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Abstract. Extracting structured information from text plays a crucial role in

automatic knowledge acquisition and is at the core of any knowledge representation

and reasoning system. Traditional methods rely on hand-crafted rules and are

restricted by the performance of various linguistic pre-processing tools. More

recent approaches rely on supervised learning of relations trained on labelled

examples, which can be manually created or sometimes automatically generated

(referred as distant supervision). We propose a supervised method for entity typing

and alignment. We argue that a rich feature space can improve extraction accuracy

and we propose to exploit Linked Open Data (LOD) for feature enrichment.

Our approach is tested on task-2 of the Open Knowledge Extraction challenge,

including automatic entity typing and alignment. Our approach demonstrate that by

combining evidences derived from LOD (e.g. DBpedia) and conventional lexical

resources (e.g. WordNet) (i) improves the accuracy of the supervised induction

method and (ii) enables easy matching with the Dolce+DnS Ultra Lite ontology

classes.

1 Introduction

A vast amount of knowledge is made available in the form of text; text is easily under-

standable by humans, but not by machines: applications can access knowledge if it is

made available in a structured form. Information Extraction techniques serve the purpose

of extracting facts from text and represent them in a structured form. FreeBase1 and

DBpedia2 are famous examples of an effort to produce large scale world knowledge in a

structured form. The structured facts are quite useful in tasks like question answering

[20,8], facilitating both understanding the question and finding the answer. For example,

in order to answer the question “Which personification in Marvel Comics Universe

was created by Bill Mantlo and Mike Mignola?”, the knowledge of relations include

(?x created-by “Bill Mantlo”) (?x created-by “Mike Mignola”) (?x is-a ?y) (?y type-of

“personification”). A wider application of relation data can be seen in the Wikipedia

infoboxes and more recently in Google Knowledge Graph initiative [19]. The relation

data comes from large knowledge bases, which can be represented using different for-

malisms. Resource Description Framework (RDF) is the industry standard, which is

designed to provide a common data model to represent structured information on the

Web. Services like DBpedia draw on Wikipedia info-boxes to create such large databases

1 https://www.freebase.com/
2 http://wiki.dbpedia.org/About



[12], which now has 3 billion RDF triples, 580 million of which are extracted from

English Wikipedia.

Open Information Extraction (Open IE) systems aim to extract information without

being constrained by pre-specified vocabularies. State-of-the-art Open IE systems, e.g.

ReVerb [7] and NELL [5], have witnessed remarkable success. Compared with schema-

driven IE, Open IE can usually gain broader coverage thanks to a lightweight logical

schema, though the lack of proper schema or unique identifiers cause a fair amount of

ambiguity in the extracted facts and further hinder the data linking across multiple data

sources.

This paper is in response to Open Knowledge Extraction (OKE) Challenge3 in order

to fill the gap between Open IE and existing centralised knowledge bases. We present

a tool4 for (i) identifying the type of the given entity (known a priori) in the given

definition context; (ii) create a owl:Class statement for defining each of them as a new

class in the target knowledge base, (iii) create a rdf:type statement between the given

entity and the new created classes, and (iv) align the identified types with Dolce+DnS

Ultra Lite (DUL) ontology classes5, if a correct alignment is available, to a set of given

types. Our approach consists of three main steps: (i) learning (in a supervised fashion) a

model to recognize the word(s) in the sentence that express the type for the given entity

(ii) predicting one or multiple types for all recognized (in previous step) surface forms

expressing types; (iii) aligning all identified types to a given ontology. Each component

will be explained in detail in Section 3. Evaluation results and conclusions are presented

in Section 4 and 5 respectively.

2 Related Work

Named Entity Recognition. Named Entity Recognition (NER) is closely related to

type extraction that aims to locate and classify atomic elements in text into predefined

categories such as the names of persons or biological species, organizations, locations,

etc. Three broad categories of machine learning paradigm in NER[16] include super-

vised, semi-supervised and unsupervised techniques. Feature engineering plays a crucial

role in NER and has been well studied for many years. However, the difference is

that NER systems do not label nominal (e.g., identify “fictional villain” as a type of

“Personification”) or associate nominal phrases to entities.

Relation Extraction. Current methodologies in building a relation extractor gener-

ally fall into three categories: pattern-based [10], supervised machine learning, semi-

and un-supervised approaches respectively. A number of popular methods has re-

cently emerged in the third category include bootstrapping (i.e., using seeds)[1], distant

supervision[15] and unsupervised learning[14] from the web. Different from most of

relation extraction tasks that need the presence of two entities, our goal is to identify the

hypernym (i.e.,instance-Of ) relation between a given entity and noun phrases.

Ontology Matching. Our approach in type alignment is inspired from current prac-

tice and research in the field of ontology matching [17]. In this paper, we explored the

3 https://github.com/anuzzolese/oke-challenge
4 Source code can be found at https://github.com/jerrygaoLondon/oke-extractor.
5 http://stlab.istc.cnr.it/stlab/WikipediaOntology/



combination of the context-based techniques by the use of formal resource (i.e., linked

data) in semantic level and the content-based matching by the use of terminological

techniques including string metrics for lexical similarity and WordNet for word relation

matching, with respect to the schema level alignment for the matching between identified

entity types and DUL ontology classes.

Interlinking Open Data. Emergence of Linked Data (LD) has raised increasing

attention in the pressing needs for interlinking vast amounts of open data sources [2].

On the one hand, linked data can be leveraged as an external source of information for

ontology matching, with respect to the challenge of “matching with background knowl-

edge” [9]. On the other hand, interlinking methods derived from ontology matching can

facilitate the achievement of the promise of Semantic Web: the Web of interlinked data.

Motivated by both the LD based alignment method [11] and state-of-the-art interlinking

methods (e.g., Silk[4], RDF-AI[18]), particular attention is paid in our approach to

evaluate the role of LD in type extraction and alignment.

3 Methodology

Our approach can be represented as three main phases: (i) training, (ii) prediction, (iii)

type annotation and alignment as illustrated in following architecture diagram (Fig.

1). The gold standard data contains definition sentences, i.e. each sentence expresses

the type of a certain given entity6. We pre-process the gold standard data, we perform

feature extraction and feature enrichment and we learn a classifier to recognize the

portion(s) of the sentence expressing the entity type (we learn hyperonym patterns).

All type candidates are fed to the type annotator which annotates each surface form

as a new owl:Class with generated URIs in the format of NIF 2.07. The well-formed

new owl classes are then associated (by rdf:type) with the target entity in the sentence.

In the final phase, the type alignment component performs semantic integration based

on domain ontology and DUL ontology by combining linked data discovering (LDD),

terminological similarity computation (TSS) and semantic similarity computation (SSC).

Aligned DUL classes will be associated with identified type by rdfs:subClassOf 8. The

rationale of each component implementation is discussed in detail below.

3.1 Type Induction

Type induction is treated as a classical machine learning task in this experiment. First,

the training set is loaded, parsed and mapped from the underlying RDF model to

object-oriented(OO) data models. Parsing and processing NIF2RDF data is implemented

6 We use the training data encoded in NIF format provided by the challenge organisers in this

experiment. The NLP Interchange Format (NIF) is an RDF/OWL-based format that aims to

achieve interoperability between Natural Language Processing (NLP) tools, language resources

and annotations.
7 http://persistence.uni-leipzig.org/nlp2rdf/
8 The rdfs stands for the namespace of RDF Schema (http://www.w3.org/2000/01/

rdf-schema#)



Fig. 1: Architecture of Type Induction and Alignment

on top of a general RDF library written in python (RDFLib)9, which facilitates the

parsing and serialisation of linked data in various formats. We implement a simple

solution for this task that maps RDF model into an in-memory OO data model including

“TaskContext”, “ContextEntity” and “EntityClass” respectively. Managing RDF data in

an OO paradigm enables a quicker and more convenient data access model shared across

multiple components.

Next, Context data (e.g., sentences, pre-labelled entities and types) are transformed

and encoded in token-based data models W = w1,w2, ...,wn, which treats each token (or

word) as atomic unit (called hereafter data point). Each data point wi ∈ W represents a

token (or word) with its feature set, its class label and its unique identifier. Each data

point from the sentence is considered as a learning instance which is labelled with

corresponding class labels. Following the approach of [13], we adopt a two-class IO

labelling scheme, where each data point is either in-type (labelled as “I”) or out-of-type

(labelled as “O”).

Feature Extraction In the feature extraction phase we construct the feature set for each

data point. We collect the following features:

1. Word-level features: For each data point which is not a stopword10 we produce:

“WORD POS”: word PoS category; “IS TITLE”: true if the word is a titlecased

string, “ALL CAPITAL”:true if all cased characters in word are uppercase, “IS WORD ROOT BE”:

true if the lemma of current word is ’be’;“IS PUNCT COMMA”: true if current

9 RDFLib: https://pypi.python.org/pypi/rdflib
10 The SMART stop-word list built by Chris Buckley and Gerard Salton, which can be obtained

from goo.gl/rBQNbO



word is a comma punctuation; “WORD WITH DIGITS”: true if current word con-

tains digits;“LAST 2 LETTERS”: last two characters of current word.

2. Named-entity: We include the feature “IS ENTITY“ to indicate whether current

word is entity or not.

3. Gazetteer and trigger word features: Trigger words are a list of terms that might be

useful for relation extraction. For example, trigger words like “Mr”, “Miss” and

“Dr” for Person, “city” and “street” for location, “Ltd” and “Co.” for Organisations,

are obviously useful to recognise the instance-of relations. We also hand-picked

a list of trigger words (e.g., “name”, “form”, “class”, “category”, “variety”,

“style”, “model” and “substance”) that can indicate the type relations. WordNet

can be employed to extract trigger words, e.g., look for synonyms. Gazetteer fea-

tures can be a list of useful geo or geopolitical words e.g., country name list and

other sub-entities such like person first name, person surname. We used the AN-

NIE Gazetteer11 from GATE platform 12 in our experiment. A list of gazetteer

based features used include “TYPE INDICATOR”: true if current word is matched

with an item in type trigger words; “IS STOPWORD”:true if current word is

stop word; “IS ORGKEY”:true if current word is matched with an item in or-

ganisation entity trigger words; “IS LOCKEY”:true if current word is matched

with an item in location entity trigger words; “IS COUNTRY”: true if current

word is country entity; “IS COUNTRYADJ”:true if current word is country ad-

jective; “IS PERSONNAME”:true if current word is person name trigger words

(e.g., firstname, surname); “IS PERSONTITLE”: true if current word is person

title;“IS JOBTITLE”:true if current word is job title entity; “IS FACKEY”: true if

current word is facility entity trigger words.

4. Neighborhood features: We include surrounding words and their corresponding

features; this provides contextual evidence useful to discover hypernym pattern

between identified entities and the target word expressing the type. Position in-

formation is encoded in the feature names and examples of such feature set are

“PREV 2 WORD WITH DIGITS”, “NEXT 1 WORD IS STOPWORD”, “PREV 1 WORD POS”,

“PREV 3 WORD IS COUNTRY” and so forth. In our experiment, features are ex-

tracted from a 8 × 3 sliding window.

5. semantic distance: The‘SEMANTIC DISTANCE” is a numerical value which quan-

tifies the “similarity of meaning” between the target token t1 , i.e. the word(s)

potentially expressing the types, and the target entity t2, i.e. the one for which the

type is being expressed. The value is computed by looking at all possible types that

we can gather for t1 and t2 from LOD (specifically DBpedia). Formally, the semantic

distance is computed as:

sem dist(t1, t2 j) = max[sim(S n(t1), S n(t2 j))], t2 j ∈ rd f : type(E), n > 0 (1)

t1 is the target token and t2 j is the one of linked data types (rdf:type) associated

with entity (E). As entity is disambiguated by Dbpedia URI in the dataset, we

can acquire that disambiguated type information by SPARQL query. S n is the

synset of a word where several meanings of the word can be looked up. sim() is

11 https://gate.ac.uk/sale/tao/splitch13.html
12 https://gate.ac.uk/



the maximum semantic similarity determined by the function of the path distance

between words in hierarchical structure in Wordnet. Our assumption is based on the

fact that existing resources like WordNet and DBpedia are a rich and reliable source

of hyponymy/hypernymy relationships between entities, which are assumed to be

able to provide very informative and potentially strong indications about instance-of

relation between entity and target token. Even though type information is usually

multi-word terms, our intuition is to identify head noun in multi-word type surface

form. This is based on the assumption that terminological heads usually carry key

conceptual semantics[6]. We implemented the sem dict() based on NLTK WordNet13

library and python SPARQLWrapper14 for rdf type and label query. The semantic

similarity is computed by the WordNet path similarity function which is based

on the shortest path connecting the word senses in the is-a (hyernym/hypnonym)

taxonomy.

Model selection We experimented with three state-the-art classifiers, including Naı̈ve

Bayes, Maximum Entropy Markov Model (MEMM) and Support Vector Machine Model

provided in NLTK’s classify package15. Based on the same feature set and 100 iterations,

our experiment indicates that even if Naı̈ve Bayes classifier and SVM is much fast in

training, MEMM give us the optimum performance for our class induction task. More-

over, as a discriminative classifier, more features make MEMM model more accurate.

Type annotation In order to identify all possible type surface forms for a certain

entity, we combined the approach of head noun extraction and the PoS based grammar

matching for compound words combining the modifiers and a head noun. For the above

example, the continuing tokens ‘‘American lightweight boxer” can be picked out with

type tag “I” after processed with type classifier, while ‘‘lightweight boxer” and ‘‘boxer”

are also good candidate entity types. A set of PoS patterns grammars (Table 1) are

applied iteratively in our experiment. Note that + and * are regular expression cardinality

operators. PoS-tagging was achieved with the NLTK standard treebank POS tagger16.

< J J |VBG |VBD>+ <NN |NNP |NNS>+

<NN |NNP |NNS>+ < J J |VBD |VBG>∗ <NN |NNP |NNS>+

Table 1: A simplified version of PoS grammar patterns matching multiple type surface forms

13 http://www.nltk.org/howto/wordnet.html
14 SPARQLWrapper is a python based wrapper around a SPARQL service, access via

http://rdflib.github.io/sparqlwrapper/
15 http://www.nltk.org/howto/classify.html
16 http://www.nltk.org/book/ch05.html



3.2 Type Alignment

The motivation of class alignment method in our experiment is to investigate how

LOD datasets (typically DBpedia) can facilitate the alignment of heterogeneous type

information. Our alignment method is based on the heuristics that the linked data resource

is typed and linked by their dereferenceable URIs. For example (in Figure 2), to identify

whether a football club is type of “dul:Agent”17, we can ask this question based on

LOD knowledge base (typically DBpedia in our case), which can be constructed in the

following SPARQL query.

Fig. 2: Parts of Extracted Entity Class and DUL classes

ASK {

?instance dbpedia-owl:type ?entity.

<http://dbpedia.org/resource/Football_Club> dbpedia-owl:wikiPageRedirects ?entity.

?instance a ?type.

FILTER(?type = dul:Agent)

}

In the task of DUL ontology alignment, early experiments show that there are 9%

(9 out of 99 entities) DBpedia entities in the gold standard dataset are classified with

DUL classes. By using dereferenceable type URI with a more complex SPARQL query
18, we found that about 30% (60 out of total 201) types can be directly matched with

DUL classes pre-classified in DBpedia. If counting all the multi-word types containing

the matched head nouns, there are 117 types (58.2% of total) that can be aligned with

DUL classes via DBpedia. A typical example as above, if “Club” is directly matched

with “dul:Agent” via query, “Football Club” containing “Club” as the head noun can be

further aligned with “dul:Agent”.

Our alignment process can be divided into three steps: linked data discovery, ter-

minological similarity computation and semantic similarity computation. Linked Data

Discovery (LDD) is essentially the semantic query based on existing structural knowl-

edge in DBpedia. We combine multiple classification schemes from DBpedia about the

entity and extracted classes to determine best matched DUL classes. Entity based query

17 The dul stands for the prefix for http://www.ontologydesignpatterns.org/ont/dul/DUL.owl.
18 The complete SPARQL query can be found in the projects source code repository



is achieved by the DBpedia URI and the corresponding DUL classes about extracted

entity types can be retrieved by automatically generated dereferencing URI following

the practice in DBpedia [3]. Multi-word type terms that contain the matched head noun

type in the same context will be aligned with the same DUL class. For many cases

that no DUL classes can be found by LDD, we compute terminological similarity by

Levenshtein distance normalised by the length of the longest sequence. The threshold is

set to 0.9. The schema level matching is based on the lexicon expansion on both target

class and DUL classes to be aligned. Target class is expanded by type labels extracted

from both entity and dereferencable type from DBpedia. Meanwhile, DUL classes are

expanded with keywords and synonyms. Table 2 illustrates the parts of DUL classes and

keywords.

DUL Classes Keywords & synonyms

dul:Activity activity, task

d0:Characteristic characteristic, feature

d0:CognitiveEntity Attitudes, cognitive, ideologies, mind

dul:Goal Goal, aim, achievement

d0:Location Place, space

dul:Organism Organism, animal, plant

dul:Personification personification, fictional, imaginary

dul:Situation situation, condition, circumstance, state

Table 2: Parts of DUL Classes and Keywords

In the final step of our method, for the classes that cannot be aligned by string

similarity, we adopt the semantic similarity computation approach that relies on semantic

taxonomy in WordNet to determine hypernym relationship between expanded target

type and expanded DUL classes labels. For multi-word terms, we compute the similarity

based on head noun. Where either or both of the words had more than one synset in

WordNet, we compute all the combinations to find the synsets pair of maximal similarity.

The similarity threshold (i.e.,path distance) is set to 0.1.

4 Evaluation

4.1 Type Induction

For the experiment of type induction task, the gold-standard corpus was used which

contains 99 sentences of entity definition context. The gold-standard corpus is split

into 70% for training and 30% for testing. The performance of entity type extraction is

computed in by Precision (P), Recall(R), and F-measure (F1 score) (as follows).



P =
#TruePositive

#TruePositive + #FalsePositive
(2)

R =
#TruePositive

#TruePositive + #FalseNegative
(3)

F1 =
2PR

P + R
(4)

As shown in Table 3, the MEMM classifier trained with features not derived from LD

source is used as baseline for performance comparison. By add the LD based feature

”SEMANTIC DISTANCE” to train MEMM model achieve overall 5.19 increase of

F-score, with 1.02 and 6.38 increase in precision and recall.

P(%) R(%) F1(%)

MEMM without LD features 84.23 47.10 60.27

MEMM with LD features 85.25 53.48 65.46

Table 3: Results of Evaluation of Class Induction Method

4.2 Type Alignment

Type alignment evaluation is implemented as follows.

P =
#correctIdenti f iedAlignments

#identi f iedAlignments
(5)

R =
#correctIdenti f iedAlignments

#goldS tandardData
(6)

F1 =
2PR

P + R
(7)

In (5) and (6), the “#correctIdentifiedAlignments” is computed by combining string

matching and subsumption reasoning. Specifically, if automatically aligned DUL types

cannot be matched with labelled data (i.e., gold standards), we check whether the

DUL type is the subclass of the labelled DUL type or vice versa. In other words, if

at least one gold standards alignment can be matched lexically or semantically, the

result is recognised as correct. We compared three different alignment strategies and a

combination of two or three of them in Table 4.

From the evaluation results, even if LDD has good coverage 63% (62 out of 99) for

alignment suggestions, the performance of the LDD method has a low overall F-measure.

TSC method achieved higher performance than LDD and SSC, which has further gained

2.45% improvement with optimal result by combining with SSC.



P(%) R(%) F1(%)

Linked Data Discovering (LDD) 35.48 22.2 27.33

Terminological Similarity Computation (TSC) 75.44 43.43 55.13

Semantic Similarity Computation (SSC) 38.38 38.38 38.38

TSC + SSC 57.58 57.58 57.58

LDD+TSC+SSC 34.34 34.34 34.34

Table 4: Results of Evaluation of Type Alignment Method

4.3 Competition Result

The overall performance evaluated in official competition19 is presented in Table 5

Annotator Micro F1 Micro Precision Micro Recall Macro F1 Macro Precision Macro Recall

CETUS 0.4735 0.4455 0.5203 0.4478 0.4182 0.5328

OAK@Sheffield 0.4416 0.5155 0.39 0.3939 0.3965 0.3981

FRED 0.3043 0.2893 0.3211 0.2746 0.2569 0.3173

Table 5: Official Competition Results of OKE Task 2

5 Conclusion

Linked Open Data opens up a promising opportunity for machine learning in terms of

feature learning from large scale and ever-growing graph-based knowledge sources. In

this paper, we present a hybrid approach for automatic entity typing and type alignment.

We experimented three different strategies in type alignment. The evaluation result

suggests that LOD can complement extremely rich semantic information compared

with WordNet, particularly for complex multiword schema terms. Even though the type

alignment directly suggested by LOD suffers low quality, the corresponding concept

hierarchies from the multiple community-driven classification schemes can contribute

very effective semantic evidences for facilitating alignment task with respect to the

similarity and relatedness measurement.
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literature review. Expert Systems with Applications 42(2), 949 – 971 (2015), http://www.

sciencedirect.com/science/article/pii/S0957417414005144



18. Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching, fusion and

interlink. In: Proc. IJCAI 2009 workshop on Identity, reference, and knowledge representation

(IR-KR), Pasadena (CA US) (2009)

19. Singhal, A.: Introducing the knowledge graph: things, not strings. Official Google Blog (May

2012)

20. Yao, X., Van Durme, B.: Information extraction over structured data: Question answering with

freebase. In: Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). pp. 956–966. Association for Computational Linguistics

(2014), http://aclweb.org/anthology/P14-1090


