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Abstract

Automatic Term Extraction (ATE) or Recognition (ATR) is a fundamental processing step preceding many complex knowledge

engineering tasks. However, few methods have been implemented as public tools and in particular, available as open-source freeware.

Further, little effort is made to develop an adaptable and scalable framework that enables customization, development, and comparison

of algorithms under a uniform environment. This paper introduces JATE 2.0, a complete remake of the free Java Automatic Term

Extraction Toolkit (Zhang et al., 2008) delivering new features including: (1) highly modular, adaptable and scalable ATE thanks to

integration with Apache Solr, the open source free-text indexing and search platform; (2) an extended collection of state-of-the-art

algorithms. We carry out experiments on two well-known benchmarking datasets and compare the algorithms along the dimensions of

effectiveness (precision) and efficiency (speed and memory consumption). To the best of our knowledge, this is by far the only free ATE

library offering a flexible architecture and the most comprehensive collection of algorithms.

Keywords: term extraction, term recognition, NLP, text mining, Solr, search, indexing

1. Introduction

Automatic Term Extraction (or Recognition) is an impor-

tant Natural Language Processing (NLP) task that deals

with the extraction of terminologies from domain-specific

textual corpora. ATE is widely used by both industries

and researchers in many complex tasks, such as Informa-

tion Retrieval (IR), machine translation, ontology engineer-

ing and text summarization (Bowker, 2003; Brewster et

al., 2007; Maynard et al., 2007). Over the years, there

has been constant effort on researching new algorithms,

adapting to different domains and/or languages, and creat-

ing benchmarking datasets (Ananiadou, 1994; Church and

Gale, 1995; Ahmad et al., 1999; Frantzi et al., 2000; Park

et al., 2002; Matsuo and Ishizuka, 2003; Sclano and Ve-

lardi, 2007; Rose et al., 2010; Spasić et al., 2013; Zadeh

and Handschuh, 2014).

Given the fundamental role of ATE in many tasks, a real

benefit to the community would be releasing the tools to

facilitate the development of downstream applications, also

encouraging code-reuse, comparative studies, and fostering

further research. Unfortunately, effort in this direction has

been extremely limited. First, only very few tools have been

published with readily available source code (Spasić et al.,

2013) and some are proprietary (labs.translated.net, 2015;

Yahoo!, 2015), or no longer maintained (Sclano and Ve-

lardi, 2007)1. Second, different tools have been developed

under different scenarios and evaluated in different domains

using proprietary language resources, making it difficult for

comparison. Third, it is unclear whether and how well these

tools can adapt to different domain tasks and scale up to

large data.

To the best of our knowledge, the only effort towards ad-

dressing these issues is the Java Automatic Term Extrac-

tion Toolkit (JATE)2, where we originally implemented

five state-of-the-art algorithms under a uniform framework

(Zhang et al., 2008). This work makes one step further

1Original link: http://lcl2.di.uniroma1.it/
2https://code.google.com/p/jatetoolkit.

Google Code has been shut down since Jan 2016.

by completely re-designing and re-implementing JATE to

fulfill three goals: adaptability, scalability, and extended

collections of algorithms. The new library, named JATE

2.03, is built on the Apache Solr4 free-text indexing and

search platform and can be either used as a separate mod-

ule, or a Solr plugin during document processing to en-

rich the indexed documents with terms. JATE 2.0 deliv-

ers domain-specific adaptability and scalability by seam-

lessly integrating with the Solr text analysis capability in

the form of ‘analyzers’5, allowing users to directly exploit

the highly modular and scalable Solr text analysis to facili-

tate term extraction for large data from various content for-

mats. Last but not least, JATE 2.0 expands its collection

of state-of-the-art algorithms6 to double that in the origi-

nal JATE release. We also evaluate these algorithms under

uniform settings on two publicly available benchmarking

datasets. Released as open source software, we believe that

JATE 2.0 offers significant value to both researchers and

practitioners.

The remainder of this paper is structured as follows. Sec-

tion 2. discusses related work. Section 3. describes JATE

2.0 in details. Section 5. describes experiments and dis-

cusses results. Section 6. concludes this paper.

2. Related Work

We describe related work from three persectives: ATE

methods in general, ATE tools and software, and text min-

ing plugins based on Solr.

ATE methods typically start with linguistic processors

as the first stage to extract candidate terms; followed by

3https://github.com/ziqizhang/jate
4http://lucene.apache.org/solr/
5https://cwiki.apache.org/confluence/

display/solr/Analyzers
6By this we mean the mathematical formulation of term candi-

date scores. We do not claim identical replication of state-of-the-

art methods, as they often differ in pre- and post-processing, such

as term candidate generation, term variant handling and the use of

dictionary.

2262

http://lcl2.di.uniroma1.it/
https://code.google.com/p/jatetoolkit
https://github.com/ziqizhang/jate
http://lucene.apache.org/solr/
https://cwiki.apache.org/confluence/display/solr/Analyzers
https://cwiki.apache.org/confluence/display/solr/Analyzers


statistics-based term ranking algorithms to perform can-

didate filtering. Linguistic processors are domain spe-

cific, and designed to capture term formation and collo-

cation patterns. They often take two forms: ‘closed fil-

ters’ (Arora et al., 2014) focus on precision and are usu-

ally restricted to nouns or noun sequences. ‘Open filters’

(Frantzi et al., 2000) are more permissive and often al-

low adjectives, adverbs, etc. For both, widely used tech-

niques include Part-of-Speech (PoS) tag sequence match-

ing, N-gram extraction, Noun Phrase (NP) Chunking, and

dictionary lookup. The selection of linguistic processors is

often domain-specific and important for the trade-off be-

tween precision and recall. The ranking algorithms are of-

ten based on: ‘unithood’ indicating the collocation strength

of units that comprise a single term (Matsuo and Ishizuka,

2003); and ‘termhood’ indicating the association strength

of a term to domain concepts (Ahmad et al., 1999). Most

methods combine both termhood and unithood measures

(Ananiadou, 1994; Frantzi et al., 2000; Park et al., 2002;

Sclano and Velardi, 2007; Spasić et al., 2013). Two unique

features of JATE 2.0 are (1) customization of linguistic pro-

cessors of the two forms hence making it adaptable to many

domains and languages, and (2) a wide selection of imple-

mented ranking algorithms, which are not available in any

other tools.

Existing ATE tools and software are extremely limited

for several reasons. First, many are proprietary soft-

ware (labs.translated.net, 2015), quota-limited (e.g., Open-

Calais7), or restricted to academic usage only (e.g., Ter-

Mine8). Second, all tools, including the original JATE

(Zhang et al., 2008), are built in a monolithic architec-

ture which allows very limited customization and scala-

bility (Spasić et al., 2013). Third, most offer very limited

(typically a single choice) configurability, e.g., in terms of

term candidate extraction and/or ranking algorithms (e.g.,

TermRaider (Maynard et al., 2008), TOPIA9, and Flex-

iTerm (Spasić et al., 2013). JATE 2.0 is a free, open-source

library. It is highly modular, allowing customization and

configuration of many components. Meanwhile, to our best

knowledge, no available ATE tools support automatic in-

dexing.

Solr plugins for text mining Solr is an open source en-

terprise search platform written in Java. It is highly mod-

ular, customizable, and scalable, hence widely used as an

industry standard. A core component of Solr is its power-

ful, extensible text processing library covering a wide range

of functionality and languages. Many text mining and NLP

tools have integrated with Solr to benefit from these fea-

tures as well as contributing additional support for doc-

ument indexing (e.g., OpenNLP plugins10, SolrTextTag-

ger11, and UIMA12). However, no plugin is available for

7http://new.opencalais.com/
8http://www.nactem.ac.uk/software/

termine/
9https://pypi.python.org/pypi/topia.

termextract
10https://wiki.apache.org/solr/OpenNLP
11https://github.com/OpenSextant/

SolrTextTagger
12https://uima.apache.org

ATE.

3. JATE 2.0 Architecture

Figure 1 shows the general architecture of JATE 2.0 and

its workflow, which consists of four phases: (1) data pre-

processing; (2) term candidate extraction and indexing; (3)

candidate scoring and filtering and (4) final term indexing

and export.

Data pre-processing (Section 3.1.) parses input docu-

ments to raw text content and performs text normaliza-

tion in order to reduce ‘noise’ in irregular data. The pre-

processed text content then passes through the candidate

extraction (Section 3.2.) component that extracts and nor-

malizes term candidates from each document. Candidate

extraction and data pre-processing are embedded as part

of the Solr document indexing process, largely realized by

Solr’s ‘analyzers’. An analyzer is composed of a series

of processors (‘tokenizers’ and ‘filters’) to form a pipeline,

or an analysis ‘chain’ that examines the text content from

each document, generates a token stream and records sta-

tistical information. Solr already implements a very large

text processing library for this purpose. JATE 2.0 further

extends these. Depending on individual needs, users may

assemble customized analyzers for term candidate genera-

tion. Defining analyzers is achieved by configuration in the

Solr schema, such as that shown in Figure 2.

Next, the candidates are processed by the subsequent filter-

ing component (Section 3.3.), where different ATE algo-

rithms can be configured to score and rank the candidates,

and making the final selection. The implementation of the

algorithms are largely parallelized. The resulting terms can

either be exported for further validation, or written back to

the index to annotate documents.

JATE 2.0 can be run in two modes: (1) as a separate mod-

ule to extract terms from a corpus using an embedded Solr

instance (Section 4.1.), or (2) as a Solr plugin that performs

ATE as part of the document indexing process to anno-

tate documents with domain-specific terminologies (Sec-

tion 4.2.). Both modes undergo the same workflow de-

scribed above.

JATE 2.0 offers adaptability and scalability thanks to its

seamless integration with Solr and parallelized implemen-

tation. Access to Solr’s very large collection of multi-

lingual text processing libraries that can be configured in

a plug-and-play way enables JATE 2.0 to be adapted to dif-

ferent languages, document formats, and domains. The rich

collection of algorithms also give users options to better

tailor the tool to specific use cases. Parallelization enables

JATE 2.0 to scale up to large datasets. Parallelization for

term candidate generation can be achieved via Solr’s dis-

tributed indexing capability under SolrCloud13. Users sim-

ply follow Solr’s guide on configuring distributed indexing.

Parallelization for scoring and ranking algorithms comes

as standard in JATE 2.0 and is also configurable. Detailed

guidelines on defining analyzers for ATE and configura-

tions can be found on the JATE 2.0 homepage.

13https://cwiki.apache.org/confluence/

display/solr/SolrCloud
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Figure 1: General Architecture of JATE 2.0

3.1. Data pre-processing

With the standard JATE 2.0 configuration, data pre-

processing begins with Solr Content Extraction Library

(also known as SolrCell14) to extract textual content from

files. It integrates the popular Apache Tika framework15

that supports detecting and extracting metadata and text

from a large range of file formats such as plain text, HTML,

PDF, and Microsoft Office. To use this, users simply con-

figure an instance of ExtractingRequestHandler16

for their data in Solr.

To support multi-lingual documents, users may

also use Solr’s capability for detecting languages

of texts in documents and map text to language-

specific analyzers for indexing using the langid

UpdateRequestProcessor17.

Next, a recommended practice for pre-processing irregu-

lar textual data (commonly found in corporate datasets)

is applying the Solr char filter component18 to per-

form character-level text normalization. For example,

HTMLStripCharFilterFactory detects HTML en-

tities (e.g., ‘&#65;’, ‘&nbsp;’) with corresponding charac-

ters. This can reduce errors in downstream processors (e.g.,

PoS tagger) in the analyzer. This can be configured as part

of the analyzer in the Solr schema, usually placed before

14https://cwiki.apache.org/confluence/

display/solr/Uploading+Data+with+Solr+Cell+

using+Apache+Tika
15https://tika.apache.org
16https://wiki.apache.org/solr/

ExtractingRequestHandler
17https://cwiki.apache.org/confluence/

display/solr/Detecting+Languages+During+

Indexing
18https://cwiki.apache.org/confluence/

display/solr/CharFilterFactories

tokenization, such as line 3 of schema.xml shown in Figure

2.

3.2. Candidate Extraction

Term candidate extraction is realized as part of the Solr in-

dexing process. A dedicated ‘field’19 is defined within the

Solr indexing schema to hold candidates for each document

(candidate field). The field is bound to a ‘fieldType’, which

uses a customized analyzer to break content into term can-

didates and normalize them to conflate the variants that are

dispersed throughout the corpus. The Solr indexing pro-

cess also generates basic statistical information about can-

didates, such as a candidate’s frequency within each docu-

ment, and the number of documents it appears in20.

The analyzer is highly customizable and adaptable. All ex-

isting Solr text analysis libraries can be used, such as tok-

enization, case folding, stop words removal, token N-gram

extraction, stemming, etc. It is also easy to implement new

components to replace or complement existing ones in a

plug-and-play way. Currently, Solr 5.3 supports nearly 20

implementations of tokenization and over 100 text normal-

ization and filtering methods21, covering a wide range of

languages and use cases. Thus by selecting different com-

ponents and assembling them in different orders, one can

create different analyzers to achieve different extraction and

normalization results.

To support ATE, JATE 2.0 extends Solr’s text analysis li-

braries by supporting three types of linguistic filters for

term candidate extraction. These include: (1) a PoS pattern

based chunker that extracts candidates based on user spec-

ified patterns (e.g., line 9 of schema.xml in Figure 2); (2)

a token N-gram extractor that extends the built-in one; (3)

a noun phrase chunker. All of these are implemented with

the capability to normalize noisy terms, such as removing

leading and trailing stop words, and non-alphanumeric to-

kens. In addition, JATE 2.0 also implements an English

lemmatizer, which is a recommended replacement of stem-

mers that can sometimes be too aggressive for ATE. These

offer great flexibility enabling almost any customized term

candidate extraction. Figure 2 shows a standard configu-

ration of an text analyzer for PoS pattern based candidate

extraction for English.

3.3. Filtering

Extracted term candidates are further processed to make a

final decision to separate terms from non-terms.

3.3.1. Pre-filtering

It is often a common practice to apply a filtering process to

term candidates to reduce both noise (e.g., due to irregular

textual data or erroneous PoS tagging) and computation be-

fore the subsequent step of term scoring and ranking. The

19https://cwiki.apache.org/confluence/

display/solr/Solr+Glossary
20For practical reasons, we rely on a separate field that indexes

the same content as token N-grams and stored term vectors which

provides the lookup of statistics about term candidates. Details on

this can be found on the JATE website and Solr documentation for

Inverted Index.
21See Solr API documentation.
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Figure 2: Example of PoS pattern based candidate extraction

following strategies have been implemented in JATE 2.0

and can be configured according to user needs to balance

precision and recall.

Minimal and maximal character length restricts candi-

dates to a fixed range of character length. Minimal and

maximal token number requires a valid candidate to con-

tain certain number of tokens (e.g., to limit multi-word ex-

pressions). Minimal stop words removal removes lead-

ing and/or trailing stop words in a multi-word expression

(e.g.,‘the cat’ becomes ‘cat’, but ‘Tower of London’ re-

mains intact). All these are implemented as part of the

three term candidate extraction methods described before

and can be configured in the analyzer.

Frequency threshold allows candidates to be filtered by a

minimum total frequency in the corpus. This is often used

in typical ATE methods, and is configurable via individual

scoring and ranking algorithms that follow.

3.3.2. Scoring and ranking

In this step, term candidates that pass the pre-filter are

scored and ranked. Their basic statistical information is

gathered from the Solr index, to create complex features

required by different algorithms.

JATE 2.0 has implemented 10 algorithms for scoring can-

didates, listed in Table 1. TTF is the total frequency of a

candidate in the corpus. It’s usage in ATE was firstly docu-

mented in (Justeson and Katz, 1995). ATTF divides TTF by

the number of documents a candidate appears in. TTF-IDF

adapts the classic document-specific TF-IDF used in IR to

work at corpus level, by replacing TF with TTF.

RIDF was initially proposed by (Church and Gale, 1995)

as an enhancement to IDF to identify keywords in a doc-

ument collection. It measures the deviation of the actual

IDF score of a word from its ‘expected’ IDF score, which

is predicted based on a Poisson distribution. The hypothe-

sis is based on the fact that Poisson model fits poorly with

such keywords. Thus a prediction of IDF based on Poisson

can deviate from its actual IDF observed based on a cor-

pus. Empirically, it is shown that all words have real IDF

scores that deviate from the expected value under a Poisson

distribution. However, keywords tend to have larger devi-

ations than non-keywords. We adapt it to work with term

candidates that can be either single words or multi-word

expressions.

CValue observes that real terms in technical domains are

often long, multi-word expressions and usually not nested

in other terms (i.e., as part of the longer terms). Frequency-

based methods are not effective for such terms as (1) nested

term candidates will have at least the same and often higher

frequency, and (2) the fact that a longer string appears n

times is a lot more important than that of a shorter string

appearing n times. Thus CValue computes a score that is

based on the frequency of a candidate and its length, then

adjusted by the frequency of longer candidates that contain

it.

Similarly, RAKE is designed to favour longer multi-word

expressions. It firstly computes a score for individual words

based on two components: one that favours words oc-

curring often and in longer term candidates, and one that

favours words occurring frequently regardless of the words

which they co-occur with. Then it adds up the scores of

composing words for a candidate.

χ2 promotes term candidates that co-occur very often with

‘frequent’ candidates in the corpus. First, candidates are

ranked by frequency in the corpus and a subset (typically

top n%) is selected - to be called ‘frequent terms’. Next,

candidates are scored based on the degree to which their

co-occurrence with these frequent terms are biased. These

biases can be due to semantic, lexical, or other relations of

two terms. Thus, a candidate showing strong co-occurrence

biases with frequent terms may have an important mean-

ing. To evaluate the statistical significance of the biases,

χ2 is used. For each candidate, co-occurrence frequency

with the frequent terms is regarded as a sample value. The

null hypothesis that we expect to reject is that ‘occurrence

of a candidate is independent from occurrence of frequent
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Table 1: ATE algorithms implemented in JATE 2.0
Name Full name Ref.

TTF Term Total

Frequency

(Justeson and Katz, 1995),

FiveFilters.org

ATTF Average TTF -

TTF-IDF TTF and Inverse

Doc Frequency

-

RIDF Residual IDF (Church and Gale, 1995)

CValue C-Value (Ananiadou, 1994)

χ
2 Chi-Square (Matsuo and Ishizuka, 2003)

RAKE Rapid Keyword

Extraction

(Rose et al., 2010)

Weirdness Weirdness (Ahmad et al., 1999)

GlossEx Glossry Extraction (Park et al., 2002)

TermEx Term Extraction (Sclano and Velardi, 2007)

terms’.

Both RAKE and χ2 were initially developed for extract-

ing document-specific keywords. We adapt them for

ATE from document collections. This is done by replac-

ing document-level frequency with corpus-level frequency,

wherever needed.

Weirdness is a contrastive approach (Drouin, 2003) which

is particularly interesting when trying to identify low-

frequency terms. The method compares normalized fre-

quency of a term candidate in a domain-specific corpus

with a reference corpus, such as the general-purpose British

National Corpus22. The idea is that candidates appearing

more often in the target corpus are more specific to that

corpus and therefore, more likely to be real terms. To cope

with out-of-vocabulary candidates, we modify this by tak-

ing the sum of the Weirdness scores of composing words

for a candidate.

Both GlossEx and TermEx extend Weirdness. GlossEx lin-

early combines ‘domain specificity’, which normalizes the

Weirdness score by the length (number of words) of a term

candidate, with ‘term cohesion’ that measures the degree to

which the composing words tend to occur together as a can-

didate other than appearing individually. This is computed

based on comparing the frequency of a candidate against its

composing words. TermEx, in a very similar form, further

extends GlossEx by linearly combining a third component

that promotes candidates with an even probability distribu-

tion across the documents in the corpus (in an analogy, the

candidate ‘gains consensus’ among the documents).

Essentially both GlossEx and TermEx combine termhood

with unithood, which exploits a reference corpus. For these

we introduce a scalar to balance the contribution of unit-

hood, which tends to dominate the final score in case of

largely disproportionate sizes of the domain and reference

corpora (e.g., orders of magnitude difference). The scalar

adjusts the normalized frequency of words in both the tar-

get and reference corpora to be in the same orders of mag-

nitude23.

22http://www.natcorp.ox.ac.uk
23Details can be found in the implementation of the two algo-

rithms in JATE 2.0.

3.3.3. Threshold cutoff

Next, a cutoff decision is to be made to separate real terms

from non-terms based on their scores. Three options are

supported: (1) hard threshold, where term candidates with

scores no less than the threshold are chosen; (2) top K,

where top ranked K candidates are chosen; (3) and top K%,

where the top ranked K percentage of candidates are cho-

sen.

4. Using JATE 2.0 in Two Modes

4.1. Embedded mode

The embedded mode is recommended when users need a

list of domain-specific terms from a corpus to be used in

subsequent knowledge engineering tasks. Users configure

a Solr instance and in particular, a text analysis chain that

defines how term candidates are extracted and normalized.

The Solr instance is instantiated as an embedded24 module

that interacts with other components. Users then explicitly

start an indexing process on a corpus to trigger term candi-

date extraction, then use specific ATE utility classes25, each

wrapping an individual ATE algorithm, to perform candi-

date scoring, ranking, filtering and export.

4.2. Plugin mode

The plugin mode is recommended when users need to in-

dex new or enrich existing index using extracted terms,

which can, e.g., support faceted search. ATE is per-

formed as a Solr plugin. A SolrRequestHandler 26

is implemented so that term extraction can be triggered by

HTTP request. Users configure their Solr instance in the

same way as above, then start the instance as a back-end

server. To trigger ATE, users send an HTTP request to the

SolrRequestHandler, passing parameters specifying

the input data and the ATE algorithms. Candidate extrac-

tion is optional if the process is performed with document

indexing. ATE then begins and when finished, updates doc-

uments in the index with extracted terms.

Figure 3: Term Extraction by HTTP request (Plugin mode)

24https://wiki.apache.org/solr/

EmbeddedSolr
25See details in the app package of JATE 2.0
26https://wiki.apache.org/solr/

SolrRequestHandler
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5. Experiment

We evaluate JATE 2.0 on two datasets, the GENIA dataset

(Kim et al., 2003), a semantically annotated corpus for bio-

textmining previously used by (Zhang et al., 2008); and

the ACL RD-TEC dataset (Zadeh and Handschuh, 2014),

containing publications in the domain of computational lin-

guistics and a list of manually annotated domain-specific

terms.

GENIA contains 1,999 Medline abstracts, selected using a

PubMed query for the terms ‘human’, ‘blood cells’, and

‘transcription factors’. The corpus is annotated with var-

ious levels of linguistic and semantic information. We

extract any text annotated as ‘cons’ (concept) to compile

a gold standard list of terms. ACL RD-TEC contains

over 10,900 scientific publications. In (Zadeh and Hand-

schuh, 2014), the corpus is automatically segmented and

PoS tagged. Candidate terms are extracted by applying

a list of patterns based on PoS sequence. These are then

ranked by several ATE algorithms, and the top set of over

82,000 candidates are manually annotated as valid or in-

valid. We use the valid candidates as gold standard terms.

We notice three different versions of corpus available27:

one only contains the sentences where at least one of the

annotated candidate terms must be present (under ‘anno-

tation’), one contains complete raw text files in XML for-

mat (under ‘cleansed text’), and one contains plain text files

from the ACL ARC (under ‘external resource’). We use the

XML version and only extract content from ‘<title>’ and

‘<paragraph>’ elements.

We ran all experiments on a server with 16 CPUs. All algo-

rithms follow the same candidate extraction process, unless

otherwise noted. Detailed configurations are as follows:

• three different analyzers have been tested, each using

PoS sequence pattern based (PoS based) , noun phrase

chunking based (NP Chunking based), and the N-gram

based term candidate extraction. The pipelines are

slightly different for each analyzer and each dataset.

Detailed configuration can be found in the example

section of the JATE website;

• for PoS-based term candidate extraction, we use: for

GENIA, a list of PoS sequence patterns defined in

(Ananiadou, 1994); for ACL RD-TEC, a list of PoS

sequence patterns defined in (Zadeh and Handschuh,

2014);

• min. character length of 2; max. of 40;

• min. tokens of 1, max. of 5;

• leading and trailing stop words and non-alphanumeric

character removal. (for N-gram based removal of any

non-alphanumeric characters);

• stop words removal;

• min. frequency threshold of 2;

• for χ2, the ‘frequent terms’ are selected as top 10%.

Moreover, only candidates that appear in at least two

sentences are considered;

• for Weirdness, GlossEx and TermEx, the BNC corpus

is used as reference;

27http://atmykitchen.info/datasets/acl_rd_

tec/. Accessed: 10 March 2016

Table 2: Comparision of candidate extraction on GENIA

(run in a single thread)
Method Term candidates Recall CPU time (millsec)

PoS-based 10,582/38,850 10% 68,914

NP-based 35,799/44,479 23% 118,753

N-gram 48,945/440,974 16% 33,721

Table 3: Comparision of candidate extraction on ACL RD-

TEC (run in a single thread)
Method Term candidates Recall CPU time (min)

PoS-based 524,662/1,569,877 74% 133.84

NP-based 585,012/2,014,916 66% 367

N-gram 887,316/7,776,457 41% 189.20

The total number of term candidates extracted for each

dataset under each analyzer setting after/before applying

the minimum frequency threshold with associated overall

recall and CPU time are shown in Tables 2 and 3. The low

recall for GENIA may be due to several reasons. First, a

substantial part of the gold standard terms are ‘irregular’, as

they contain numbers, punctuations and symbols. The pat-

terns in our experiment are mainly based on adjectives and

nouns, and will not match irregular terms. Second, we use

a general purpose PoS tagger which does not perform well

for the biomedical text. In addition, GENIA consists of

very short abstracts and as a result, many legitimate terms

may be removed due to the frequency threshold and lexical

pruning. However, this can be easily rectified by relaxing

the pre-filters.

We then show precision of top K terms ranked by each al-

gorithm, commonly used in ATE. Figure 4 shows results for

the GENIA dataset and Figure 5 shows results for the ACL

RD-TEC dataset. First, all algorithms achieve very high

precision on the GENIA dataset. This is partly because the

gold standard terms are very densely distributed. Our anal-

ysis shows that 49% of words are annotated as part of a

term. Second, TFIDF and CValue appear to be the most

reliable methods as they obtain consistently good results

on both datasets. Third, Weirdness, GlossEx and TermEx

are very sensitive to the choice of reference corpus. For

example, on the ACL RD-TEC dataset, phrases containing

‘treebank’ are very highly ranked. However, many of them

are not valid terms. Finally, RAKE is the worst perform-

ing algorithm on both datasets, possibly because it is very

specifically tailored to document-level (other than corpus-

level) keyword extraction.

Next we compare the efficiency of each algorithm for scor-

ing and ranking term candidates, by measuring the max-

imum memory footprint and CPU time for computation.

We found consistent patterns among different algorithms,

despite what term candidate extractor is used (which only

affects absolute figures as it changes the number of candi-

dates generated, see Tables 2 and 3). Using the PoS-based

term candidate extractor as example, we show the statistics

in Table 4 and Table 5 for the two datasets. As it is shown,

χ2 is the most memory intensive due to the in-memory stor-

age of co-occurrence. This largely depends on the number

of term candidates and frequent terms. In terms of speed,
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Figure 4: Comparison of Top K precisions on GENIA
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Figure 5: Comparison of Top K precisions on ACL RD-TEC

χ2, CValue and RAKE are among the slowest. While χ2

spends significant time on co-occurrence related computa-

tion, CValue and RAKE spend substantial time on comput-

ing the containment relations among candidates.

6. Conclusion

This paper describes JATE 2.0, a highly modular, adaptable

and scalable ATE library with 10 implemented algorithms,

developed within the Apache Solr framework. It advances

existing ATE tools mainly by enabling a significant degree

of customization and adaptation thanks to the flexibility un-

der the Solr framework; and making available a large col-

lection of state-of-the-art algorithms. It is expected that the

tool will bring both academia and industries under a uni-

form development and benchmarking framework that will

Table 4: Running time and memory usage on GENIA
Name CPU time (sec.) Max vmem (gb)

TTF 19 0.81

ATTF 20 0.83

TTF-IDF 20 0.83

RIDF 20 0.78

χ
2 30 1.12

CValue 47 1.41

Weirdness 22 1.07

GlossEx 25 1.01

TermEx 27 1.06

RAKE 26 1.42

encourage collaborative effort in this area of research, to
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Table 5: Running time and memory usage on ACL RD-

TEC
Name CPU time (min:sec) Max vmem (gb)

TTF 5:46 4.2

ATTF 5:56 4.18

TTF-IDF 5:58 4.24

RIDF 5:59 4.38

χ
2 21:47 16.05

CValue 20:59 5.01

Weirdness 7:11 4.89

GlossEx 6:40 4.88

TermEx 9:52 6.12

RAKE 22:59 5.45

foster further contributions in terms of novel algorithms,

benchmarkings, support for new languages, new text pro-

cessing capabilities, and so on. Future work will look into

the implementation of additional ATE algorithms, particu-

larly machine learning based methods.
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