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Abstract

Hematopoiesis as the only essential func-
tion of bone marrow cells has been challenged
for several decades through basic science (in
vitro and in vivo) and clinical data. Such work
has shed light on two other essential functions
of bone marrow cells: osteopoiesis and angio-
genesis/vasculogenesis. Clinical utility of
autologous concentrated bone marrow aspirate
(CBMA) has demonstrated both safety and
efficacy in treating bone defects. Moreover,
CBMA has been shown to be comparable to the
gold standard of iliac crest bone graft (ICBG),
or autograft, with regard to being osteogenic
and osteoinductive. ICBG is not considered an
advanced therapy medicinal product (ATMP),
but CBMA may become regulated as an ATMP.
The European Medicines Agency Committee
for Advanced Therapies (EMA:CAT) has issued
a reflection paper (20 June 2014) in which
reversal of the 2013 ruling that CBMA is a non-
ATMP has been proposed. We review bone mar-
row cell involvement in osteopoiesis and
angiogenesis/vasculogenesis to examine

EMA:CAT 2013 decision to use CBMA for treat-
ment of osteonecrosis (e.g, of the femoral
head) should be considered a non-ATMP. This
paper is intended to provide discussion on the
20 June 2014 reflection paper by reviewing two
non-hematopoietic essential functions of bone
marrow cells. Additionally, we provide clinical
and scientific rationale for treating
osteonecrosis with CBMA.

Introduction

According to section 2.2.3. number 2 of the
EMA:CAT 20 June 2014 reflection paper, mar-
row cells that are aspirated, centrifuged, and
re-administered to fulfill their same essential
function will generally be regarded as homolo-
gous use. In case no substantial manipulation
of the cells takes place, the classification is
based on the essential function of the cells.
Such non-substantially manipulated cells used
for the same essential function are not consid-
ered ATMPs.1 However, in section 2.3.1 it is
stated that products once considered a non-
ATMP have been classified as an ATMP. As an
example, it is specifically listed that injection
of concentrated bone marrow at the site of bone
injury with the aim of healing a bone lesion
can be considered as non-homologous use.1

According to EU Regulation 1394/2007 a tissue
engineered product (an ATMP) is defined as
one that consists of cells or tissues that have
been subject to i) substantial manipulation, or
ii) are not intended for the same essential
function(s) in the recipient and the donor.
Since, bone marrow aspirate is centrifuged to
produce concentrated bone marrow aspirate
(CBMA), it is not substantial manipulation
(Annex I of EU Regulation 1394/2007). The
issue under discussion is whether or not autol-
ogous bone marrow cells active in healing a
bone lesion constitute an essential function,
and consequently, homologous use of the cells.

The hematopoietic stem cell (HSC) is the
most characterized somatic stem cell in the
adult and has been utilized in treatment of
patients following myeloablation therapy.2

Multipotent stem cells from adult bone marrow
have been used for decades in these patients
because HSCs contribute to long-term and
complete haematopoiesis.3,4 Bone marrow is
primarily a hematopoietic organ; however, it
has long been recognized that hematopoiesis
is not the only essential function of bone mar-
row cells.5-8 In addition to blood cell replace-
ment, bone marrow cells are active in replac-
ing and building bone and endothelial cells.9-12

Moreover, iliac crest bone graft (ICBG), a gold
standard therapy used in orthopedic surgery, is
not considered an ATMP and is not used for
hematopoietic reconstitution. Rather, ICBG is
used clinically for osteopoiesis and vasculog-

nesis obtained from the osteoblasts on the
graft surface as well as the bone marrow stem
and progenitor cells contained within the graft
material.6,13,14

In this paper, we review data demonstrating
that bone marrow cells, in addition to
hematopoiesis, have the essential functions of
osteopoiesis and vasculogenesis/angiogene-
sis. As essential functions, to utilize bone mar-
row cells for treating bone defects represents a
homologous use of the cells. With autologous
CBMA, the donor and the recipient are the
same individual. The homologous use of the
cells is preserved by aspirating bone marrow in
order that the acquired bone marrow stem and
progenitor cells will form the native tissue of
the environment in which they are placed via
the normal physiological functions of
autocrine and paracrine activity.15,16

Autologous ICBG and CBMA function in the
same manner for the treatment of bone defects
and consequently, they should both be consid-
ered a non-ATMP (Figure 1).

Two essential non-hematopoi-
etic functions of bone marrow
cells

Hematopoiesis is a crucial function of bone
marrow cells. The bone marrow hematopoietic
compartment produces approximately 500 bil-
lion cells per day that use the bone marrow
vasculature as a conduit to the systemic circu-
lation.17 Such high cellular turnover demands
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upon the bone marrow hematopoietic system
certainly demonstrate the importance of the
function of hematopoiesis of bone marrow.
However, hematopoiesis is not the sole func-
tion of bone marrow cells. 

It is well recognized and described in the lit-
erature that bone marrow is responsible for
tissue/bone repair as well as enhancing neo-
vascularization. In 1997, it was first demon-
strated that CD34+ cells (human hematopoiet-
ic stem and progenitor cells are both CD34+

cells) are the precursors to osteoblasts.18

Recently, it was found that a single bone mar-
row cell contributed to hematopoietic reconsti-
tution and drives robust osteopoiesis.19 In this
same study, it was found that long-term repop-
ulating HSCs yield progeny that differentiate
into osteoblasts following bone marrow trans-
plantation (BMT). Therefore, a means for
hematopoietic and osteopoietic maintenance
was found involving cells historically thought
active in hematopoiesis but not osteopoiesis.
Moreover, bone marrow is home to mesenchy-
mal stromal cells (MSCs) that do not directly
contribute to blood cell production. Limiting
the essential function of bone marrow cells to
hematopoiesis alone does not acknowledge the
functions of MSCs. 

Osteopoietic potential
Within bone marrow, there is significant

heterogeneity. Three main regenerative cell
types exist in bone marrow: HSCs, MSCs, and
endothelial progenitor cells (EPCs).20 MSCs,
also called skeletal stem/progenitor cells or
medicinal signaling cells,21-25 do not directly
contribute to hematopoietic reconstitution.26

CBMA MSC population placed into osteogenic
media demonstrated osteoblastic differentia-
tion in the same manner as commercially
available MSCs (Figure 2).

In 1869, it was first documented that bone
marrow cells have osteogenic potential.5 It is
well known that donor-derived osteopoiesis in
both mice and humans occurs following BMT,
even from a single bone marrow cell. This sug-
gests that osteopoiesis may be an essential
function of bone marrow cells and confirms
the earlier findings of osteogenicity of bone
marrow.5,6,19

ICBG, a non-ATMP, is considered a gold
standard in orthopaedic surgery because it is
i) osteogenic (contains cells that contribute to
osteopoiesis), ii) osteoinductive (contains
growth factors, cytokines, and chemokines
active in osteopoiesis), and iii) osteoconduc-
tive (provides a three dimensional matrix for
cells to provide osteopoiesis). Like ICBG,
CBMA is also osteogenic and osteoinductive;
however, it is not osteoconductive.13,16,27 Within
bone marrow, there are at least two compart-
ments of stem and progenitor cells that provide
osteogenic cells,28-31 with more mature pre-oes-
teoblastic cells localizing to the marrow space

adjacent to trabecular bone.13

Bone repair via cells only of bone marrow
mesenchymal origin has also been questioned.
That is, a single marrow cell can have both
hematopoietic and osteopoietic progeny,
depending upon environmental clues.26,31-33

Bone marrow non-MSCs were shown to have a
10-fold greater bone repopulating activity than
MSCs in situations of stress and trauma.10,26

CD34+ cells have been shown to differentiate
into functional osteoblasts and fibroblasts in
vitro18,34,35 and an in vivo study revealed that
fibroblasts are of hematopoietic origins.36 To
be sure that the cell investigated in vivo is a
hematopoietic stem cell and not a progenitor,
secondary BMT assays are used. Via secondary
BMT assays, it was found that long-term HSCs

contribute to hematopoietic reconstitution and
drive osteopoiesis, revealing that HSCs have
hematopoiesis and osteopoiesis as essential
functions. In bone defects, bone formation was
shown to be dependent upon the number of
bone marrow cells present because differenti-
ation of stem and progenitor cells toward
osteogenesis requires high cell-cell interac-
tion.7 CBMA provides a method to produce and
ensure high concentrations of bone marrow
cells for treating bone defects.

Bones are dynamic organs in which replace-
ment of cells occurs through recruited precur-
sor cells. Bone remodeling takes place in the
endosteum region, the site that contains HSC
niches.37,38 Marrow-derived stem and progeni-
tor cells enter the circulation as part of host
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Table 1. Colony forming units-hematopoietic data by donor and sample type.

Donor      Sample       Total colonies per 5×104       CFU-E          CFU-GM     CFU-GEMM

1                     Mean                                      235                                    109                       101                       21
                      Std Dev                                  21.7                                   23.9                      28.5                      7.8
2                     Mean                                      194                                     63                        117                       15
                      Std Dev                                  29.6                                   11.6                      20.7                      3.4
3                     Mean                                      153                                     60                         86                          7
                      Std Dev                                  22.7                                    7.1                       16.9                      3.8
Colony counts per 5×104 nucleated cells plated. Each donor was analyzed 4 times for a total of 12 samples. Colony forming units-hematopoi-
etic (CFU-h); colony forming units-erythroid (CFU-E); colony forming units-granulopoietic (CFU-GM); colony forming units-granulocyte, ery-
throid, macrophage, megakaryocyte (CFU-GEMM). Analysis performed by Kevy, Jacobsen (Harvard Medical School) and Mandle
(BioSciences Research Associates).

Figure 1. EU regulation 1394/2007. Bone marrow aspirate cells should be classified as a
non-advanced therapy medicinal product (ATMP). Concentrated bone marrow aspirate
(CBMA) is not (A) a gene therapy medicinal product, (B) a somatic cell therapy medici-
nal product, (C) a combined ATMP, (D) nor does it fit into the category of a tissue engi-
neered product that has had substantial manipulation and/or the cells/tissues are not
used for the same essential function in the recipient as in the donor.
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defense, homeostasis, as well as repair and
regeneration of injured tissue.12 The majority
of osteoblasts in the human skeleton are found
on endocortical surfaces or in intracortical
remodeling sites, far from red marrow and tra-
becular surfaces.10 This location raised ques-
tions as to how the marrow stromal cells can be
a source of osteoblasts until it was understood
that bone and bone marrow are anatomically
and functionally contiguous. Via human cell
therapy donor osteoblast studies, it was found
that engraftment occurred in transplantation
of undifferentiated bone marrow,39 confirming
the reports of osteopoiesis following BMT and
that marrow cells are a natural source of
osteopoiesis. 

Bone and bone marrow are hosts to cells
that are interrelated functionally.7,40,41 The stro-
ma system within the bone marrow is not
directly involved in hematopoiesis; however,
the hematopoietic system and stroma system
of the marrow are intertwined.40 The idea of
bone, bone marrow, and blood being inter-
twined can be dated to at least 1763,8 and was
expanded with the Chronheim hypothesis of
1867 which stated that the bloodstream, and
consequently the bone marrow, was the source
of the cells involved in healing, including
bone.16 Further evidence of the interrelated
functionality of these systems and cells was
obtained from data demonstrating that
osteoblasts produce many factors required for
HSC survival, renewal, and maturation.37,40

Additionally, many bone disorders are
hematopoietic disorders or disorders of the
relationship of hematopoietic and stromal cells
(e.g., myelofibrosis with osteosclerosis, Paget’s
disease).28,30

Bone marrow cells in the body, ICBG, and
CBMA are involved in the essential function of
osteopoiesis. To limit the only essential func-
tion of bone marrow cells to hematopoiesis
does not take into account the non-hematopoi-
etic cells found within bone marrow nor the
osteopoietic role of HSCs found within bone
marrow, ICBG, and CBMA. Additionally, such a
limitation on bone marrow cells does not allow
for the intertwining relationship of bone, bone
marrow, and blood. Finally, a restrictive view
on the essential functions of bone marrow
cells does not address the scientific data sup-
porting clinical use of ICBG in orthopedics,
which is for treatment of bone defects and not
for hematopoietic reconstitution.42

Angiogenic and vasculogenic
potential

In addition to hematopoiesis and
osteopoiesis, bone marrow cells are also active
in supporting the vasculature and differentiat-
ing into endothelial cells.43-47 Bone marrow
cells respond to wound healing via various sig-
naling pathways that lead to mobilization of
bone marrow EPCs and other cells involved in
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Figure 2. Comparison of harvest bone marrow aspirate cells (BMAC) to commercially
available mesenchymal stromal cells (MSCs). A,B) BMC sample culture compared with
control hMSC’s from known hMSC sample obtained from commercial lab; C,D) Cell
morphology changed rapidly when transferred to osteogenic differentiation medium
(ODM). Deposition of mineral evident by light microscopy confirmed cells retained
potential for osteoblastic differentiation; E,F) Mineral deposition is an indicator of dif-
ferentiation from the plural potent MSC toward osteogenic cells. Slides of MSC control
and BMC cells after 10 days in ODM and stained with Von Kossa silver stain.

Figure 3. Bone marrow cells are involved in wound healing. Bone marrow cells respond
to bone defects via the vasculature. The ischemia at the onset of the defect initiates the
healing cascade involving bone marrow cells active in the essential functions of
osteopoiesis and angiogenesis/vasculogenesis.
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the healing cascade. The typical course of
response to injury involves posttraumatic
ischemia and edema, local inflammation and
removal of damaged tissue via phagocytosis,
activation of cellular precursors, revasculariza-
tion of the traumatized region, extracellular
matrix as a substrate, increased numbers of
regenerating cells, differentiation of the
regenerating tissue, morphogenesis of regen-
erating tissue, and finally, functional restora-
tion.48 These naturally occurring processes
involve bone marrow cells. 

Bone marrow contains various progenitor
and endothelial cells that are incorporated into
sites of reduced vascularity to stimulate angio-
genesis and vasculogenesis.43-46,49,50 Within the
injury site, vascularization occurs through
local factors stimulating adjacent cells (angio-
genesis) and through bone marrow recruited
EPCs (vasculogenesis).51 Consequently,
enhancing angiogenesis and vasculogenesis is
another essential function of bone marrow
cells.48,52 To focus upon bone, fracture healing
relies upon angiogenesis and vasculogenesis
to facilitate callus formation and remodeling;
the harmatoma is inherently angiogenic in
composition (Figure 3).53 These processes
involve cells of the bone marrow and it is
known that circulating bone marrow
hematopoietic stem and progenitor cells differ-
entiate into endothelial cells at sites of vascu-
lar remodeling.43-45

All bone maintenance, formation, and heal-
ing is linked to vascular supply. Osteoblasts
and osteocytes must be within 0.1 mm of a vas-
cular structure to survive and function.54

Additionally, trabecular bone formation rates
have a positive correlation with blood vessel
area. Moreover, vascularity and bone are tight-
ly linked in the processes of endochondral
ossification, callus formation, and bone regen-
eration.55 Bone formation and repair develops
heavily upon vascular growth, involving
endothelial cells and bone marrow EPCs.56,57

Human CD34+ cells originating from the
bone marrow are involved in angiogenesis and
vasculogenesis. In a study investigating bone
marrow mononuclear cells (BMMNCs) and the
CD34+ cell fraction of the BMMNCs, it was
found that CD34+ cells significantly enhanced
neovascularization and bone repopulation,
confirming work that BMMNCs and CBMA
demonstrate enhanced neovascularization and
functional restoration of induced localized
ischemic injury.58,59 Blood vessel formation
occurs commonly in adults through bone mar-
row cells and is a major factor in regulating
bone healing and several other processes.43

The essential functions of bone marrow cells
must therefore also include enhanced angio-
genesis and vasculogenesis.

Rationale for treating osteonecrosis
of the femoral head with concen-

trated bone marrow aspirate
Treating bone healing disorders with bone

marrow is not a new therapy,60 nor is the
osteogenic nature of bone marrow new knowl-
edge.5 Phemister presented the idea of creep-
ing substitution in 1930 to describe old bone
being gradually absorbed and replaced by new
bone.61 Phemister demonstrated that when
there are limited osteogenic elements surviv-
ing about the periphery of the necrotic bone,
bone absorption may be greatly in excess of
bone formation resulting in cavitation.
Additionally, Phemister recognized the impor-
tance of vessels for the bone and demonstrated
that vessel injury may be the cause of some
cases of osteonecrosis of the femoral head
(ONFH). Vessel injury interferes with blood
supply, leading to massive osteonecrosis.
Treatment of ONFH has included core decom-
pression since the 1960s when core biopsies
were found to immediately reduce pain.62

Newer approaches may also include vascular-
ized grafting as a means of introducing vascu-
larity.63 These clinical approaches suggest that
improved vascularity may improve core decom-
pression outcomes. 

Work relating to Phemister from 342
patients with early stages of ONFH found that
common features of ONFH include i) reduction
in osteogenic progenitors, ii) increased apop-
tosis, and iii) altered intramedullary vasculari-
ty.64 The anatomical changes and cellular
mechanisms of note are increased apoptosis of
osteocytes and inadequate vessels.65 Non-trau-
matic ONFH continues to represent a signifi-
cant challenge in orthopedic surgery and cli-
maxes through the final common pathway of
decreased blood flow to the femoral head that
leads to ischemia and death of the bone.66 It
was concluded that core decompression should
be supplemented by CBMA to overcome these
cellular and vascular issues.64

The understanding of the onset of nontrau-
matic ONFH to be of cellular origin has been
formed gradually.67-71 Histologic examinations
of bone marrow at the site of ONFH demon-
strated the pathogenesis of necrosis of
hematopoietic cells, endothelial cells, and
lipocytes; osteocytes atrophy and die, and a
subsequent increase in fatty marrow water
content is detectable by magnetic resonance
imaging.66 ONFH represents a gradual degra-
dation of bone marrow; red marrow converts to
fatty marrow in the proximal femur and all cell
types of bone and marrow are affected.71 In
patients with ONFH, revascularization can
occur naturally after the bone dies.66,72 Bone
marrow cells induced efficient neovasculariza-
tion in rabbit femoral bone defects and
enhanced regeneration of the bone defects.50,58

Utilizing CBMA therapy, patients with ONFH
have been treated safely and efficacious-
ly.60,64,69,73-82 Bone marrow cells are naturally
engaged in the formation of new blood ves-

sels13,43-46,49,53,56,83,84 so that use of CBMA to
address reduced vascularity in ONFH also has
clinical utility. 

Discussion

CBMA is an autologous cell composition that
contains the nucleated cells found in bone
marrow. Because the process to produce CBMA
does not select any subpopulation of bone mar-
row cells, nor involves any culture expansion
steps, it is a total nucleated cell (TNC) compo-
sition. As such, CBMA retains its hematopoiet-
ic potential (Table 1). 

ICBG has three significant disadvantages
compared with CBMA.13 First, the process of
ICBG harvesting adds operative time, pain, and
blood loss; carries an increased risk of infec-
tion, cutaneous nerve damage, and local frac-
ture. Second, the amount of bone available is
limited and may be insufficient in many set-
tings. Finally, ICBG has biologic limitation as a
cellular graft because the metabolic demands
of the graft site often exceed the capacity of
the graft delivered since all cells greater than 1
to 2 mm of the graft surface die during trans-
plantation.85 CBMA overcomes the cellular lim-
itation of ICBG.27,86

CBMA results in significant reduction in
patient morbidity compared to ICBG because
CBMA is obtained through a simple aspiration
process rather than surgical resection of the
iliac crest to obtain bone and bone marrow and
to produce morsels for packing into a bone
defect.13,27,60,87 In contrast, CBMA requires only
bone marrow aspiration and centrifugation.88

It has been shown that CBMA and ICBG are
both osteogenic and osteoinductive.13 Both
ICBG and CBMA have been used clinically for
the non-hematopoietic essential functions of
the cells delivered.

To be regarded as an ATMP requires that
cells/tissues be substantially manipulated
and/or used for a purpose other than their nat-
ural essential function. Osteopoiesis and vas-
culogenesis have been shown to be natural
essential functions of bone marrow cells.
Therefore, in accordance with EU regulation
1394/2007, CBMA should be classified and reg-
ulated as a non-ATMP.

Conclusions

Since bone marrow cells have the natural
function of being involved in neovasculariza-
tion, it begs the question as to why in addition
to core decompression CBMA should be added
for treating ONFH. There are two important
reasons. 

In patients with ONFH, the marrow in the
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proximal femur has converted to fatty marrow,
unable to sustain the creeping substitution of
bone noted by Phemister and others. Because
CBMA is the cellular component of ICBG,
CBMA addresses the acellularity of the necrot-
ic zone.64

Moreover, there is a decrease in blood perfu-
sion in ONFH patients which seems to be the
major factor in the disease.89 It has been
shown that CBMA significantly improves per-
fusion in a murine model.59 Administration of
CBMA provides an autologous cellular aug-
mentation of the potential beneficial effects of
core decompression and involves whole bone
marrow as a composite of osteoprogenitor,
endothelial, and hematopoietic progenitor
cells in an environment supporting them in
normal physiologic conditions.73

The essential function and the mechanism
of action of the cell population in CBMA
includes more than hematopoietic reconstitu-
tion. Osteopoiesis is a critically important
essential function of bone marrow cells. The
scientific and clinical literature support the
conclusion that bone marrow cells naturally
involved in hematopoietic reconstitution are
also involved in osteopoiesis and angiogene-
sis/vasculogenesis. Additionally, in 2013,
EMA:CAT concluded that CBMA was a non-
ATMP for the treatment of osteonecrosis
because of three key points: i) non-mesenchy-
mal bone marrow stem/progenitor cells are
active in osteoblast formation, ii) bone marrow
hematopoietic stem/progenitor cells differenti-
ate in both hematopoietic and osteocytic path-
ways, and iii) certain stromal cells do not con-
tribute to hematopoietic reconstitution.90

CMBA is the cellular compartment of ICBG and
should be regulated in the same manner as
ICBG. As such, CBMA should remain classified
as a non-ATMP for the treatment of
osteonecrosis.
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