and asymptotes to a fixed value.

Figures 5a–f present radial eigenfunctions for the dimensionless-pressure fluctuation

Φ (Figures 5a and b), the radial velocity ur (c and d), and the axial velocity uy (e and

f). All of the eigenfunctions are only for m = 1, although the higher azimuthal orders have

similar behavior. The normalization constant A in equation (4.30) has been chosen purely for

illustrative purposes. Each of the panels corresponding to an axial wavenumber of kr0 = 0.2

show the gravest three radial orders. While for kr0 = 1.0, only the eigenfunctions for n = 0

and n = 1 are shown, because n = 2 does not exist. The matching conditions ensure that Φ

and ur are continuous across the interface between the two shells. The axial velocity uy is

discontinuous and in fact changes sign across the interface.

In the inner shell, the eigenfunctions correspond to evanescent solutions that vanish at

the origin. Within the outer shell, the solution may be propagating just above the interface

and evanescent higher (if a body wave) or it may be evanescent throughout (if a surface

wave). The lower boundary of the waveguide is the same for all modes and it is located at

the interface between inner and outer shells. For the body waves, the upper boundary of

the waveguide is different for each mode and corresponds to the turning point located at

rturn =
√

ω2 − ω2
c (r0/kV ). Therefore, the radial size of the waveguide depends on frequency

ω, axial wavenumber k, and azimuthal order m (because ωc depends on m). These turning

points are indicated in Figures 5a,b by the colored diamonds. Note, the turning points should

not correspond to the inflection points of Φ. Instead they are located at the inflection points

of Ψ = r1/2Φ.

The gravest radial mode (n = 0) is slightly unusual. At low axial wavenumber the wave is

a body wave with a narrow zone of propagation just above the interface. As the wavenumber

increases, the mode changes into a surface wave which is evanescent everywhere. Since this

mode only lives on the interface, its behavior is quite distinct from the higher overtones, and

hence its dispersion relation does not follow the same pattern as the radial overtones.

5. Discussion

We have developed general equations describing the fast MHD eigenmodes of a coronal

magnetic arcade possessing cylindrical geometry and an Alfvén speed that is a function of

only the cylindrical radius, VA(r). We find that a waveguide exists as long as the Alfvén

speed monotonically increases beyond some radius. This waveguide traps waves radially

and azimuthally, and allows free propagation of the waves down the cylindrical axis. Thus,

the eigenfunctions of the magnetic arcade consist of standing waves in radius and azimuth
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and traveling waves in the axial direction. We subsequently derived the eigenfunctions and

eigenfrequencies for an arcade model with a specific Alfvén speed profile. In this model,

the arcade has a diffuse, evacuated cavity that extends to a cylindrical radius of r0. The

edge of the cavity consists of a density discontinuity over which hangs a shell of denser

fluid. Separately in each region, the Alfvén speed is linearly proportional to the radius. Fast

MHD waves can be trapped as body waves that live in the denser region above the density

discontinuity at r = r0 or as surface waves that reside on the density discontinuity itself.

We reiterate that the resonant oscillations of the arcade have both magnetic pressure

and tension as restoring forces. This can be visually verified by noting in Figure 5 that

the dimensionless magnetic pressure, Φ, is always comparable in magnitude to the velocity

components which are themselves proportional to the magnetic tension. Only waves with

zero axial wavenumber k can be pure tension waves. This is a very different result from what

is predicted by 1-D models that treat the loop as a single coherent entity. Those studies

argue that the oscillations are fast MHD kink waves primarily driven by tension forces.

5.1. Observational Implications

Occasionally the arcade itself may not be fully visible and only one or two preferentially

illuminated loops can be seen. In such cases, fast MHD waves may be traversing the entire

arcade but the 3-D wave field can only be sampled along a given field line. Since the wave

modes of the arcade are trapped, standing waves in the direction parallel to the field (i.e.,

reflection from the two photospheric foot points), the motion of any individual field line may

look very reminiscent of a 1-D wave cavity. Only by careful examination of the spectral

content of the oscillations can the existence of the full 3-D wave field be surmised.

If the wave excitation region is sufficiently broad, we anticipate that the lowest-order

modes in both radius n = 0 and azimuth m = 1 will be preferentially excited. Thus the

surface wave is of particular importance. Furthermore, we expect that most of the emission

which is visible as a bright loop should arise from the densest fluid. Hence, the cavity should

be dim and the bright loop probably corresponds to only the narrow portion of the waveguide

immediately above the interface at r = r0. If such a supposition is correct, the radial shear

that appears in the axial velocity may not be evident. Further, even the radial overtones

which have nodes in radius may appear as a single collimated oscillating loop.

Finally, we emphasize that each radial order actually comprises a continuum of eigen-

modes with different axial wavenumbers k. The relative amplitude of these modes will depend

explicitly on the manner in which the waves are excited. However, in driven problems the
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mode with the lowest frequency is usually the most easily excited. From the dispersion

curves, Figure 4, one would therefore expect that those modes with k ≈ 0 would dominate

the spectrum forming a distinct peak. Modes with nonzero wavenumber have higher fre-

quency and thus would contribute power exclusively to the high-frequency wing of the peak.

The resulting power spectrum would possess an asymmetric power peak with a deficit of

power in the low-frequency wing. Scattering processes certainly broaden a spectral peak,

but they typically do so symmetrically. Therefore, the existence of asymmetric power—as

observed by Jain et al. (2015)—may be evidence for transverse wave propagation within a

waveguide.

The surface wave could very well appear in power spectra with a doubly peaked profile.

One peak would appear near the lowest frequency available, associated with the waves with

k ≈ 0. The second, higher-frequency peak would correspond to an accumulation of power

from all of the modes with k >> 1/r0 where the dispersion curve becomes flat. The width

of each peak and relative amplitude would of course depend on details of the driving.

5.2. Velocity Polarization

Coronal loops are observed to oscillate in two polarizations of motion. “Horizontal”

oscillations involve swaying of the loops back and forth and correspond to axial motions

uy in the geometry presented here. “Vertical” oscillations (Wang & Solanki 2004) cause an

expansion and contraction of the loop in radius and in our geometry such motions ur would

be purely in the radial direction. For many of the observed loops only one polarization is

actually observable due to projection effects and the vantage of observation. Hence, one

should be mindful that observations of a particular polarization is only proof that one of the

possible polarizations exists, not as evidence that the other polarization is absent.

The arcade modes presented here never oscillate in a pure polarization, nor do all the

field lines passing through the waveguide oscillate as a coherent bundle. Instead the cross-

sectional shape of a sheaf of field lines shears and distorts during a period of the oscillation.

Equations (3.8) and (3.9) reveal that the two polarizations are coupled in the 3-D arcade. The

eigenfunctions illustrated in Figure 5 demonstrate the coupling by clearly showing that over

most of the parameter regime, the two velocity components have similar magnitudes. From

equations (3.8) and (3.9) we can immediately deduce that the axial and radial motions are 90

degrees out of phase. Thus, the polarization is actually elliptical and any given parcel of fluid

undergoes elliptical motion in the plane perpendicular to the local field line. The orientation

of the minor and major axes is always the same (axial and radial), but the ellipticity depends

explicitly on the polarization fraction, f = |uy|
2 /

(

|uy|
2 + |ur|

2
)

. This polarization fraction
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is presented in Figures 5g and h for the same eigenfunctions that we provided earlier. A

value of 1 corresponds to pure axial or horizontal motion and a polarization fraction of 0

indicates pure radial motion or vertical polarization. A polarization fraction of 0.5 indicates

circular polarization.

Even the fundamental mode in radius, n = 0, which has the simplest radial behavior,

changes polarizations as a function of height. Near the origin, where the mode has very weak

motions, the polarization is primarily radial (or vertical). Throughout the inner cavity, the

polarization shifts until it reaches an even admixture of the two polarizations within the outer

shell (i.e., the polarization is nearly circular). For higher-order radial modes the polarization

swings back and forth between primarily axial (horizontal) to primarily radial (vertical), as

one passes through the nodes of the respective eigenfunctions. Above the turning point, in the

evanescent region of the eigenfunction, the polarization becomes nearly circular. However,

since we don’t expect the entire waveguide to be visible, the observed motion of a bright

coronal loop is likely to possess a single polarization corresponding to the portion of the

eigenfunction that lies directly above the interface at r = r0. If the fundamental radial mode

is observed, this polarization should be nearly circular (see Figure 5), but if higher radial

orders are observed, the polarization could be predominately radial.

5.3. Radial Shear in the Axial Velocity

The interface between the diffuse interior cavity and the outer shell of dense fluid is

a region of intense shear. While the magnetic pressure and radial velocity are continuous

across this layer, the axial velocity changes sign across the interface. Therefore, even for

modes of the lowest radial order, the horizontal motion within the cavity is in the opposite

direction compared to the motions in the overlying fluid. As stated previously, we suspect

that much of this shear may remain invisible in a real arcade, as the emission generating the

image of the bright loop likely arises from the dense fluid within the outer shell above the

shear zone.

Since the interface between the cavity and outer shell is both a region of sharp increase

in the mass density with radius and a zone of strong shear in the horizontal flow speed, this

interface is ripe for the operation of the Kelvin-Helmholtz instability. Since the magnetic

field points in a direction perpendicular to the shear, the instability is largely unaffected by

the presence of the field. The linear growth rate arising from just the velocity shear (ignoring

the effects of an unstable density gradient) is given by
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γ = k

√

V 2
0 V 2

1

V 2
0

+ V 2
1

∆uy , (5.33)

where ∆uy is the difference in the axial velocity across the interface at r = r0. To estimate a

typical value for this growth rate, we use a transverse loop velocity of 100 m s−1 (Jain et al.

2015) and adopt a velocity jump of twice this value. If we assume that the density increases

roughly by a factor of 4 across the interface, as is typical for a prominence cavity (Schmit

& Gibson 2011), the ratio of square Alfvén speeds V 2
0 /V 2

1 has the same value. Thus, we

estimate the growth rate to be γ/k = 102 m s−1. A ratio of this number to the local Alfvén

speed should be constructed to determine the magnitude of the growth rate compared to

a fast wave frequency. Given an Alfvén speed of 2000 km s−1. We estimate that the ratio

of the growth rate to wave frequency is on the order of 10−4. Therefore, the growth rate is

likely to be quite weak and any turbulent flows arising from the shear in the eigenfunctions

are also likely to be small perturbations.

5.4. Surface Waves

Since the modes of lowest radial and azimuthal order are more efficiently excited by large-

scale disturbances, we expect the n = 0 mode to predominate. For low axial wavenumber

k this mode is a body wave. For large k the mode transitions to a pure surface wave.

In either case, the magnetic pressure fluctuation and the radial velocity have single lobed

eigenfunctions. The magnetic pressure peaks at the interface at r = r0 and the radial velocity

peaks rather higher. The axial velocity is discontinuous at the interface and changes sign

across it, but otherwise lacks zeros.

The dispersion relation for the fundamental radial mode is rather different from that

of the overtones. First, the n = 0 mode exists for all wavenumbers. This occurs because

the eigenfrequency does not continue to rise as the wavenumber increases and thus does not

disappear as it crosses over the upper frequency limit. In fact the dispersion curve for the

surface wave asymptotes to a finite value as the wavenumber increases to infinity. Figure 6

illustrates the behavior of the dispersion curves for m ∈ [1, 4]. The curve corresponding to

m = 1 demonstrates that the approach to the asymptotic value is not always monotonic.

A quick asymptotic analysis of equation (4.22) for large axial wavenumbers kr0 → ∞

confirms the results achieved by numerical evaluation of the full solution, namely, that for the

two-shell model the surface wave has a frequency that becomes independent of k, approaching

a constant value that depends on the wavenumber parallel to the field lines m/r0 and to the

fractional change in the Alfvén speed across the interface V1/V0,
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ω2 ≈
2m2

r2
0

V 2
0
V 2

1

V 2
0

+ V 2
1

. (5.34)

This asymptotic limit is indicated in Figure 6 by the horizontal dashed lines. We note that

this dispersion relation is identical to that achieved for surface waves residing on the interface

between two uniform media in Cartesian geometry when the transverse wavenumber is large

(see Wentzel 1979). This is a strong indication that in this limit, the surface wave becomes

insensitive to the curvature of the field lines and to the stratification on either side of the

interface. The lack of dependence on the stratification is expected because the mode becomes

ever more confined to the interface as the axial wavenumber k increases (i.e., the mode’s skin

depth to either side shrinks). The lack of the dependence on the curvature may be a special

property of the potential magnetic equilibrium. Note, that there is an absence of curvature

terms appearing in the momentum equation (3.5). Such terms would appear as a radial

component of the tension proportional to BΦ/r. In the derivation of equation (3.5), all such

terms were cancelled by corresponding terms appearing in the magnetic pressure force that

arise from the radial variation of the magnetic field strength.
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Fig. 1.— Image of an arcade of magnetic field lines in the corona located on the solar limb. The

image was obtained by AIA in the Fe IX 17.1 nm bandpass. Just after this image was taken a

flare occurred causing the arcade to spasm. The online movie clearly demonstrates that the entire

arcade participates in the resulting oscillation and that waves propagate across magnetic field lines.
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Fig. 2.— Schematic diagram of a 3-D cylindrical coronal arcade. The axis of the arcade lies

embedded in the photosphere and points in the y direction. Field lines lying within one of the

many flux surfaces are indicated by the blue semicircles. This particular flux surface has a radius

of R. The arcade lacks shear and is invariant along its axis. The red ray and arc indicate the radial

and angular coordinates of the cylindrical coordinate system, r and θ respectively. For the sake of

illustration, all coordinates have been non-dimensionalized by the radius R.
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Fig. 3.— A propagation diagram showing the parameter regime in which the allowed body-wave

and surface-wave solutions exist. The two red dashed lines indicate the upper and lower limits

given by equations (4.31) and (4.28). The blue dot-dashed curve indicates the boundary between

the body and surface waves, i.e., equation (4.28). Above the upper limit the solutions become

recessive at the origin. Below the lower limit, it can be shown that the transcendental dispersion

relation (4.29) has no solutions that satisfy the necessary continuity conditions at the interface

between the inner the outer shells.
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Fig. 4.— Dispersion curves showing the dimensionless frequency ωr0/V0 as a function of the

dimensionless axial wavenumber kr0. For illustrative purposes we have set the density contrast

across the density discontinuity to be 10; thus, V 2
1 /V 2

0 = 0.1. The four panels correspond to

different axial orders (m ∈ [1, 4]) as indicated in the lower right corner of each panel. The lowest

frequency curve in each panel corresponds the fundamental radial mode n = 0, and subsequently

higher curves are for n = 1, n = 2, and so on. The red and blue curves are the same as in Figure 3.

All dispersion curves begin near the lower frequency limit for k = 0. The overtones increase in

frequency as k increases and disappear over the upper limit marking the boundary of high-frequency

recessive solutions. Because of this disappearance, not all radial mode orders exist for any given

wavenumber k. The fundamental radial mode (n = 0) never crosses the upper limit and instead

asymptotes to a constant frequency.
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Fig. 5.— Eigenfunctions associated with the eigenvalues presented in Figure 4. Only the fun-

damental azimuthal mode m = 1 is shown and results for two different axial wavenumbers are

illustrated; the left column shows kr0 = 0.2 and the right column shows kr0 = 1.0. The first three

rows of panels show dimensionless eigenfunctions as solid curves for the magnetic pressure fluctu-

ation Φ, the radial velocity ur/V0, and the axial velocity uy/V0. The different colors indicate the

radial order of the mode: black (n = 0), red (n = 1), and blue (n = 2). Note, not all radial orders

exist for all wavenumbers. The vertical line indicates the location of the interface between the inner

and outer shells. The magnetic pressure fluctuation and the radial velocity are continuous across

this matching layer, whereas the axial velocity is discontinuous and changes sign. The diamond

appearing on each of the curves for Φ indicate the location of the turning point rturn for that mode.

The final row of panels presents the polarization fraction |uy|
2 /

(

|uy|
2 + |ur|

2
)

. All waves possess

elliptical polarization, with elliptical fluid-parcel orbits. A value of 1 for the polarization fraction

indicates purely axial (or horizontal) motion, while a value of 0 shows pure radial (or vertical)

motion. A value of 0.5 indicates circular polarization.
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Fig. 6.— The dimensionless eigenfrequencies of surface waves as a function of dimensionless axial

wavenumber kr0. We present dispersion curves for the four lowest azimuthal orders m ∈ [1, 4].

In the limit of infinite wavenumber all frequencies approach an m-dependent asymptotic value.

Very careful examination of the curve for m = 1 reveals that the curve actually achieves a shallow

maximum near a wavenumber of kr0 = 2. Thus, the approach to the asymptote is not necessarily

monotonic. The asymptotic value estimated by equation (5.34) is demarked by the blue dashed

lines.


