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Abstract 

Crystal morphology is known to be of great importance to the end-use properties of the crystal 

product and affect the down-stream processing such as in filtration and drying, but was previously 

regarded as too challenging to achieve automatic closed-loop control. As a consequence, previous 

work has focused on control the crystal size distribution (CSD) where the size of a crystal is often 

defined as the diameter of a sphere that has the same volume of the crystal. This paper reviews very 

promising new advances made in recent years in morphological population balance models for 

modelling and simulation of crystal shape distribution (CShD), measurement and estimation of crystal 

facet growth kinetics, as well as in 2D and 3D imaging for on-line characterisation of crystal 

morphology and CShD. A framework is presented integrating various components in order to achieve 

the ultimate objective of model-based closed-loop control of CShD. The knowledge gaps and 

challenges that require further research are also identified. 
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1. Introduction 

For particulate products obtained from crystallisation, crystal morphology is an important property as 

it not only directly impacts the downstream processing of the particles, but also could affect the end-

use properties of the final product. Model-based closed-loop optimization and control of crystal shape 

for a population of crystals in a crystalliser, however, has long been considered to be too challenging 

to achieve mainly due to the limitations of available measurement techniques and modeling 

capabilities. Some people even questioned if there exists such a concept as morphology for a 

population of crystals: while it is known how to define the morphology for a crystal, it is not as clear 

how to define the morphology for a population of crystals. In recent years, there have been significant 

progresses in the areas of on-line measurement of crystal morphology via imaging, modelling of 

crystal shape distribution (CShD) using multi-dimensional and morphological population balance. In 

this article, CShD is used as the abbreviation of crystal shape distribution in order to differentiate from 

CSD since the latter is widely accepted in the crystallisation community to represent crystal size 

distribution where the size of a crystal is often defined as the diameter of a sphere that has the same 

volume of the crystal. The new developments have led to proof of concepts in model-based closed-

loop automatic control of crystal shape distribution in crystallisation processes. 

This review aims at not only providing a summary and critique of the relevant literature, but also 

presenting a framework that integrates the various components and pointing out the knowledge gaps 

that require attention in future research. As a result, rather than opening the review by straightforward 

going to discussion of the details of the individual elements, an integral framework is first presented 

that depicts a picture of  how individual topical elements are linked together. The integral framework 

is schematically shown in Figure 1. The main components include:  

 On-line real-time measurement of crystal shape and shape distribution using on-line 2D and 3D 

imaging instrument and image analysis techniques. 

 Measurement of crystal faceted growth rates and growth kinetics using 2D and 3D images in 

crystal growth cells and stirred tanks, as well as estimation based on model identification method. 

 Modelling and simulation of the dynamic evolution of crystal shape distribution (CShD) using 

morphological population balance models. 

 Feedback and cascade control to track optimum operating conditions, as well as on-line optimum 

control. 
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The measured or estimated facet growth kinetics, i.e. the facet growth rate (m/s) as a function of such 

variables as supersaturation, solvent, impurity as well as crystal size, are needed by morphological 

population balance models (MPBMs) [1]. MPBMs can be used in multi-objective optimisation to 

obtain the optimum operating condition, such as an optimum supersaturation curve, that leads to the 

desired CShD as well as yield and other objectives. Control system configuration, e.g. simple 

feedback or cascade control, can be designed to track the optimum process condition such as the 

optimum supersaturation condition. Such a control strategy cannot however avoid batch to batch 

variations due to uncertainties, on-line measurement of crystal shape distribution is therefore required. 

Through real-time image segmentation analysis and shape reconstruction, the real-time size/shape 

distributions of crystals can be estimated. For example for a cooling crystallisation tracking the 

optimum supersaturation curve, the real-time crystal shape distribution information can be used to re-

optimise the remaining optimum supersaturation curve. 

Here it needs to point out that the presented framework might not be the only or best framework for 

integrating the topical elements together to achieve closed-loop control of CShD, and new and more 

innovative control framework is also open for future research (e.g. could CShD be directly used as the 

set point in a control configuration?), however it does help readers to understand how the individual 

components can be linked together in a framework for closed-loop control of CShD. It also needs to 

point out that the framework has not considered other factors, for example, for scale-up study in 

modelling large crystallisers, computational fluid dynamics (CFD) should be included and integrated 

with MPBMs to account for the mixing conditions. Furthermore, the framework was drawn with a 

batch or semi-batch stirred tank crystalliser in mind, for continuous or other types of crystallisers, 

amendments need to be made. 

In the rest of the paper, developments in relevant elements will be reviewed. Topics will cover:  

(1) the description of crystal shape and definition of crystal shape description (CShD), in Section 2, 

(2) on-line measurement and characterisation of crystal shape and CShD using 2D and 3D imaging 

and image analysis techniques, in Section 3, 

(3) morphological population balance models (MPBMs) for modelling the dynamic evolution of 

CShD subject to variations in operational conditions, in Section 4, 

(4) direct measurement as well as model based estimation of faceted crystal growth rates and faceted 

growth kinetics, in Section 5, and  

(5) model based optimisation and closed-loop control of CShD in Section 6. 
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Knowledge gaps and pointers to future research will be identified in individual sections as well as in 

the Final Remarks section.  

2. Crystal Shape and Shape Distribution  

Crystal shape variation can be due to difference in polymorph or morphology, the focus of this review 

is on morphology. Crystal morphology can dictate other quality measures such as the size. Crystals 

are particles structured with multiple facets that often have different surface chemistry and hence 

varied growth rates during crystallisation. This can lead to varied morphology even for the same 

polymorph. Previous research over the last half century on crystal morphology (or habit, shape) 

prediction has been mainly for single crystals. For a population of tens of thousands of crystals in a 

crystalliser, little work has been done on the modelling, optimisation and control of crystal 

morphology. Some people even argued that for a single crystal there is the concept of 'morphology', 

for a population of crystals, there is even no such a concept of 'morphology' or 'shape'. In this section, 

we will review the definition of crystal structure and morphology, as well as the concept of 'shape 

distribution' for a population of crystals, as these form the basis of morphological population balance 

modelling and shape distribution control.  

2.1 Crystal structure, nucleation and shape 

A crystal can be defined as a regular polyhedral solid bounded by plane faces, while the internal 

structure is composed of atoms or molecules arranged in a 3D repeating structure. Crystal structures 

can be solved through single crystal or powder X-ray diffraction studies, together with molecular 

modeling, which provide crystallographic information, such as unit cell parameters, atom coordinates, 

symmetry information and Miller Indices. It was realized that different crystal structure provides 

different packing arrangements to achieve minimal overall packing energy. Crystal shape or habit 

refers to the visible external shape of a crystal with the multiple facets. The morphology of a single 

crystal depends on the growth behaviour of its different crystallographic faces. With the known crystal 

structure of a compound, modeling software and experimental investigation can be used to study the 

crystal morphology and morphological changes. Detailed descriptions of various morphological 

modeling approaches including the geometrical Bravais-Freidel-Donnay-Harker (BFDH) [2]and 

energetic Hartman-Perdok [3] models and their variations [4-8], the tailor-made additive approach [4, 

9, 10], and the detailed kinetic models, such as the 2D nucleation model and the BCF model [11, 12] 

can be found in literature. 

The morphological modeling software such as HABIT95 [8], CrystalShape [13], and SHAPE 

(http://www.shapesoftware.com/), can be used to provide detailed information of the crystal 

morphology (shape) including locations of all faces (normal distances from the faces to crystal 
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center), and their corresponding corners with the input of crystallographic information from structure 

solution. The effect of additives, impurities and solvents on crystal morphology can also be predicted 

[10]. Single crystal experiments, such as X-ray topography are also useful to investigate crystal 

morphology, defect, and to verify modeling results. Recently, Singh et al. [13] developed a framework 

to generate morphology domains for screening crystal morphologies from crystal structures. Their 

morphological modelling software including CrystalShape and MorphologyDomain can be used to 

identify crystal shape and also morphology transformations under various crystallisation conditions. 

Crystal nucleation is a complicated process and happens at molecular scale, which is directly affected 

by a number of crystallisation environmental parameters including temperature, temperature change, 

presence of impurities and seeds, solution agitation and the solvent used [14]. The widely used 

nucleation model is the empirical Nyvelt model and its modifications though there are advances in the 

investigations of crystal nucleation mechanisms using molecular modelling, quantum mechanics, and 

polythermal method [15]. A stochastic model was proposed to describe the dispersions in crystal 

nucleation and growth rates by implementing the fluctuations of density and temperature in 

crystallisation processes to obtain the size and shape dispersions of nuclei with the multi-dimensional 

maximisation of Gibbs free energy [16]. Clearly further research in this area is needed to accurately 

quantify the crystal nucleation mechanisms.  

2.2 Crystal Shape Distribution (CShD) 

Prior to the introduction of concept of crystal shape distribution (CShD), let's remind us the definition 

of crystal size distribution. Crystal size distribution used widely in describing the size of a population 

of particles or crystals is in effect a diameter distribution of spheres, each sphere has an equivalent 

volume of a particle or crystal (if each particle is simplified to a volume equivalent sphere). The 

concept of CShD can be easily understood by considering a population of crystals each having a shape 

of rod with a length, a width and a thickness. The shape distribution can then be described by three 

size distributions of the length, width and thickness. This clearly is a more accurate description of the 

size and shape for the population of crystals than the traditional diameter distribution. Instruments for 

measuring particle shape distribution or crystal shape distribution are often based on such a method, 

though they also use even simpler shape descriptors such as aspect ratio, maximum length etc. 

For more complicated crystal structures however, such a method of shape distribution might not be 

the most effective. In morphological population balance models (to be reviewed in Section 4), the 

shape of a crystal is described by firstly defining a geometric centre then by the distance to the centre 

of each crystal face (details will be given later in Section 4).  
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Most commercial imaging instruments, either off-line or on-line, can provide some measurement of 

size as well as a number of shape descriptors such as roundness, contour/area, convexity, length/width 

aspect ratio and (diameter/maximum distance).However, simple descriptors could be insufficient in 

distinguishing the morphological differences unless the particles are significantly different in shape. 

Various shape descriptors have been developed in the last two decades, for example via deriving a 

new set of shape descriptors using the size measures of particles, or spectral or functional 

mathematical approaches such as the Fourier descriptors [1, 17]. However, with the advances of 3D 

shape measurement and prediction, the actual 3D particle shape could be described and determined 

through experiments and modelling, hence 3D crystal shape and CShD can become the direct and 

accurate description of particle shapes in the studies of crystallisation processes and particulate 

systems. 

3. Online Monitoring and Measurements of Crystal Growth: Imaging and Image 

Analysis 

On-line monitoring and control of crystallisation processes are becoming the essential elements to 

achieve high quality crystals with desired properties including shape and size distributions. The 

development of modern process analytical technology (PAT) and their application have provided very 

reliable measurement tools to obtain on-line values of important properties in a reactor, which formed 

the basic input and control variables for optimisation and control algorithms. However, the most 

important and also most difficult task for on-line optimisation and control of crystal shape and size 

distributions is the on-line measurement of crystal growth (then growth rate) of each crystal face, 

which is the frontline of crystallisation research. As shown in Sections 4-6, the ability of on-line, 

accurate measurement of crystal growth not only directly provides crystal growth kinetics for MPBMs, 

but also is essential to the development of real-time MPBM based feedback control strategies. Many 

recent researches have proved the feasibility of using high speed on-line imaging for crystal size and 

shape measurements, in particular for 1D and 2D characterisation [1, 17-40]. However, for on-line 

monitoring, optimisation and control of shape and size distributions in a crystalliser, it is essential to 

accurately and efficiently obtain 3D crystal information of the whole crystal population and the 

associated properties. Of the many techniques [1, 41-51] for the imaging and reconstruction of 3D 

objects, optical imaging and image analysis techniques proved to be the most promising ones for 2D 

shape measurements [1, 17, 19, 23, 24, 26, 29, 30, 32, 34, 37, 39, 52-54], and the techniques that are 

likely the most suitable ones for obtaining 3D crystal shape, hence growth rate of each crystal face, 

have made some advances in recent years [1, 45-50, 55, 56]. This is a very active research area with 

huge challenges and opportunities to innovatively develop process instrument and/or process probes 
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and the associated image processing and shape reconstruction software for the real-time monitoring, 

optimisation and control of particulate processes. 

Despite its significant potential importance, the direct characterization of particle shape has been quite 

limited largely relying on off-line instruments and methods. For quite some time there have been no 

effective on-line instruments capable of providing real-time information on particle shape particularly 

with the capability to use during the processing of particles in unit operations such as crystallisation, 

precipitation, granulation and milling (dry or wet). Well-developed and studied PAT instruments such 

as acoustic and mid and near infrared spectroscopy, laser diffraction and X-ray diffraction have been 

used in process monitoring, but these techniques cannot give detailed information on particle shape 

though some have shown to be able to distinguish between different polymorphs with careful spectral 

data analysis using chemometrics. Overall, the inability in on-line measurement of particle shape has 

greatly restricted the development of monitoring and control of particle shape for particle formulation 

and processing systems. Below are the further reviews of the most promising and practically useful 

technique, optical imaging systems. 

3.1 Two-dimensional imaging approaches 

For online characterization of 2Dcrystal shape, recent studies on video imaging have attracted much 

attention, which resulted in the development of some new instrument products such as process vision 

and measurement (PVM) system (http://uk.mt.com/), particle image analyzer (PIA) (http://www.mts-

duesseldorf.de/), in situ particle viewer (ISPV) (http://www.perdix.nl/), the on-line microscopy system 

of GlaxoSmithKline [1, 19, 57]. Several research groups across Europe, USA and Asia have explored 

the use of these systems for crystallisation process monitoring and control. Major pharmaceutical 

companies such as Pfizer, GlaxoSmithKline and AstraZeneca have shown keen interest inthis area. 

Scott et al. [58] used an inline camera prototype for qualitative monitoring of industrial crystallisation. 

Wilkinson et al. [57] from GlaxoSmithKline were also among the first researchers to study on-line 

imaging for monitoring crystallisation processes. Mazzotti and co-workers [23, 24] studied in situ 

monitoring of polymorphic transformation using focused beam reflective measurement (FBRM), 

PVM, Raman and ATR-FTIR spectroscopy, and also measured and monitored particle size and shape 

distributions of paracetamol by FBRM, in situ microscopy and image analysis techniques. Velazquez-

Camilo et al. [38] applied an image fractal analysis technique to characterize cane sugar crystallisation 

with the images taken by an image acquisition system feeding with slurry samples from a crystalliser 

via a peristaltic pump. Calderon de Anda et al. [19] have investigated the use of the 

GlaxoSmithKline’s imaging system for monitoring the crystallisation on-set and dynamic transition 

from one polymorph to another during crystallisation of LGA crystals. A multi-scale image analysis 

method [26, 59] was developed and used to derive monitoring charts [17], and then to calculate the 
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real-time growth rates associated with the evolution of the length and width for the needle-like -

polymorphic form of LGA [60].  

Barrett et al. [25, 61] used the PVM imaging probe in the determination of the metastable zone of an 

inorganic compound and also for tracking the polymorphic transformation process of D-Mannitol 

crystals. Patience and Rawlings [18] investigated the use of the PVM for measuring the shape and size 

information of sodium chlorate crystals with support from Pfizer. Larsen et al. [29, 39] developed new 

algorithms including model-based object recognition for image analysis, and also highlighted the 

necessity of advances in image analysis to improve image segmentation when particle overlap is 

significant. Louhi-Kultanen and co-workers [31, 32] studied batch cooling crystallisation of 

sulfathiazole using an ATR-FTIR spectroscopy and image analysis simultaneously. Kramer and co-

workers also conducted research using a prototype imaging probe, ISPV, which was also used at 

Leeds for the examination of particle shape and its subsequent development during crystal growth 

[52]. Srinivasan and co-workers [34] applied the PVM imaging probe and developed statistical 

monitoring graphs using the information from image analysis including multivariate image analysis 

[33]. Puel, Fevotte and co-workers [21, 27] used different in situ process analytical sensors including 

Mid-IR and Raman spectroscopy, in situ microscopy, PVM and FBRM, and image analysis 

techniques to measure particle size distribution and monitor crystallisation processes. Kail et al. [28] 

carried out process analysis using measured chord-length distribution from FBRM to obtain particle 

size distribution. Nagy and co-workers [62] used endoscopy-based in situ and also external bulk video 

imaging techniques and image analysis including multivariate image analysis, principal component 

analysis (PCA) and process control chart for the detection of crystal nucleation. Overall, all the 

existing investigations have demonstrated that imaging and image analysis is a very promising 

technique for on-line 1D/2Dcrystal size characterization. 

Generally, the imaging system can be divided into two categories according to their camera locations: 

imaging probe inserted into a reactor and camera situated outside the wall of a reactor. The latter has 

convexity effects on the images due to the external curved reactor wall or needs an imaging window 

attached to the external curved reactor wall in order to minimize the effects. Furthermore, for jacketed 

reactors, condensation on the external wall during cooling crystallisation or bubbles in the cooling 

fluid can obstruct the optic pathway, hence reducing image quality. Most recently several researchers 

carried out investigations on crystallisation processes in reactors via installing inline imaging systems, 

which records crystal images using an imaging system or a microscopy with a flowcell through which 

crystal suspension is pumped from a reactor [23, 45, 48, 63]. The obtained images may be of better 

quality than an in-situ probe system, but the external flowcell loop cans easily cause cogging, 
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encrustation, and/or crystal breakage by the pump. This system can provide flexible arrangement 

among camera, light and particles in order to obtain high quality images, however, it may take a long 

time to tune the optic arrangement for the best configuration because the camera must focus on a 

small volume of slurry near the inner wall with light guide pointing at the same volume with proper 

illumination intensity. In contrast, imaging probe [29, 30, 39, 52, 64] can overcome these 

disadvantages but the feature of flexible arrangement will lose and currently the system cannot be 

applied to small size reactors (say 0.1litre) due to the smallest size of the probe available. The probe 

may only be used for short periods due to the high temperature of slurry in reactors or continuously 

cooling of the probe is required. Furthermore, the probe may be contaminated or encrusted during 

crystallisation processes, which requires the probe to be taken out from the reactors and cleaned. 

Overall, both imaging systems are suitable for monitoring and control of crystallisation processes in 

research laboratories. The probe imaging system is the most suitable one to be used in industry due to 

the relative less effort of setup and maintenance, also less limitations on probe size because of using 

larger size of reactors in product lines. 

3.2 Three-dimensional imaging systems 

Despite the intensive research and development programmes internationally in recent years, most of 

the work is restricted to 2D imaging. Although obtaining 2Dcystal shape is already a major step from 

the traditional characterisation of particles based only on a volume equivalent diameter of a sphere, 

being able to measure 3D crystal growth, hence crystal shape evolution, on-line will be of much 

greater scientific and industrial significance. Intensive research and development has been carried out 

to obtain 3D topographical data of objects in robotics and machine vision areas for applications such 

as vehicle identification and face recognition. In addition, research is being carried out for three-

dimensional (3D) particle shape measurements [1, 30, 45, 48, 51, 56, 65], in particular the 

determination of crystal facet growth rates.  

Confocal microscope is able to provide 3D information of a particle by scanning many thin sections of 

the sample, then stacking them to form a 3D particle [50]. InfiniteFocus (http://www.alicona.com/)can 

also carry out 3D surface measurements using vertical scanning to provide topographical and colour 

information from the variation of focus. However, these systems are not practical for 3D on-line 

measurements due to the very low speed in operation.  

In medical and biological areas, CCD cameras and miniature cameras were used to develop imaging 

systems. Interactive systems that allow users to control and manipulate real-world objects within a 

remote real environment are known as teleoperator or telerobotic systems. Such systems are often 

used in medical applications to confirm diagnosis and make telepresence surgery. A lot of endoscopes 
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have been developed for these purposes (see for example [66, 67]). The most known telerobotic 

surgery systems are da Vinci telerobotic surgical system [66] and ZEUS [67]. Such systems are 

controlled by surgeons remotely by viewing virtual surgical site with stereoscopic system and 

controlling stereoscopic camera and robot surgical armaments. However, these imaging systems still 

have significant limitations in terms of their image processing capabilities and how to link the 

information for shape monitoring and control. In fact at the moment they are mainly used to display 

information to operators and store data onto hard drive. 

Stereo imaging has the advantage of providing more direct, unambiguous and quantitative depth 

information for 3D shape reconstruction. The stereo imaging system can have different camera-object 

geometries such as the common parallel camera optical axes, the converging (nonparallel) camera 

optical axes, etc. [68]. Gorpas et al. [43] developed a volumetric method to measure small objects (ca. 

10mm) using a binocular machine vision system. The system consists of two CCD cameras, 

telecentric lenses, and a structured light projector. Camera calibration, image pre-processing and 

segmentation, stereo matching and 3D coordinate calculation were performed to reconstruct 3D 

tumour surfaces (ca. 10 mm in size). In the study of Boersma et al. [41], the three cameras were 

positioned in a triangle location with a small angle for the cameras to focus on same area interested. 

Three image pairs were analysed using a digital surface model, and then combined to provide 3D 

information of a wound area. Bottlinger and co-workers [46] developed an orthogonally-positioned 

three-camera imaging system for measuring 3D shape of free-falling particles (100m ~ 4mm). The 

reconstruction method used the boundaries of two images to build 3D wire-structure, and 

approximated the boundary of the third image as a polygon to stack all scaled and fitted polygons to 

form 3D structure. Castro et al. [44] presented a technique for determining the 3D size, shape and 

number density of prismatic microlites in obsidian, which involves collecting a series of optical 

images at successive levels in a transparent thin section with a petrographic microscope and digital 

camera and combining these images to form 3D stacks. The determination of embedded particles 

within dispersed elements in multiphase dispersions was achieved by using micro-stereoscopic on-line 

image acquisition technique [47]. The accurate images from a four-phase system model simulating a 

fermentation broth were acquired to identify and count the oil-trapped particles moving at high speed. 

An imaging system using a flow through cell with one camera and two mirrors was developed to 

obtain 3D information of crystals grown from solution [23, 48]. The optic arrangement enables the 

acquisition of two images from the particle at different angles, the reconstruction of 3D structure using 

image processing software. Zhang et al. [51] used non-invasive stereovision imaging technique to to 

perform on-line measurements for the accurate determination of real size and shape of crystals grown 

in a stirred tank crystalliser. Darakis et al. [42] presented the application of digital holography, an 
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effective 3D imaging technique, for the measurement of size, orientation and location of opaque micro 

fibres. The method can provide 3D volume information from a single hologram acquisition with the 

actual location of the particle being determined subsequently by reconstructing the recorded hologram 

at different depths, hence avoiding the problem of out-of-focus particles from classical imaging 

techniques. Further research is needed to explore the applicability and capability of this method to 

obtain 3D particle size and shape distributions in reactors. A 3D stereovision imaging system was 

proposed in Figures 2 and 3 and tested to obtain stereo images of crystals grown from solution for the 

reconstruction of 3D crystal shape [1, 51, 69, 70]. The on-line 3D imaging probe system, as shown in 

Figure 3, including an imaging probe, camera controllers, and, a crystalliser, image acquisition 

software is also being developed for the measurement of 3D crystals in reactors. 

3.3 Image Analysis and 3D reconstruction 

For the quantitative analysis of in-process images for process control, the first requirement is to use 

image segmentation to separate the crystals from the image background. Some of the most popular 

commercially available image analysis software such as Image Pro Plus (http://www.mediacy.com/), 

Quant/2 (http://www.soft-imaging.net/), Clemex Vision PE (http://www.clemex.com/), Leica 

Qparticles (http://www.leica-microsystems.com/), Mex (http://www.alicona.com/), HALCON 10  

(http://www.mvtec.com/) can be used for such applications[1]. Overall, all of these software systems 

include a wide variety of image processing and analysis features, such as image enhancement, image 

Fourier transform processing, image filtering, morphological operations, automatic segmentation with 

single threshold, shape measurement and others. However, several researchers found that it is not 

trivial to apply these software systems directly to images obtained under an on-line process 

environment, e.g. for slurries of particles which are suspended in solution [19, 25, 61]. The major 

challenges in such situations lie in the fact that the slurries in a stirred tank reactor are in continuous 

motion, and that the variation of distances from the camera lens to particles captured in a snapshot 

makes some particles rather poorly resolved and fuzzy in definition as compared to others, reflecting 

the depth of focus for the microscope objective lens system. In addition, the effect of individual 

particle illumination as well as temporal changes of hydrodynamics within the reactor may lead to 

variable intensity in the image background. A multi-scale image segmentation method using wavelets 

for image analysis initially developed for emulsion polymerization [71] and later effectively adapted 

for segmentation of images obtained on-line from crystallisers using the GSK imaging system [26]. 

Pollanen et al. [31] also applied a similar image segmentation approach to on-line images with 

satisfactory results. Larsen et al. [29, 39] developed an image segmentation method for crystals with 

high aspect ratios which was also able to satisfy the demand of real-time use. However, for all these 

methods, there is still a significant challenge for high solid concentrations when crystals in an image 
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frame are overlapped [59]. The multi-scale image analysis approach [71] proved to be able to 

effectively identify the edges of particles for high solid concentrations for images of polymerization 

bubbles and ashes, as well as for crystallisation, work is currently being carried out in order to 

correctly recognize the particle objects after the edges are identified. In this respect, it is interesting to 

mention that high-solid concentration has also known to be a significant challenge to other process 

analytical instruments such as acoustic spectrometer and laser diffraction due to multiple diffraction 

and particle-particle interaction. 

To extract 3D information from the recorded stereo image pairs for 3D reconstruction of objects, it is 

necessary to find disparities among a series of corresponding points between a pair of stereo images 

taken from the same scene. There are many matching techniques and corresponding algorithms which 

can be generally divided into three categories: area-based, feature-based, and their combination. Area-

based algorithms use image grey level distribution information directly, to find the best match 

between a pair of images. Various correlation techniques are used to define area-based algorithms. 

Feature-based algorithms compare specific characteristics extracted from a pair of images, such as 

edges, lines, vertices and other regular shapes. Through this process a best match between two images 

can be obtained. In general, the correlation algorithms used provide for good matches, by taking 

advantage of their inherent noise suppression effects if distortion is not excessive. This approach may 

not be the best alternative when attempting the detection of the peak of a broad correlation function. 

Thus, feature-based algorithms strongly depend on good, noise-free images for exact feature 

extraction. In general, feature-based techniques yield a best match more stably and accurately than 

area-based techniques. Two types of features commonly used are point-like features such as corners 

and line segments [72]. The extracted 3D information can then be further processed to calculate the 

sizes and growth rates of individual faces, and to perform polymorph identification and classification 

and through this to develop new monitoring charts which can be used for improving quality control in 

manufacture. For the later purpose, shape descriptors need to be calculated.The typical 3D shape 

structure of a potash alum crystal grown from solution was reconstructed from 2D stereo images 

obtained from potash alum crystals [69]. Mazzotti and co-workers [48, 73] used a flowcell with one 

camera and two mirrors to generate stereo images for 3D shape reconstruction. The reconstruction 

ability of this method depends on the developed model and the detection of image features such as 

lines and corners. Alternatively, based on a camera model, the boundaries of the 2D projections from 

the 3D shape of a particle were obtained to form a huge 2D projection dataset [30, 45]. The 

experimentally recorded 2D images were then used to screen all 2D projections in the dataset to obtain 

the corresponding 3D shape. The accuracy depends on the generated 2D projection dataset and 
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crystals with different shapes may need different 2D projection datasets for their 3D shape 

identification. 

4. Morphological Population Balance Modelling 

4.1 Multi-dimensional and Morphological Population Balance Models 

A population balance (PB) model generally accounts for the convective processes that involve both 

the motion of particles in a system through their defined domains and their birth-and-death processes 

that can both terminate existing and produce new particles [74]. In literature, the so-called multi-

dimension is often interpreted as multiple-variables, i.e., a single-size dimension as volume equivalent 

spherical diameter plus other variables, such as particle location, porosity and fraction ratio. Crystal 

morphology has been a very important research area, but the focus has been on shape prediction for 

single crystals [10, 75-80] rather than for all the crystal population within a crystalliser. On the other 

hand, although population balance (PB) modeling for crystallisation processes is for all crystals in a 

crystalliser, crystal shape was often ignored with an over-simplified crystal-size definition, i.e., the 

volume equivalent diameter of spheres (see for example [54, 81-88]). The difference between 

morphological PB model and multi-dimensional (multi size dimensional) PB models for 

crystallisation in the published literature differs mainly in how the size dimensions are defined. The 

former defines the multiple size dimensions as the normal distances of each face to its geometric 

centre, while the later always involves some simplification e.g. simplify a crystal to plates that have 

only two dimensions. As a matter of fact, published literature so far on multi size dimensional PB 

models have been limited to two size dimensions. It is our opinion that morphological PB models 

have advantages over the so-called multi size dimensional PB models because the former can fully re-

construct the shape(structure) of any one crystal at any time, while the later always have to simplify 

the crystal to a simpler structure (using e.g. characteristic sizes) so cannot fully re-construct the crystal 

shape. A morphological PB model is definitely a multi-dimensional PB model, but a multi-

dimensional PB may not be morphological. 

Recent developments in multi-dimensional and morphological PB modeling provide a promising 

technique for bridging morphology modeling at the two size scales: for single crystals and for the 

population of crystals in a crystalliser. Puel et al. [21, 89] developed a 2D PB model to predict the 

growth of hydroquinone by representing the rod-like crystals with two internal coordinates, i.e., the 

length and width of rectangular parallelepipeds. Other crystals such as potassium dihydrogen 

phosphate, L-glutamic acid and hen egg-white lysozyme can also be represented by two-size 

parameters, and thus, 2D PB models can be developed (e.g. [20, 21, 54, 74, 89-93]). By defining the 

size of a face as its normal distance from the geometrical center of the crystal, Ma et al. [1, 94-96] 
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proposed a morphological PB model to simulate the dynamic size evolution of crystal population in 

faceted directions. Shape evolution of 3D faceted crystals involving morphological changes was also 

studied in the work of Zhang et al. [80], where the entire family of possible discrete shape evolution 

events, such as vertices bifurcating into edges or faces were exhaustively numerated using a set of 

simple testable conditions. Faceted crystal shape evolution and manipulation during dissolution or 

growth were studied by Snyder et al. [78, 97]. Zhang and Doherty [98] developed a method to 

combine a separate shape evolution model [77] with a standard 1D PB model for the simultaneous 

prediction of crystal shape evolution and size distribution in crystallisation processes of succinic acid. 

Borchert et al. [99] proposed a multi-dimensional PB to extract shape distributions in a steady state 

continuous crystalliser for seeded and spontaneous crystallisations. Optimal control algorithms and 

strategies for crystal shape manipulation were explored to obtain minimum time trajectories with the 

temperature as the control input [100]. Optimal scenarios with subsequent growth and dissolution 

phases were investigated and it was found that minimum-time scenarios were composed of constant 

supersaturation trajectory sections. Chakraborty et al. [101] presented a PB model for morphology 

distribution considering the diversity of symmetry. The symmetry of a population of crystals was 

analyzed using group theory and the population was divided into various symmetry classes, which, in 

turn, is subdivided into various morphological forms. The internal coordinate vector was represented 

in such a way that only one internal coordinate needed to be treated dynamically for each set with all 

other coordinates remaining invariant during growth, which led to a very small number of dynamic 

internal coordinates. Therefore, the effective dimensionality of the problem became very small, 

allowing simulation of a population of asymmetric crystals with minimal computational effort. Other 

research in multi-dimensional and morphological PB modelling of crystallisation processes include 

the work of Majumder and Nagy [102] who studied the influence of crystal growth modifiers, Kwon 

et al. [40, 103] and Liu et al. [104-106] who studied the simulation, optimisation and control of 

protein crystals.  

The generic mathematical formulation for multidimensional PB modeling, no matter employing a 

single-size dimension plus other external variables, or multiple-size dimensions, can be given by the 

following equation [74, 95] 

డటሺ࢞ǡ࢟ǡ௧ሻడ௧ ൅ ׏ ή ሾ߰ሺ࢞ǡ ǡ࢟ ሿ࢜ሻݐ ൅ σ డడ௫೔ ሾ߰ሺ࢞ǡ ǡ࢟ ǡ࢞ሻ݃௜ሺݐ ǡ࢟ ሻሿே௜ୀଵݐ ൌ ǡ࢞ሺܤ ǡ࢟ ሻݐ െ ǡ࢞ሺܦ ǡ࢟ ሻݐ ൅ ܴሺ࢞ǡ ǡ࢟  ሻ (1)ݐ

where x is the internal variable vector with n components, which can be parameters related to crystal 

size, shape, and other properties; y is the external variable vector such as spatial coordinates (y1, y2, 

y3);  is the number population density function of crystals;  is the gradient operator for the y 
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coordinates. For the left-hand side of Eq. (1), the first term is the accumulation term of ; the second 

term denotes the convection of  in the y space with v being the velocity vector; the third term is the 

convection of  due to particle growth in the x space with gi being the growth rate. The first and 

second terms on the right-hand side of Eq. (1), B(x, y, t) and D(x, y, t), represent the birth and death 

terms of  due to all the processes during crystallisation, such as aggregation, breakage, attrition, etc. 

(excluding nucleation), and the third term R(x, y, t), is the nucleation term. The kernels for 

aggregation, breakage, and nucleation, due to their complexity, are often described by semi-empirical 

models [107, 108]. More recently the combination of molecular modelling with detailed experiments 

for the development of crystal nucleation mechanisms from molecular level has attracted much 

attention [15]. It is our opinion that aggregation and breakage kernels could also benefit from the 

methodology, i.e. by integrating molecular engineering with experiments. Considering the length of 

the paper, a full review on how to construct accurate and reliable kernels for nucleation (homogeneous 

and heterogeneous), and dissolution and Oswald ripening is not included here. Readers are directed to 

literature [15, 79, 109, 110]. 

In modelling some crystallisation processes, it may be reasonable to neglect the effect of aggregation 

and breakage, hence a simplified version of Eq. (1) being written as 

డటሺ࢞ǡ࢟ǡ௧ሻడ௧ ൅ ׏ ή ሾ߰ሺ࢞ǡ ǡ࢟ ሿ࢜ሻݐ ൅ σ డడ௫೔ ሾ߰ሺ࢞ǡ ǡ࢟ ǡ࢞ሻ݃௜ሺݐ ǡ࢟ ሻሿே௜ୀଵݐ ൌ ܴሺ࢞ǡ ǡ࢟  ሻ     (2)ݐ

In a well-mixed batch crystalliser, the influence of crystal positions in the crystalliseron population 

distributions can be ignored. Therefore, Eq. (2) can be further simplified as 

డటሺ࢞ǡ௧ሻడ௧ ൅ σ డడ௫೔ ሾ߰ሺ࢞ǡ ǡ࢞ሻ݃௜ሺݐ ሻሿே௜ୀଵݐ ൌ ܴሺ࢞ǡ  ሻ        (3)ݐ

For seeded crystallisation processes with the assumptions of negligible contributions from nucleation, 

breakage, aggregation etc. to the process in a well-mixed homogeneous reactor, Eq. (3) can be further 

simplified as 

డటሺ࢞ǡ௧ሻడ௧ ൅ σ డడ௫೔ ሾ߰ሺ࢞ǡ ǡ࢞ሻ݃௜ሺݐ ሻሿே௜ୀଵݐ ൌ Ͳ        (4) 

It is worth to note that Equations (1-4) can be applied to any crystal systems with the x being crystal 

internal coordinates and/or other crystal properties. The morphology transformations can be accounted 

for by varying the number of internal coordinates according to the transformations [111]. Recent 

studies by Singh et al. [112] developed a morphology domain concept which covers all kind of 

morphologies of a compound, and incorporated it into a MPBM model for automatically detect and 
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model the morphology transformations. A short review on MPBM focused on various new 

applications including crystal morphology modelling, cell growth and differentiation, gene regulatory 

processes, and transfer of drug resistance was conducted by Ramkrishna and Singh [113]. 

4.2 Efficient solution of PB equations 

Theoretically, Eq. (4) can be solved for crystal population distribution with the proper initial and 

boundary conditions, and the combination of momentum, mass and heat transfer in the particulate 

system, in addition to the proper functions of nucleation and growth processes in the reactor. 

However, analytical solutions are only achievable for a few very simple cases. Therefore, various 

numerical algorithms have been developed for solving PB equations such as method of moment [114-

117], method of characteristics [108, 118-121], Monte Carlo techniques [122, 123], and discretization 

methods including finite element technique [119, 124, 125], cell average methods [107], hierarchical 

solution strategy based on multilevel discretization [126], method of classes [82, 95], fixed and 

moving pivot method [127, 128], and finite difference/volume methods [90, 119, 129-131]. Table 1 

summarises these numerical solution methods with the further reviews below. 

The method of moments approximates the PB distribution by its moments [114]. Under certain 

conditions, the moment equations are closed, that is, the differential equations for the lower order 

moments do not depend on values for the higher-order moments, which results in a small number of 

ordinary differential equations (ODEs) that can be solved efficiently and with very high accuracy 

using off-the-shelf ODE solvers. The main weakness of the method of moments is the moment closure 

conditions are violated for more complex systems. The method of characteristics [108, 118] aims to 

solve the PB equations by finding curves in the L-t plane that reduce the equation to an ODE. While 

the method is highly efficient when the physics are simple, the approach does not generalize to 

complex physics. Monte Carlo simulations track the histories of individual particles, each of which 

exhibits random behaviour according to a probabilistic model [122, 123]. Monte Carlo simulations are 

most suitable for stochastic PB equations, especially for complex systems, but typically very 

computationally expensive. In the method of finite difference/volume discretisation, the PB equation 

is approximated by a finite difference scheme [90, 127, 129-131]. Numerous discretisation methods 

for the PB equations with different orders of accuracy have been investigated and applied to various 

particulate systems (see for example [82, 90, 108, 129-131]). An alternative approach, high resolution 

finite volume method, was proposed [90, 129, 132] to provide high accuracy while avoiding the 

numerical diffusion (that is, smearing) and numerical dispersion (that is, nonphysical oscillations) 

associated with other finite difference and finite volume methods. This method has been shown to be a 

promising method and applied to various crystallisation systems [90, 105, 111, 129, 130] and further 

developed for effectively reducing the computation time using either an adaptive mesh technique 
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[130] through redistributing the mesh by moving the spatial grid points iteratively and obtaining the 

corresponding numerical solution at the new grid points by solving a linear advection equation or a 

coordinate transformation technique [131] which utilizes a coordinate transformation technique to 

convert a size-dependent growth rate process into a size-independent growth rate problem with a 

larger time step to be allowed. 

4.3 Morphological PB model 

A morphological PB model is able to incorporate more complicated crystal structures/shapes than 

needle-like crystals into PB modelling, therefore, can simulate the size-related dimensional evolution 

of crystals for each independent crystal face and is regarded as a major development in population 

balance modelling by Ramkrishna and Singh in their recent review article on PB [113]. In this 

method, the initial facet structures can be obtained through either morphology prediction or using 

experimental studies of single crystals. The kinetic parameters for the crystal growth rates of each face 

can be estimated by experimental studies including single crystal investigations and batch 

crystallisation using advanced techniques, such as specialized imaging and image analysis, and also 

by model identification techniques. The method [95] involves several steps including the 

identification of independent faces using the crystal morphology information, the formulation of a 

morphological multi-dimensional PB model, and the solution of the corresponding PB equation to 

predict the location variations for each independent crystal face, and the temporal reconstruction of 

crystal shapes during the crystallisation process with post-processing enabling extraction of shape-

related crystal properties and their relationships with the operating conditions. It is worth noting that if 

the homogeneous conditions, and/or symmetry of crystal shape cannot be applied to one face due to 

variations of hydrodynamics within a reactor, and/or addition of additives and impurities into the 

reactor for crystal shape manipulation, that face can be treated as an independent face, which therefore 

can be modelled as an additional independent dimension within the morphological PB model. 

From crystal morphology studies, a potash alum crystal can have a total of 26 habit faces (Figure 4), 

hence a geometric center can be found. The normal distance from one face to the geometric center 

forms one variable (dimension) for the morphological PB model (MPBM). Since some faces, such as 

the 8 {111} faces, are symmetry-related and supposed to have the same surrounding growth 

environment, hence, same growth rates, these {111} faces can be categorised as one-dimension (x) in 

the MPBM. Similarly, the 6 {100} faces and 12 {110} faces forms the second (y), and third (z) 

dimensions, respectively. Therefore, a three-dimensional MPBM, the corresponding three parameters, 

x, y, z, as shown in Figure 4, can be formed to simulate the morphological evolution of potash alum 

crystals. This complex inorganic hydrate compound, potash alum, was specially chosen in several PB 

studies [94-96, 111], which displays no extensive attrition and without observed significant 
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particle/particle agglomeration. By solving the morphological PB equation for a time interval of t, 

the growth of individual faces, {111}, {100} and{110}, can be obtained, and, hence, used to calculate 

the new locations of the corresponding crystal faces, with respect to their previous locations. In this 

the updated normal distances for the individual faces, together with their corresponding face 

orientation, can be used to form a set of linear equations with the solutions of these equations 

generating the coordinates of all the corners of the crystal. Symmetric polytopes can be used for 

geometric description of crystal morphology with Miller indices. The following symmetric polytope 

can be used to describe the crystal shape of potash alum [111]: 
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whereK1, K2 and K3 are the actual normal distances from the crystal geometric centre to }111{  face, 

}100{  face and }110{  faces, respectively, at a specified time during a crystallisation process. The 

values of K1, K2 and K3 define the shape and size of a potash alum crystal, and can be used to plot 

potash alum crystals. The morphological PB modeling approach has been applied to various 

crystallisation systems for prediction and/or optimization and control of the evolution of crystal 

shape/size distributions with very promising results [1, 94-96, 105, 106, 111]. The results clearly 

demonstrated that the morphological PB models can predict crystal growth of individual faces, hence 

crystal shape and size distributions at different time stages during a crystallisation process. 

Protein crystals have significant benefits in the delivery of biopharmaceuticals. Although many 

different experimental techniques have been employed to investigate protein crystallisation, the 

majority has focused on fundamental investigations at the molecular and single crystal levels. Studies 

on modeling the protein crystal growth behavior using PB are still scarce and limited to a size 

definition for a particle as its volume equivalent diameter of a sphere, neglecting crystal morphology 

information [133]. Liu et al. [105, 106] demonstrated that simulation of protein crystallisation using 
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morphological PB model can potentially provide a useful tool for studying the growth behavior for the 

whole population of crystals in a crystalliser, helping the formation and manufacture of protein 

crystals. The methodology for protein crystallisation process modeling has been validated with a 

HEW (hen egg-white) lysozyme protein as an example using literature data. Further studies [106] 

using morphological PB have been carried out to investigate the effect of seed loading and cooling 

rate on supersaturation, and crystal size and shape distributions during crystallisation processes of 

HEW lysozyme crystals. Growth rates of individual faces and final crystal size and shape distributions 

were examined under varied seeding and cooling conditions. It was found that for growth only 

crystallisation, desired crystal size and shape can be obtained by coordinative manipulation of the seed 

loading and cooling rate: low seed loading and high cooling rate lead to large crystals of low aspect 

ratio, but care has to be taken to avoid nucleation and major shape change such as width becoming 

larger than the length. The interesting results not only demonstrated the effectiveness of 

morphological PB simulation for protein crystallisation but also provided useful knowledge for 

process optimization and control. 

Multi-dimensional PB models have only been investigated for crystallisation processes. Their 

application to processes such as granulation and milling that produce irregularly shaped particles has 

not been attempted. This does not imply that particle shape is not important for these processes. It is 

most probably because it is much more difficult to accurately define the shape of irregularly shaped 

particles than for crystals, and therefore, how the multi-dimensional PB models can be applied to 

these processes is not obvious. A new methodology for carrying out particle shape-based PB modeling 

was developed via using only a small number of size dimensions, but misses little particle shape 

information [96]. The method is based on principal component analysis (PCA), which uses principal 

components (PCs) to describe the particle shape so that PB modeling can be carried out in a 

transformed, latent variable domain, or PC space under reduced dimensions. The simulated results 

[96] demonstrated that morphological PB modeling can be effectively performed in the transformed, 

latent variable space and the complicated real particle shape at any time of simulation can be 

reconstructed with high fidelity from only a few PCs. Therefore, the PCA-based morphological PB 

approach [96] has made it potentially realistic to carry out particle shape-based PB for particulate 

processes with irregularly shaped particles. 

Although the developed MPBM techniques represent a significant step forward, there is still 

knowledge gap in the prediction and measurement of nucleation. Existing models for nucleation 

prediction (e.g. crystal size (diameter) distribution) are largely semi-empirical, and on-line 

characterisation of nuclei is still difficult. Little work has been done on the prediction and 

measurement of the nuclei shape distribution [134]. Therefore it requires further research in this area.  
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5. Characterisation of Faceted Crystal Growth Kinetics 

Crystal facet growth kinetics, i.e. the growth rate (m/s) of an individual face as a function of operating 

conditions and other factors (e.g. supersaturation, solvent, impurity, temperature, crystal size etc.), 

term g in equation (1), is key information in MPBMs. Crystal facet growth kinetics can be considered 

as such properties as equivalent to hear transfer coefficient in heat transfer, or mass transfer 

coefficient in mass transfer or phase equilibrium coefficients.  

Methods to measure or estimate the crystal facet growth kinetics can be grouped into four techniques, 

as depicted in Figure 5: direct measurement in a crystal growth cell by observing the growth of a few 

single crystals, statistical estimation based on measurement in a stirred tank crystalliser where crystals 

constantly move, estimation by combining model identification, morphological PB simulation and 

crystallisation experiments, as well as first principle estimation.  

5.1 Facet growth rates of single crystal 

Morphological PB models require accurate growth kinetic equations of internal individual faces to be 

available. One method of obtaining crystal facet growth rate as a function of operational conditions 

such as supersaturation and impurity is to experimentally observe and measure the growth of a single 

crystal or a few crystals in a small cell using microscope as described in the work of Kitamura and 

Ishizu [135, 136]. A single crystal of LGA Į or ȕ form prepared by batch crystallisation was mounted 

in a growth cell and measurements were performed at 298K in flowing solution. The crystal size 

variations in individual directions were recorded by using a microscope and a video-TV system, and 

used to calculate faceted growth rates. The solution concentration of the flowing stream varied 

between different experimental runs but was kept constant for each run. Therefore the faceted growth 

rates can be linked with solution concentration (supersaturation). Durbin and Feher [137] constructed 

a flow system to measure protein crystal growth rates under well-defined conditions. The protein 

solution in the system was recirculated by a peristaltic pump through a glass crystallisation cell with 

continuous filtration. The cell was flat with typical inner dimension of 0.6 mm × 6 mm × 20 mm, and 

mounted on the temperature-controlled stage of an inverted microscope equipped with a video camera 

and a time-lapse recorder. The solution temperature in the crystallisation cell was maintained at 24oC 

with the average flow velocity in the cell being 0.15 m/s. Crystals were nucleated and grew to a size 

of 50 ~ 100 µm in am unstirred solution, then protein solution at the desired concentration was flew 

through the cell for crystal growth measurements. The experiments obtained growth rates of HEW 

lysozyme for different crystallographic faces. The growth rates obtained from this type of experiments 

are based on single crystal or few crystals, which differs from the operating conditions in crystallisers. 

In addition, the small size of such cell makes it difficult to continuously monitor and measure 
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concentration e.g. by putting an ATR-FTIR probe into it. New generation of growth cell system is 

being developed to measure faceted growth rates of crystals and also record the evolution of crystal 

shape with option for in-situ solution concentration measurements [70] . Figure 6 shows example 

images of crystal growth in a cell captured by individual 2D cameras of a stereo vision imaging 

system for a chemical and a protein and 3D shape reconstructed for the protein crystal. The polar plots 

of crystal dissolution rates were experimentally determined from the recorded crystal images during 

the dissolution of a single crystal in a hot-stage system [110]. The study demonstrated that polar plots 

method can be used to obtain the crystal evolution during growth and dissolution, and their rates of 

individual faces. Doherty and co-workers also developed some theoretical methods to predict crystal 

growth, dissolution and the effect of additives on crystal habit [76, 109, 138]. 

With the recent development of 3D imaging and image analysis for 3D shape reconstruction as 

discussed in Section 3, the accurate measurements of individual face evolution of single crystals and 

their faceted growth kinetics in solution can be carried out using a stereovision imaging system 

integrated with a growthcell set-up as described in [1]. The growthcell system has a jacketed reactor 

with a volume of 150 mL and the solution height of the reactor being about 20 mm. The flat cover of 

the growthcell is made of high-transmission and low reflection silicon glass to allow maximum light 

passing through it without light intensity reduction, and also has several ports for installing 

measurement probes including a PT100 probe for temperature, an ATR-FTIR probe for solute 

concentration, a pH probe, and also a port for adding seeds if necessary. The flat bottom of the 

growthcell allows single crystals laying on it and also avoids light diffracting. The solution 

temperature in the growthcell is controlled by the circulating liquid from a Julabo heating/cooling 

circulator. The growth process of the single crystals (from seeds or spontaneous nucleation) is 

recording by the 3D stereovision imaging system and the recorded stereo images are then going 

through the image processing steps at each processing time including image multi-scale segmentation, 

crystal edge/corner identification and correspondence, and stereo triangulation for 3D coordinates 

calculations. The 3D shape and size of each single crystal reconstructed for the whole processing 

period can directly be used to calculate the size evolution of each face (hence crystal shape evolution) 

and the faceted growth rates. Combining with the measured solute concentration using the FTIR probe 

will produce the crystal faceted growth kinetics. In a special case with a particular compound [65], a 

hot-stage reactor with a 2D imaging system produced the faceted growth kinetics with the help of 

some special mathematical manipulations. It should be noted that in these cases the single crystals are 

assumed to be stationery or move within the camera view field very slowly, which means that the 

solution in the growth cell is stirred at a zero or very low speed, hence the boundary layers 

surrounding the single crystals being thicker than that in a practical crystalliser. Therefore the 
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obtained face growth kinetics may not accurately represent that in a reactor. Further research is 

definitely needed to take into account the effect of the hydrodynamics and mixing in a crystalliser on 

the faceted growth kinetics. As the faceted growth kinetics is directly affected by the solute 

concentration on each face, the actual characteristics around the single crystals will play an important 

role in accurate determining faceted growth kinetics and can be simulated by computational fluid 

dynamics (CFD) with the solute transport modelling. Therefore the integration of molecular 

simulations, CFD with mixing modelling and single crystal growth experiments with stereovision 3D 

imaging techniques will provide more realistic and accurate facet growth kinetics. 

5.2 Growth rate estimation of crystals grown in reactors 

Some studies were carried out with success in literature [19, 60] to obtain facet growth kinetics using 

on-line imaging for real-time characterisation of particle shape. A feasibility study was conducted to 

estimate the growth rates of needle-shaped ȕ-form LGA crystals in two dimensions in a crystalliser 

under a cooling rate of 0.1oC/min [60]. Under the experimental operating conditions, the length 

growth rate was estimated as between 2.44 ×10−8 and 3.0 × 10−8 m/s, while the growth rate for the 

width is between 0.558 × 10−8 and 0.502 × 10−8 m/s. If a semi-empirical kinetic model is used, the 

obtained kinetic parameters are close to a dislocation-controlled mechanism [12]. This proof of 

concept study demonstrates that it is possible to measure real-time crystal growth of individual faces. 

For a given crystal polymorph with a structure more complicated than needle-like, the size of an 

individual face can be defined with the distance of that face from the crystal centre as shown in Figure 

4. The growth rate of each face can be estimated according to the variation of size distribution in the 

corresponding facet direction. To obtain the faceted size distribution, it is necessary to accurately 

measure crystal shape using 3D imaging system, image analysis and reconstruction. For growth rate 

measurement of individual faces in a reactor based on on-line imaging, a time window is used, i.e. 

using images not only at the current time but also those before the current moment, the window width 

can be defined by users [60, 70]. Although some advances have been made [45, 50, 64, 65, 69, 73, 

139, 140], further research is definitely needed to address this issue, and also the effect of secondary 

nucleation, breakage/aggregation, high-solid concentration, and co-existence of multiple polymorphic 

forms on accurate estimation of facet crystal growth rates. 

Crystal growth rate can be affected by many factors including solution temperature, cooling rate 

(supersaturation), seeding (amount, size distribution), impurities, secondary nucleation, breakage and 

aggregation etc., which makes it very difficult to carry out direct measurement and model 

identification studies in a serial pattern due to the lack of precise control of all the factors between 

experiments. This kind of studies is also very time-consuming and cost. Therefore, for the efficient 

estimation of faceted crystal growth rates, high throughput (HT) techniques can play an important role 
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in precisely controlling the process operating conditions. The growth system constructed by Durbin 

and Feher [137] used 4 flowing growth cells which, however, could not be individually controlled to 

provide different profiles for temperature, velocity etc. Talreja et al. [141, 142] developed a kinetic 

model capable of predicting changes in the number and size of protein crystals as a function of time 

under continuous evaporation, and tested the model with experimental crystal growth data of HEW 

lysozyme using a HT crystallisation platform with 2 × 5 crystallisation compartments. The predicted 

and observed rates of crystal growth are in excellent agreement, which suggests that kinetic constants 

for nucleation and crystal growth for different proteins can be extracted by applying a kinetic model in 

combination with observations from a few evaporation-based crystallisation experiments. However, 

the feasibility of applying HT crystallisation equipment and/or microfluidic techniques to study 

crystal growth and nucleation processes of organic fine chemicals, in particular involving additives, 

has rarely been investigated. 

5.3 MPBMs based model identification for estimation of crystal facet growth rates and kinetics 

Model identification is an attractive alternative for obtaining crystal growth kinetics, and has been 

studied in 1D PB modelling [88, 143-145]. In applying model identification approach to 2D PB 

modelling, Braatz et al. [146] applied 2D PB model experiment data collected by in situ ATR-FTIR 

spectroscopy. Oullion et al. [20, 147] also investigated 2D crystal growth model by minimizing the 

error between the simulation results and experimental data in-situ ATR-FTIR spectroscopy and off-

line imaging analysis. In their work, to obtain the intermediate crystal shape information, a sampling 

chamber was used to collect the crystals and they were then washed with fresh water, dried under 

vacuum. Some of the crystals were selected for image analysis. One group of kinetic parameter was 

obtained for further analysis of the secondary nucleation mechanism. Hu et al. [143] developed a 

optimisation-based approach to estimate the kinetic parameters of crystal nucleation and growth from 

batch cooling experiments of ammonium sulphate. The kinetic parameters were estimated using the 

crystal size distribution of final-time product, the initial concentration and the experimental 

temperature profile collected on-line in the batch crystallisation process, and in good agreement with 

results from other publications. Abbas and co-workers presented a method for the modelling and 

identification of antisolvent crystallisation kinetics of sodium chloride [145] and also ammonium 

sulphate kinetics for crystallisations under cooling mode [144]. 

The method for identification of crystal facet growth models can have the following steps [64]: (1) 

characterization of the shape distribution of seed crystals; (2) performance of crystallisation 

experiment in a crystalliser with operating conditions measured e.g. supersaturation and cooling rates; 

(3) characterization of the shape distribution of the product crystals at the end of the crystallisation 

experiment; (4) obtaining the shape distribution data from the seed crystals and product crystals 
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measurement, and applying the morphological PB equations to fit the parameters of the facet growth 

kinetics models through optimization; (5) validating the facet growth kinetic models and 

morphological PB models using further crystallisation experiments.  In model identification based on 

morphological population balance models, the measurement variation can be minimised by selecting 

sufficiently large size of particle samples, following exactly the same experimental procedure in 

characterising the shape distributions of seeds and final products, and by repeating a measurement 

several times in steps (1) and (3).  These measures can help but more rigorous statistical methods such 

as leave one out technique should be used to ensure the confidence in parameter estimation, but not 

yet reported in literature. In the study [64], different PAT sensors were used including ATR-FTIR 

spectroscopy for concentration measurement, turbidity probe, thermocouples, and on-line high-speed 

camera imaging system. The shape and size distributions of the added seeds and the dried product 

crystals of ȕ-form LGA obtained at the end of the crystallisation process were characterised by the 

Malvern PharmaVision system 830 [64], an image-based particle analyser that allows the collection of 

image data of particulate materials. For the seeded cooling crystallisation process of LGA ȕ-form 

crystals, nucleation, breakage and agglomeration were assumed to be negligible. Therefore Eq. (4) 

with N = 2 can be used to model the LGA crystallisation process with the growth kinetic parameters: ܩ௅ ൌ  ݇௚ಽɐ௚ಽL௤ಽ  ǡ ௐܩ ൌ  ݇௚ೈɐ௚ೈW௤ೈ       (6) 

To optimize the growth kinetic parameters in Eq. (6), ș = [kgL, gL, qL, kgW, gW, qW]T, the errors between 

the model-predicted data and the experiment data were minimized with the objective function as 

follows: 

Obj(ș) = Ȝcİ[ı(ș)] + Ȝfİ[fm(ș)]         (7) 

Where İ[ı(ș)] and İ[fm(ș)] are the quadratic error between the measured and model-predicted solute 

concentration and shape number fraction of particles respectively. Ȝc and Ȝf are empirical scalars, 

which were set as to balance the respective weights of the two criteria in the computed value of 

Obj(ș).The minimisation of objective function was calculated by a nonlinear least-squares Levenberg-

Marquardt optimisation algorithm and the results are in good agreement with those in literature  [64]. 

For an irregularly shaped particle, although several hundred size dimensions might be required to 

faithfully represent its shape and size, the size dimensions can still be reduced to a significantly 

smaller number of PCs, in the same way as reducing from 26 size dimensions to three PCs [96]. 

Therefore, model identification can be used to determine the growth rates of individual PCs, hence 

growth rates in faceted directions. Of course, there will be anticipated and unexpected new issues 

arising that have to be resolved to apply the proposed method to processes handling irregularly shaped 
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particles. An example of these issues is that the method requires the number of original descriptors 

representing shape and size for all particles, large or small, to be the same. These issues will need new 

research but the new PB modeling methodology proposed in the article has laid the foundation 

forward for future investigations. 

5.4 Crystal morphology prediction for growth rate estimation 

Crystallisation is a very important but complicated technique with many characteristics of the 

compound including polymorph, shape and size, purity and stability, etc. being established during the 

process [109]. However, due to the lack of in-depth understanding of the crystallisation process, in 

particular the growth and dissolution mechanism, and the effect of additives, impurities, solvents on 

the crystal growth in individual face directions, the accurate manipulation and control of crystal shape 

is still in the very early stage. A crystal is an ordered 3D array of elements (molecules, atoms, ions) in 

a long-range order and crystal shape is determined by the relative normal distances of each crystal 

faces. Early studies related faceted crystal growth to either crystal structure or the attachment energy 

of the crystal. The real growth process of a crystal face from solution can include the following steps 

[109]: a) transporting solute molecules from bulk solution toward the face; b) diffusing the molecules 

on the crystal face; c) desolvating the surrounding solvent molecules at the kink sites; d) incorporating 

the solute molecules into the kink sites; e) releasing the latent heat of crystallisation to the crystal and 

solution. The modified and extended BCF growth models [148] improved the capability of 

mechanistic prediction of crystal morphology including the concept of kink rate, in addition to the 

kink density, the theory of stable and unstable edges to account for both centrosymmetric and 

noncentrosymmetric growth units. The approach produced excellent agreement between the predicted 

crystal shapes and the experimental shapes for complex systems such as paracetamol and lovastatin 

[109, 138]. With the advances in molecular modelling, a breakthrough in the field of crystal growth 

may happen and the faceted growth rates of a crystal could be accurately predicted for real complex 

crystallisation systems. 

6. Optimisation and Control of Crystal Shape and Size Distributions 

Although the focus of the review is on crystal shape distribution (CShD), it is helpful to firstly review 

previous work on crystal size distribution (CSD), since the methods can be adapted to CShD.  

6.1 Optimisation and control of crystal size distribution (CSD) 

In cooling crystallisation processes, solution temperature is reduced at a rate to generate and maintain 

certain supersaturation levels. If supersaturation is too large, unstable polymorphs become more likely 

and the nucleation rate increases which favours the formation of smaller crystals and a broader size 



26 
 

distribution. Higher supersaturation is necessary to cause crystallization to commence and to avoid the 

economic cost of longer process times. It is also common to avoid nucleation by seeding with crystals 

of the desired polymorphic form, which will then grow. A large number of papers about crystallisation 

process control have focused on the control of some properties (e.g., weight, mean, size, aspect ratio) 

of the CSD [84, 85, 149-151]. Fujiwara et al. [151] reviewed the application of the first-principles and 

direct design methods to optimize and control pharmaceutical crystallisation processes. Either 

approach can be implemented with concentration-vs-temperature or temperature-vs-time setpoints, 

with these implementations having very different sensitivities to disturbances such as deviations in 

seed characteristics and changes in the contaminant profiles in the feed streams. In order to control the 

crystal size distribution, most of the theoretical or direct design methods focus on the significant 

driving force, supersaturation. Studies have been made to produce crystals with different size 

properties through supersaturation control using ultrasonic [152], ATR-FTIR [153]. Until now, 

supersaturation control has been successfully used to obtain narrow particle size distributions [154]. 

Recently, precision manufacture of crystalline products with desired shape demands on-line 

techniques for real-time monitoring and control of the evolution of crystal morphology [19]. There is 

some work regarding the methods to modify the crystal size by controlling the supersaturation level 

during crystal growth [18, 155] or by using impurities to manipulate the shape of crystals for sodium 

chlorate, which also represents an important direction since the use of impurity is considered in 

industry as an effective handle for size control. Several studies were carried out to develop some 

robust closed-loop control strategies (for example [1, 64, 139, 156-160]) with the help of the advanced 

in-situ sensors developed in last decade. But very few are based on proper design of feedback control 

system to achieve the crystal population shape. 

Most of the optimal operation profiles based on the first principle method are generated from the 

population balance model. Traditionally the stopping criterion for model accuracy has been based on 

engineering guesswork [161]. A data-efficient method for model development is an iterative 

procedure involving optimal experimental design, automated batch experiments, parameter estimation, 

and model selection [162]. Once the model is sufficiently accurate, a dynamic optimization algorithm 

can be used to compute the physical design variables, initial conditions, startup procedures, setpoints 

to lower level feedback control loops, and the feedback control system. Several optimal control 

algorithms have been developed to provide robustness to parameter and control implementation 

uncertainties [151, 163]. Costa et al. [164, 165] considered a procedure to minimize standard deviation 

of the final CSD using the successive quadratic progeamming coupled with the discretisation of the 

control variables, and also the generic algorithm coupled with parameterization of the control 

variables. Mazzotti et al. [166, 167] used model-based optimization techniques to control CSD in 
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batch cooling crystallisation of paracetamol in ethanol and also the combined cooling/antisolvent 

crystallisation of acetylsalicylic acid in ethanol-water mixtures. Rohani and co-workers (see for 

example [168-174]) minimized the optimization objective function with respect to a parameter vector 

temperature input, subject to the mass balance dynamics as well as the PB equation to obtain optimal 

cooling policy for product quality control. They also developed real-time model-based optimal control 

of anti-solvent semi-batch crystallisation processes and seeded batch crystallisation processes using 

real-time single and multi-objective optimization, rigid logic and fuzzy logic control methods [171-

175]. Kramer and co-workers [158, 176] applied dynamic optimization for throughput maximization 

of an industrial semi-batch crystallisation process with a control strategy based on a non-linear 

moment model and the resulting problem being solved by a non-linear programming algorithm. Shi et 

al. [91, 133] developed a hybrid predictive control strategy using logic-based switching between 

model predictive control and a fall-back bounded controller with a well-defined stability region. The 

study demonstrated the effectiveness via the reduction of total volume of fines compared to a linear 

strategy, and also the robustness with respect to modeling errors. 

The vast majority practice in the pharmaceutical industry use trial-and-error to experimentally 

determine an operating profile which lies within the metastable zone and gives acceptable crystals. A 

much more efficient approach is direct design, which uses feedback control to follow a setpoint 

supersaturation curve in the metastable zone without accurate kinetics requirement. The method has 

been studied in the literature (see for example, [150, 151] with a cascade control scheme being used 

for the concentration control and ATR-FTIR for the concentration measurement. The closed-loop 

control strategy used to implement direct design is most accurately referred to as concentration (or 

supersaturation) control. Nagy and co-workers [159, 177] used temperature cycling and optimal seed 

recipe with model-based optimization control strategy for crystal size distribution control of seeded 

batch cooling crystallisation processes. The optimization process uses PB equations with both open-

loop and closed-loop schemes being evaluated. Tan and co-workers [157, 178] applied seeding and 

constant supersatuation control strategy using ATR-FTIR and also internal seeding technique in anti-

solvent crystallisation to achieve consistent product quality including purity and CSD. Braatz and co-

workers [179] compared simulations and experiments between the classical temperature control 

approach with the concentration-control approach. The latter approach, which uses PAT concentration 

measurement instrument such as ATR–FTIR spectroscopy and feedback control to follow a setpoint 

trajectory in the solution concentration as a function of temperature, results in reduced sensitivity of 

the product quality to certain disturbances. The concentration feedback control [180-182] was applied 

to batch cooling crystallisation of LGA for the selective crystallisation of the metastable –form, and 
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also anti-solvent batch and semi-batch crystallisation of paracetamol crystals with experimental 

evaluation. 

Detailed simulation and experimental studies showed that by controlling concentration instead of 

temperature profile, the control strategy can have much lower sensitivities to most practical 

disturbances and to variations in the nucleation and growth kinetics [183]. Barrett et al. [61] proposed 

an approach to use solute-specific ATR-FTIR absorption peak heights for solute solubility and 

dissolved concentration, in turn, supersatuation, for the optimization of cooling crystallisation 

processes. Louhi-Kultanen and co-workers [155, 156, 184, 185] investigated the feedback control of a 

reactive semi-batch precipitation process of LGA, and proposed a control structure to control the 

driving force of the reactive crystallisation using the feeding rate of the added acid. The solution 

concentration, obtained from PAT instruments such as MID-IR and ATR-FTIR, and pH were used to 

calculate the feedback information in the closed-loop control of the process. The developed feedback 

process control strategy provided effective control to form the desired polymorphs. 

6.2 Crystal shape optimisation and control using MPBMs 

Morphological PB model describes the dynamic evolution of particle shape as well as particle-size 

distribution for all crystals in a crystalliser as a function of the operational conditions, i.e., 

supersaturation or reactor temperature, therefore, an optimal supersaturation or temperature profile 

can be derived, which can lead to desired particle shape and size distribution. This provides a feasible 

mechanism for crystal shape control that can be easily implemented because an optimal temperature 

or supersaturation profile can be tracked by a simple feedback or a cascade control system through 

manipulating the coolant flowrate in the reactor jacket. 

For potash alum crystals as shown in Figure 4, suppose the desired shape for the crystals are 

x/y = a1, y/z = a2           (8) 

where a1 and a2 are the desired aspect ratios between x and y, y and z, respectively. 

Then the optimization problem can be formulated as 

          
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subject to 

rL  r(t)  rU            (10) 
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where r(t) is the cooling rate with the lower bound rL and the upper bound rU; zyx ftzyx
,,

),,,(  

corresponds to the sum of all number population densities at t= tf across the discrete grid of the whole 

parameter space; and (x, y, z, tf)is the predicted final number population density function using the 

morphological PB model. Apparently, except for the imposed constraint on cooling rates (Eq. 

(10)),there are many other ways to define objective functions concerning particle shape, size 

distributions and all the morphological forms, such as state constraints for specifying the crystal shape 

and size distribution to formulate a typical model predictive control scheme [91, 133]. 

Optimization is performed using Eq. (9) as the objective function and setting a1 = a2 = 1. An optimal 

temperature profile and the corresponding supersatuation trajectory can be obtained with the pre-

defined lower and upper bounds of the cooling rate. The shape evolutions of a potash alum crystal 

demonstrate that the initial 26 faces remain at the end of the simulation, but the shape and size in 

every face direction are changed. The value of (a1 - 1)2 + (a2 - 1)2 approaches zero as the operating 

condition follows the optimal supersaturation profile [111] which indicates that its morphology does 

grow to approach the desired morphology. This study demonstrated that the model can be used to 

derive optimal supersaturation and temperature profiles for a given objective function related to 

particle shape, hence providing a closed-loop methodology for crystal shape tailoring, which can be 

easily implemented via a standard feedback or cascade control system using jacket cooling water. 

Work has also been carried out to investigate an alternative means for manipulating faceted crystal 

growth by adding impurities using the morphological PB model [102, 186, 187]. The same 

optimization procedure has also been used for crystal shape control of LGA ȕ-form crystals grown 

from solution with the growth kinetic parameters obtained from model identification [64]. Liu et al. 

[104] also carried out multi-objective optimization of protein crystal shape and size, in which the 

aspect ratio of the mean normal distances from two independent faces (101) and (110) representing 12 

faces of the crystal of hen egg white lysozyme was identified as the objective function with the lower 

and upper boundaries of the cooling rate to constrain the optimisation. The genetic algorithm was used 

to perform the optimization. Christofides and co-workers [103] also investigated the modelling and 

control of crystal shape in continuous protein crystallisation using again the aspect ratio of mean sizes 

between faces (101) and (110) as the objective function. The formed objective formulation includes 

the weighted aspect ratio term, growth ratio term and jacket temperature change term. By adjusting 

the weight for each term, the unnecessary aggressive control action could be avoided.  

Closed-loop control of crystal shape in a crystalliser, however, has long been considered to be too 

challenging to achieve mainly due to the limitations of available measurement techniques and 

modelling capabilities, hence its research being relatively scarce [178]. However, there have been very 



30 
 

promising advances recently in both on-line characterization and modelling of crystal shape evolution 

for crystallisation processes, which could ultimately lead to practical solutions to closed-loop shape 

control. Ma et al. [188] presented a methodology for crystal shape control and optimization in cooling 

crystallisation of potassium dihydrogen phosphate, which is based on optimizing the temperature 

profile and other influencing factors such as the seeding mass or the dissolution amount. A 

multidimensional PB model was developed in their work, which used two characteristic size 

dimensions to represent the shape of a twelve-faceted crystal. For the same chemical, Yang et al. 

[155] proved experimentally that the shape for a population of crystals was able to be tailored by 

manipulating the supersaturation profile. In addition to manipulating the temperature or 

supersaturation profile in cooling crystallisation, another means of influencing the shape of growing 

crystals is the introduction of impurities. An generic model control strategy for on-line dynamic 

optimization and batch-to-batch optimization has been studied for improving the product quality of a 

seeded batch cooling crystallization [189]. Patience and Rawlings [18] investigated the use of 

impurities to manipulate the shape of crystals for sodium chlorate, which also represents an important 

direction since the use of impurity is considered in industry as a very effective handle for shape 

control. A model predictive controller with PB modelling of protein crystallisation was used to 

produce crystals with a desired shape distribution [40]. Ma [190] developed a methodology to 

generate an optimum operation profile of a crystallisation process based on the optimization of first-

principle model with the objective function being the length and width ratio for validation simplicity 

and the optimisation being subject to upper and lower bounds of cooling rate, operating temperature 

and time. 

It is important to note that theoretically speaking, when the process follows the optimal temperature 

profile and concentration trajectory, the final product should have the size and shape distributions as 

the optimised targets. However, during crystallisation processes, there exist uncertain disturbances 

from temperature, concentration, impurities, etc., and the accuracy of modelling 

techniques/parameters, which can cause batch-to-batch variations even using the same optimal 

profiles. Therefore it is crucial to introduce on-line MPBM-based optimization method to 

continuously update the crystal size and shape evolution with other monitoring parameters. This will 

bring the crystallisation process to the trajectory for the desired final product with optimal 

characteristics. As the on-line optimization technique requires the MPBM-based optimization to be 

carried out for each update, the solution speed may affect how frequently the update can be performed. 

Higher frequency of the update and re-optimisation, higher chance obtains the desired product. 

However, the optimization based on MPBM is time consuming, further research is needed to improve 
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computational speed with faster processors, parallelised algorithms, better optimisation solution 

techniques etc. 

It also needs to be mentioned that the optimization techniques used for crystallisation processes are 

only based on the mean size (diameter or faceted) of crystals, not the real crystal shape distributions as 

they normally did not include the other distribution parameters such as standard deviation if a normal 

(Gaussian) faceted size distribution can be used to represent the actual distribution. When using a 

target shape as the objective function, the mean sizes of individual faces from their size distributions 

or the ratios between the mean sizes at each optimizing time are normally used as the optimization 

variables as described in literature [103, 104, 111]. If the shapes of size distribution for individual 

faces are conserved during the crystallisation processes, for example the crystal growth from solution 

is dominated by pure growth mechanisms with little effects from size itself, secondary nucleation, 

aggregation and breakage, the standard deviation for each size distribution of a crystal face will be 

kept the same over the whole crystallisation process. Therefore the mean sizes or their aspect ratios 

could truly represent the evolution of each size distribution in population, hence the shape distribution 

of crystals in the entire crystalliser. However, in most practical crystallisation processes, the inclusion 

of secondary nucleation, agglomeration and breakage phenomena can lead to the variation of standard 

deviation of each faceted size distribution during crystallisation process. This will require the 

optimization technique to take into account each standard deviation in addition to their corresponding 

mean size for each face, hence forming a real multi-objective optimization problem. 

It is important to note that growth rate dispersion due to size dependence and/or crystal imperfection 

such as dislocation and/or solvent inclusion etc. will directly affect the optimization and control of 

crystal shape/size distributions, and also morphology transformations. The theoretical prediction and 

experimental measurements of crystal growth rates and the rate dispersions can provide crucial input 

to the MPBM modelling for control of crystal evolution in reactors. 

6.3 Manipulated variables for crystal shape optimisation and control 

As discussed in the previous sections, the successful control of objectives such as crystal size, shape, 

form, and purity can be achieved by using manipulated variables that affect the supersaturation level 

in a crystalliser. For example, cooling and antisolvent crystallisers manipulate the crystalliser 

temperature and solvent composition, respectively, to change the solution saturation concentration, 

hence the supersaturation level. In addition to supersaturation, another effective means to influence 

crystal morphology is the use of additives or impurities, also called crystal growth modifiers (CGM). 

CGMs can have strong influence on crystal growth, production throughput, yield and robustness of 

formulations. The presence of CGM can change the surface chemistry of crystals growing from 
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solution, resulting in changes of the relative growth rates of the individual crystal surfaces, leading to 

changes in crystal shape as well as size distribution of final crystalline products. This will have 

profound impact on down-stream manufacturing processes such as filtration. Quantitative knowledge 

on their influence can be used not only to develop strategies for their removal or moderating their 

effects, but also to possibly make positive use of CGM as a manipulated variable for optimization and 

control of crystal growth processes. The effect of CGM on crystal growth, including the effects on the 

growth kinetics of individual faces, is a very complicated process and known to be highly selective: 

on the one hand, some impurity may inhibit the nucleation or growth of the crystals of one compound 

while promoting the nucleation or growth of the crystals of the other compound; on the other hand, 

the influence of the impurities on a single crystal may only demonstrate on certain crystallographic 

faces. Furthermore, the influence of impurities on crystallisation is also closely correlated with 

process environments such as supersaturation, cooling rate and pH [191]. The mechanism and kinetics 

for the effect of the impurities on crystallisation were studied intensively in the literature. Weissbuch 

et al. [192] investigated the effect of impurities on nucleation, growth and dissolution of crystals at the 

molecular level, and developed the tailor-made additives for blocking, docking and disrupting 

molecular packing arrangements during crystallisation. Molecular modelling was thereafter widely 

applied to explain the mechanism for the effect of the impurities on crystallisation of various 

compounds [10, 193]. Davey et al. [194] proposed guidelines for selecting suitable additive molecules 

for preventing the appearance of undesirable polymorphs by conformational mimicry. It was 

concluded that any successful additive molecule should have the appropriate conformation for taking 

part in the bonding network with minimum disruption. Along with the success of using molecular 

modelling to explain the mechanism for the effect of impurities on crystallisation, kinetics relating the 

concentration of the added impurity as well as the supersaturation and faceted growth rates of crystals 

was also studied in literature. Kubota and Mullin proposed a kinetic model, the Kubota-Mullin model, 

to describe the faceted crystal growth rate as a function of impurity concentration [195]. Kubota-

Mullin model or similar kinetic models were further applied in literature to quantify the macro-scale 

effect of CGMs on faceted growths of various crystals including sodium chloride, hydroquinone, 

sucrose and LGA. Being able to model such complicated process of CGM effect for a population of 

crystals in a crystalliser is no doubt of great importance. 

An earlier experimental study on the crystallisation of benzamide in the presence of impurities 

demonstrated that controlled modification of crystal habit was feasible by adding tailor-made 

impurities [196]. The influence of added impurities was mainly studied for single crystals to quantify 

the kinetic effect individually rather than for the population of crystals in the crystalliser. Patience and 

Rawlings [18] designed a closed-loop feedback control system for shape control in which the shape 
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was monitored by an imaging system, and the control was achieved by manipulating the flow rate of a 

habit modifier stream. Poornachary et al. [193] studied the effects of added amino acids on the habit 

modification in glycine crystals obtained via solution crystallisation. A molecular modelling approach 

using the atom-atom potential energy method is described to rationalise the experimental observations. 

Crystal growth is monitored in-situ using atomic force microscopy, providing insights into the 

interaction of impurities at the crystal-solution interfaces and consequently correlating the ‘pinning’ 

effect of impurities at the molecular scale to the macroscopically observed habit modification. 

Wan et al. [186] studied the feasibility of using CGM  as an additional handle (manipulated variable), 

in addition to cooling rates, for manipulating crystal shape distribution for a population of crystals 

grown from solution. Morphological PB equations were built to model the effect of L-phenylalanine, 

as the CGM, on the shape changing behaviour of a growing crystal population during seeded 

crystallisation of -form LGA. The growth rate in the length direction is a function of CGM 

concentration as well as of the supersaturation, while the growth rate in the width direction only 

depends on the supersaturation. Both simulation and experiments demonstrated that the presence of 

the CGM, L-phenylalanine, inhibits the growth in the length direction, but has little effect on the 

width. This study provides a proof of concept of applying morphological or multi-dimensional PB 

models for the assessment of CGMs, and for modifying the morphology of products in relation to their 

commercial effect. 

7. Final Remarks 

The key topical areas reviewed in this paper are morphological population balance models (MPBMs), 

measurement and estimation of crystal facet growth rates and kinetics, on-line measurement of crystal 

shape and shape distribution, as well as multi-objective optimisation based on MPBMs and model-

based closed-loop control of crystal shape distribution (CShD).  These developments have paved the 

way for achieving the ultimate goal of fully automatic closed-loop control of CShD. The 

achievements have been reviewed. Although suggestions for future research have been made in the 

body of review, it is important to reiterate the key future research needs: 

1. On on-line measurement of crystal shape and shape distribution, current 2D probe type imaging and 

non-invasive imaging instruments have provided very valuable information. There is still scope for 

further improvement in resolution, lighting, as well as image segmentation analysis. But clearly 2D 

imaging is still not satisfactory. For example, if the crystals are needle like, it is likely the length 

measured will be smaller than the real size. Non-invasive [69, 70] and probe like 3D imaging based on 

stereo vision idea holds great potential. Research on the 3D shape reconstruction algorithms to 

improve the accuracy, speed, robustness and tolerance to noise and image quality is needed. 
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2. On the measurement and estimation of crystal facet growth rates and kinetics, four approaches were 

reviewed (as shown in Figure 5). Direct measurement in a growth cell is particularly attractive since it 

promises to measure the real facet growth kinetics, just like measuring heat transfer or mass transfer 

coefficients. Such an instrument is under development (Figures 2 and 3) and the challenge is how to 

measure the solution concentration next to the crystal face since stirring can cause the crystal under 

observation to move. Fixed a crystal in a position is how previously people do but it means the crystal 

needs to be sufficiently large. 

3. Study on nucleation is clearly needed in order to develop models and instruments to measure the 

nuclei shape and shape distribution. Current nucleation models can only predict size (diameter) 

distribution and are semi-empirical. On-line imaging to measure crystal shape and CShD fail when 

coming to the small size as nuclei. SEM, TEM and AFM microscope are difficult to be used for on-

line measurement. A new nucleation model combining with molecular modelling, together with new 

instruments for the measurement of nucleation processes at nano-size scale is demandingly needed. 

4. MPBMs need to consider aggregation and breakage phenomena, in addition to growth and 

nucleation. How the shape information can be used to improve the aggregation and breakage models 

is open for research. 

5. Multi-objective optimisation based on MPBMs is time consuming. If it is to be used in on-line 

optimisation for on-line optimum and model-based control, research is needed to address the 

calculation speed issue such as through effective model reduction. 

6. Integration of MPBMs with CFD models offer potentially powerful tool for scale-up and process 

optimization. The speed of solution and optimization will obviously become even more challenging 

when MPBMs are fully integrated with CFD. 

7. Some laboratory based experimental studies using the approaches have been reported [51, 64], but 

more research on practical applications is needed. 

8. The paper has presented a framework for integrating the relevant topical elements to achieve 

model-based automatic control of CShD. New control strategies are also open for research.  

Finally, validation and application of the new methods and techniques are needed in order for them to 

become readily available tools that can benefit the industry.  
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Table 1. Numerical solution methods of population balance equations 

Algorithm Brief description Comments 

Method of 
moment 

To approximate the PB distribution 
governed by the PB partial differential 
equations using the moments of the 
distribution 

 Only for very simple systems 
 Example references: [114, 117] 

Method of 
characteristics 

To transform high-order PB partial 
differential equations to ordinary 
differential equations with the identified 
curves in the L-t plane 

 For simple cases 
 Example references: [108, 120, 121] 

Monte Carlo 
techniques 

To track the histories of individual 
particles subject to random behaviours 

 Computationally expensive 
 Example references: [122, 123] 

Discretisation 
methods 

To discretise the whole range of the 
particle size with finite element, finite 
difference/volume techniques 

 Numerical solution with high accuracy, low 
numerical diffusion and dispersion 
 Computational time may be an issue 
 Example references: [54, 82, 90, 95, 105, 
108, 111, 124, 127, 129-132] 

Others 

To use quadrature method of moments 
(QMOM), sectional quadrature method 
of moments (SQMOM), or combine 
QMOM with method of characteristics 

 Accurate solution with a concern of 
computational time 
 Example references: [114-117] 
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Figure 1. A framework integrating the topical elements to achieve model-based closed-loop control of crystal 
shape distribution in crystallisation. 

 

 

 

 

 
 
Figure 2. Conceptual layout of the stereo vision system (a) inserted into a crystalliser with a probe design (blue 
coloured) and (b) positioned outside of a crystalliser (red coloured).  

Seeded crystallization: CShD characterization of seeds; 
Unseeded crystallization: measurement or estimation  

of shape distribution of nuclei 

Crystal faceted growth kinetics 

Morphological 
population balance 
models (MOBMs) 

Optimum operating 
conditions (e.g. 

supersaturation curve) 

Closed-loop control 
(e.g. feedback or cascade) 
tracking optimum control 

condition 

Multi-objective 
 

optimization 

On-line 3D/2D imaging and image 
analysis providing real-time 

information about crystal shape 
and shape distribution (CShD) 

On-line optimization 
finding the optimum 

condition for the 
remaining time 
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Figure 3. Non-invasive stereo imaging monitoring a 20 Litre stirred tank crystalliser. 
 
 

 

 

 

 
 
Figure 4. Morphology of a potash alum crystal and the three-size characteristic parameters (x, y, z) to be used 
in a morphological PB model for face evolution simulation of potash alum crystals [95]. 
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Direct 
measurement 
using 2D/3D 
microscopy by 
observing growth 
of single crystals 
in a small cell, for 
example, [1, 65, 
69, 70, 135-137, 
197] 

 Using online 2D/3D 
imaging systems in a 
stirred tank 
crystalliser and 
making statistical 
estimation of faceted 
crystal growth 
kinetics, for example, 
[1, 19, 45, 60, 69, 70, 
73] 

 Model identification 
faceted growth kinetics, 
by combining model 
identification technique, 
morphological PB 
simulation and 
crystallisation 
experiments, for 
example, [20, 64, 143-
147] 

 Based on 
crystal 
morphology 
prediction 
techniques, 
for example, 
[109, 138, 
148] 

 
Figure 5.The approaches for the measurements and estimations of faceted crystal growth kinetics. 

 

 

 

 

 

Figure 6. Example images of crystal growth in a cell captured by individual 2D cameras of a  stereo vision 
imaging system for a chemical (top) and a protein (bottom left) and 3D shape reconstructed for the protein 
crystal (bottom right). 
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