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Enhanced Southern Ocean marine productivity from fertilization by giant 

icebergs 

 

Luis P. A. M. Duprat, Grant R. Bigg* and David J. Wilton 

Department of Geography, University of Sheffield, Sheffield S10 2TN, U. K. 

Primary productivity has been shown to be enhanced within a few kilometres 

of icebergs in the Weddell Sea1,2 due to the input of terrigeneous nutrients and 

trace elements during melting. However, few studies in the Southern Ocean 

have investigated the influence of giant icebergs (those > 18 km in length) on 

marine primary production1,3.  Here we present an assessment of this 

productivity using ocean colour data from 175 images, associated with 17 

giant icebergs in the open ocean over the period 2003-2013. Our findings 

suggest the fertilizing influence of individual giant icebergs typically extends 

over a radius of at least 4-10 times their length, more than an order of 

magnitude larger area than found in previous studies restricted to sub-

kilometre scale icebergs2 or limited by ship-based surveys1. This suggests that 

up to a fifth of the Southern Ocean’s downward carbon flux originates with 

giant iceberg fertilization. Given the likely increase in giant iceberg calving this 

century, if the West Antarctic Ice Sheet has indeed passed its stable point4, 

this negative feedback on the carbon cycle may increase. 

The Southern Ocean is a significant sink in the ocean component of the global 

carbon cycle, contributing ~ 10% of the ocean�s total carbon sequestration through a 

mixture of chemical and biologically-driven processes5. However, its contribution is 



at a lower level than that of the smaller South Pacific and Indian Oceans5, due to its 

low concentration of dissolved iron, an important trace nutrient for primary 

production6. Atmospheric dust is a major background source of iron to the region7, 

but iron-rich sediment fluxes from islands8, continental shelves9, ice sheet 

meltwater10 and melting icebergs1 are known to be other, locally much more 

important, sources of iron. There are a few large-scale estimates of the contribution 

of icebergs to the Southern Ocean iron flux, derived from modelling studies of typical 

sub-kilometre sized icebergs11, 12, scaling up of observational studies13, 14 or remote 

sensing studies2. However, these assume iceberg inputs are well represented by 

those from the smaller, sub-kilometre, peak in the very bimodal size distribution15. In 

fact about half the total iceberg discharge volume is made up of giant icebergs15 - 

those exceeding 18 km in horizontal dimension - and there have currently only been 

two observational studies of the phytoplankton blooms close to individual giant 

icebergs, both in conditions within or near sea-ice cover in the Weddell Sea1, 3. Such 

areas may be subject to enhanced productivity due to the impact of sea-ice 

fertilization16. While the calving of giant icebergs is very episodic15, they derive from 

a range of geographical and geological environments around Antarctica, and thus 

likely have different iron and nutrient characteristics. Several dozen such icebergs 

are present in the Southern Ocean at any one time15, and they can survive for many 

years. Even when in areas of open water giant icebergs can survive for longer than a 

year17. Here we examine the chlorophyll signature from a range of giant icebergs in 

the open Southern Ocean using remote sensing, to show that ocean fertilization from 

such icebergs is much larger than previously suspected. 

Chlorophyll levels are well known to be raised near icebergs1, 2, 18. This derives from 

the meltwater plumes from icebergs containing significant concentrations of iron, but 



also a range of other nutrients14. As the Southern Ocean is a High Nutrient Low 

Chlorophyll (HNLC) region6, it is the bioavailable iron known to be in nanoparticle 

aggregates of ferrihydrite and goethite in iceberg sediments13 that is the key nutrient 

within this meltwater. Dissolution of these particles leads to enriched concentrations 

of dissolved iron in the meltwater plume at levels 10-1000 times those due to 

atmospheric dust19. Ship-based studies have demonstrated that, for an iceberg of 

maximum horizontal size Li, chlorophyll levels are enhanced downstream over a 

distance of ~ Li
20. Similarly, it has been shown using SeaWifs ocean colour that the 

probability of chlorophyll being enhanced 6 days after an iceberg with a Li of ~ 1 km 

has passed over a location is a third higher than from chance alone2. However, the 

inherent practical limitations of these studies mean that an accurate picture of the 

chlorophyll enhancement in waters surrounding a giant iceberg is not known.  

The potential for major enhanced production around giant icebergs is shown in 

Figure 1, where chlorophyll levels in excess of 10 times background extend in 

plumes at least 3-4Li both upstream and downstream of iceberg C16. Examining the 

chlorophyll signal of a range of giant icebergs calved from around Antarctica over a 

10 year period (see Methods and Supplementary Table 1) it is found that such an 

enhancement is ubiquitous and long-lasting. A chlorophyll enhancement of a factor 

of 10 is found at least a month following passage of a giant iceberg (Figure 2a). This 

order of magnitude enhancement peaks 50-200 km from the giant iceberg, but some 

enhancement typically extends for over 500 km from the berg (Figure 2b), and 

occasionally for over 1000 km. Note that Figure 2b also implies that measurements 

taken near a giant iceberg, as has normally been necessary in field campaigns, will 

significantly underestimate the fertilization peak. This lower production near the 

iceberg, and the unexpected enhancement of production ahead of the iceberg, are 



likely due to the buoyant plume associated with the basal melting of the iceberg. The 

buoyant meltwater plume takes a little time to rise to the surface ahead of the 

iceberg20. This displacement, coupled with the need for time for the enhanced 

production to develop and possible increased phytoplankton predation close to the 

iceberg20, means that the fertilization near the iceberg is lower than further afield. It 

then spreads out near the surface, transporting dissolved material, allowing this 

fertilizing material to move ahead of the iceberg driven by the surface ocean current. 

Figure 1 shows that this forward fertilization can be substantial.  

There is no statistically significant difference between the magnitude of fertilization 

effects in spring and summer. Similarly, there is no statistically significant difference 

between the origins of giant icebergs in their fertilization effect a month after passage 

(Figure 2c). However, while there is a large degree of variability in the short-term 

fertilization effect of giant icebergs from sector D of the Antarctic (0-90oE), giant 

bergs from sectors B and C (90-180oW and 90-180oE respectively) have only half the 

impact of those from sector A (0-90oW). These differences correlate very well with 

the large-scale geology of Antarctica. Almost all of coastal East Antarctica (sectors C 

and D) is composed of PreCambrian high grade metamorphic rock from granitic 

facies21, which will be less easily weathered than the low grade Mesozoic 

metasedimentary and metavolcanic rocks of the Antarctica Peninsula (from which 

most of the sector A icebergs derive15). The exception to the East Antarctic geology 

is that the metamorphic grade of rock lowers poleward into the Amery Basin (~ 

70oE)20, a major source of giant icebergs from sector D, consistent with a range of 

levels of ice-rafted debris embedded within sector D�s icebergs. It is also worth 

noting that giant icebergs from sectors B and C often travel further before reaching 

the open sea15, and thus being only then able to be more easily examined by ocean 



colour instruments, meaning that their sediment load is likely to be depleted before 

they reach open water. 

Noting these major increases in estimated productivity due to giant icebergs, it is 

pertinent to examine their implications for estimates of the contribution of icebergs in 

the Southern Ocean to global biogeochemical cycles.  Firstly, it is known that there is 

indeed an increase in the net flux of carbon to the sea floor near icebergs. A study of 

carbon export using Lagrangian Sediment Traps18 showed a net carbon export past 

600 m depth of 5.6 mg m-2 day-1 within 30 km of iceberg C18a, compared to a 

background of 2.5 mg m-2 day-1. Given that the peak enhancement distance from our 

analysis (Figure 2b) is at 100 km, but the Traps used in the ship survey18 were within 

30 km of C18a, the estimate above of 5.6 mg m-2 day-1 is likely to be an 

underestimate of the peak flux. However, it gives us a starting point for a 

conservative global calculation of the iceberg contribution to the carbon cycle. 

There have been two full biogeochemical model simulations of the impact of iceberg 

melting on production in the Southern Ocean9, 11. Both suggest that coastal sediment 

fluxes are the major sources of iron fertilization in the Southern Ocean, leading to up 

to 75% of the total productivity. Both also have ~ 10% of the productivity deriving 

from icebergs. However, they were required to make assumptions about the mean 

bioavailable iron, only including dissolved iron and neglecting the nanoparticulate 

iron attached to sediments13, and that this is spread evenly according to model 

estimates of meltwater flux15. Given our study�s implications of an area of influence 

for giant icebergs of more than an order of magnitude above that of �typical� 

icebergs, and that approximately half of the iceberg discharge is as giant icebergs15, 

with several dozen giant icebergs present in the Southern Ocean at any one time4, 

these model calculations of iceberg productivity are likely to be a significant 



underestimate. This conclusion is supported by another modelling study which 

concentrated on glacial meltwater and higher iceberg fluxes, but did not include shelf 

sediment iron fluxes12.  

A rough estimate of this giant iceberg carbon export is 0.012-0.040 Gt yr-1 (see 

Methods), approaching 10-20% of the estimated Southern Ocean total carbon 

export5. Our analysis therefore suggests that the total impact of icebergs on the 

carbon cycle in the Southern Ocean has been under-estimated, and may constitute 

up to a fifth of the total carbon export of that ocean.  

While it is difficult to discern net trends over time in the very episodic calving of giant 

icebergs15, satellite gravity measurements suggest that there has been a 5% 

increase in ice discharge from Antarctica over the last two decades22. Recently, 

concern over the stability of the West Antarctic Ice Sheet has arisen4, 23, with 

implications for more ice discharge in the future and thus carbon drawdown through 

fertilization. Note that even an increase in regional sediment-rich ice sheet meltwater 

into coastal waters can lead to enhanced fertilization10, 12, 24, although that associated 

with giant iceberg melting may be even greater (Figure 3). The future may therefore 

see an increase in Southern Ocean carbon sequestration through this iceberg 

fertilization mechanism, acting as a secondary negative feedback on climate change. 

 

Methods 

The giant iceberg tracks used for the main analysis come from the Brigham Young 

University Center for Remote Sensing Iceberg Tracking database 

(www.scp.byu.edu/data/iceberg/database1.html) which uses satellite scatterometer 



backscatter to identify giant icebergs26. The resolution achievable by these satellite 

sensors is 4-5 km26, but only those icebergs meeting the giant iceberg definition of 

having an Li > 18 km enter the database from which we selected the icebergs to be 

analysed. All icebergs examined are therefore well resolved.  

Once the positions of giant icebergs were obtained, the Level 1 and 2 MODIS ocean 

colour images were exported from oceancolor.gsfc.nasa.gov using SeaDAS software 

v7.0.2. Chlorophyll concentrations were analysed from eleven years (2003-2013) for 

65 positions during a one-month period 20 days prior to a giant iceberg passage, 63 

positions for the seven-day period post-passage, and 47 values for the seven-day 

period following the iceberg passage. These came from 17 giant iceberg tracks (see 

Supplementary Table S1). The number of positions for icebergs from the A-D sectors 

were 22, 16, 15 and 10 respectively. The positions were taken from sea-ice free 

areas, restricting the number of possible images analysed from sectors B-D, and 

were almost all from equatorward of 60oS. Only portions of tracks were chosen 

where it was clear that the icebergs were not grounded, as can be seen from the 

sequence of positions in Supplementary Table S1. Note also that the one iceberg, 

C19a, which was followed both before and after austral winter (2008) remained in 

open water throughout the entire time between its first and last used image27.The 

mean chlorophyll concentration was obtained from a 15 km radius centred on the 

iceberg�s geographical coordinates using the geometry mask tool from the SeaDAS 

software. The significant time difference between the before and after passage 

values was used because of the presence of major plumes both upstream and 

downstream from a giant iceberg�s position (Figure 1). 

A selection of 20 images (Supplementary Table S2 and Supplementary Methods) 

where a clear and delimited plume of increased chlorophyll could be visually 



associated with the iceberg was chosen to draw a chlorophyll concentration profile 

with respect to distance from the iceberg (Figure 2b). A random line was drawn from 

the iceberg border towards the background value outside the plume, crossing the 

plume along its longest axis. 

There are clear limitations to the study. The number of images obtained were 

restricted due to the high degree of cloudiness of the Southern Ocean, and the 

limited number of sun-lit months further south. A number of the images are likely to 

be affected by other iron sources, such as coastal sediment fluxes from South 

Georgia28, 29, although this was minimized as much as possible. Another limitation is 

that MODIS tends to overestimate chlorophyll concentrations that are low, 

minimizing the impact found. However, overall, MODIS�s error accuracy for surface 

layer measurements in depths > 20 m is close to the instrument 35% target error30. A 

final limitation is that deep chlorophyll concentrations may occasionally be disturbed 

by passage of an iceberg, leading to an artificially enhanced chlorophyll level2. 

To estimate the additional carbon export through the increased area of influence of 

giant icebergs found in this study the following calculations were made. The 

observed 2.5 mg m-2 day-1 background export18 was assumed to relate to the far-

field chlorophyll concentration of Figure 2b. From Figure 2, this was assumed to be 

increased to 25 mg m-2 day-1 over an area of ʌ(4LI)
2, or 12.5 mg m-2 day-1 over an 

area of ʌ(10LI)
2 where a typical giant iceberg LI ~ 30 km, and there are typical 30 

such icebergs in the Southern Ocean15, 26.  This gives a total giant iceberg export of 

0.012-0.040 Gt yr-1. 

The images from Figure 3 were obtained from analyses and visualizations produced 

with the Giovanni online data system, developed and maintained by NASA GES 



DISC (gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=ocean_month). 

The track of iceberg B31 in Figure 3 comes from using a range of sources over 

January-March 2014: Terra and Aqua satellite MODIS reflectance, available from 

earthdata.nasa.gov/labs/worldview ; and SAR data from the TerraSAR-X and 

Radarsat2 satellites. 
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Figure 1 | Chlorophyll-a concentration on 12 January 2013, from MODIS Aqua 

satellite. Giant iceberg C16 is visible in the centre of the picture, with enhanced 

levels spreading SW and NE from the iceberg. Greyscale areas show cloud 

cover. 

 

 

 

 

 



 

Figure 2 | Mean chlorophyll level associated with the passage of a giant 

iceberg. a) Mean chlorophyll level before and after passage; b) at a distance 

from such an iceberg; and c) sector dependence of mean chlorophyll before and 

after passage (A: ---; B: - - -; C: ---; D: ---). The levels are in mgm-3 and 95% 

confidence intervals are shown.  

 

 



 

Figure 3 | Chlorophyll concentration anomaly in the Pine Island Bay region of 

West Antarctica related to passage of giant iceberg, B31. Means for Jan-Mar of 

a) 2011 and b) 2014, from the MODIS Aqua satellite. The units are in mg m-3, 

relative to the Jan-Mar mean over 2003-15. Note the increased productivity offshore 

in 2014, downstream of B3125. The path of B31 over those 3 months is shown by the 

black line in b). White areas over the sea were covered by cloud for most of the 

respective 3 months.  


