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Abstract Territoriality is a phenomenon exhibited throughout nat@n the individ-
ual level, it is the processes by which organisms excluderstbf the same species
from certain parts of space. On the population level, it issbgregation of space into
separate areas, each used by subsections of the popuRtismng mathematically
that such individual-level processes can cause observaaatmn-level patterns to
form is necessary for linking these two levels of descriptioa non-speculative way.
Previous mathematical analysis has relied upon assumingainare attracted to a
central area. This can either be a fixed geographical paioh as a den- or nest-site,
or a region where they have previously visited. Howeverem¢simulation-based
studies suggest that this attractive potential is not regggdor territorial pattern for-
mation. Here, we construct a partial differential equa{®DE) model of territorial
interactions based on the individual-based model (IBMirfthose simulation stud-
ies. The resulting PDE does not rely on attraction to sphi@tions, but purely on
conspecific avoidance, mediated via scent-marking. We simalytically that steady-
state patterns can form, as long as (i) the scent does noy estar than it takes the
animal to traverse the terrain, and (ii) the spatial scaé wthich animals detect scent
is incorporated into the PDE. As part of the analysis, we ligva general method
for taking the PDE limit of an IBM that avoids destroying amyrinsic spatial scale
in the underlying behavioral decisions.
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1 Introduction

Territoriality is a wide-spread phenomenon throughoutiretA territory is an area
of space used exclusively by an organism, or a group of osga{Burt, 1943). It
is formed by deliberately excluding others of the same gse(alledconspecifics
from the area, either by aggressive confrontations or nhatugsent/(Adams, 2001).
In the last two decades, there have been a number of studieshitbw analytically
how territorial patterns can form from the movements andrattions of animals
(Lewis & Murray,[1993} Moorcroft & Lewis, 2006; Potts & Lewi2014). These use
mean-field approximations to model the animals’ behavideaisions as partial dif-
ferential equations (PDEs), and so enable territory foionatio be analyzed using
standard tools from PDE theoty (Murfray, 2002).

Despite their success in uncovering drivers behind spaepatterns (Moorcroftt all,
2006), previous analytical models assume an attractivenpiat influencing the an-
imals’ movements. This could either be fidelity to a centlatp such as a den- or
nest-site|(Lewi®t all, 11997), or a tendency to move towards places that the animal
has previously visited (Brisccet all, 2002). However, it is not clear that such an
attractive potential is in fact necessary for territorynfiation (Moorcroft, 2012).

In this paper, we present a PDE model of territorial pattermfation based purely
on conspecific avoidance, with no attractive potentialslbased on an individual
based model (IBM) of so-calle@rritorial random walkerqGiuggioli et al.,[20114).
Previous work used simulation analysis to demonstrateréeafly that territories can
form in this system (Giuggiokt all,[2011a). Here, we show analytically the circum-
stances under which territorial patterns may form. Speificnecessary conditions
for territorial pattern formation include

— spatial aversion to scent marks

— scent marks that persist for longer than it takes the anion@bterse the terrain,
and

— areaction to conspecific scent averaged over a small araaditbe animal.

As is often the case in ecological applications, it is impbttthat the discrete
spatial nature of each interaction is present in the modeir@t & | evin,[1994). In
the case of territorial interactions, this discreteneg#isrent in the fact that animals
have a non-zero perceptive radius for determining the paesef scent. As part of
this study, we develop a limiting procedure that enablegrdugsition from IBM to
PDE without losing this important aspect of spatially déterinteractions. This has
the potential for general use, as previous limiting procedtave often failed in this
regard|(Durrett & L evin, 1994).

The paper is organized as follows. Sectidn 2 derives the RDf& the IBM
model. SectionE]3 arld 4 investigate the conditions undechvbatterns may form.
Sectior b gives some concluding remarks.
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Fig. 1 Pictorial representation of the underlying model.The territory of each agent represents the sites
containing that agent’s scent. In panel (a), agent 1 is eralrhove to the right in the next step, since there
is active scent of agent 2 there. However, agent 2 can moviéhier elirection. In panel (b), we show the
case where the lattice spaciragjs halved, so response to scent is averaged over seveslgiten by the
grey ovals. As the lattice spacing is reduced by a factdr(af, so the response to scent is averaged over
2h(a) — 1 sites. In this situation, agent 1 has a higher probabilitynoving left than right, while agent 2
has equal probability of moving in both directions.

2 From the individual-level description to a system of PDEs
2.1 Description of model

The individual based model (IBM) is based on a 1D model ofttaiality which was
recently proposed by Giuggiddi all (2011a), but then slightly modified and studied
in detail byl Giuggioliet all (2011b) and Pottst all (2012). The model consists of
two agents moving on a 1D lattice. The agents representratisengle individual
responsible for territorial defense, or a group of indidtiumoving together, such as
a pack or a flock. For example, the former is appropriate whedetting fox (ulpes
vulped behaviour where the dominant male in each group marks acufes the
territory (Harris/ 1980), whereas the latter may be morerayate for modelling
wolf (Canis lupu} packsl(Lewis & Murray, 1993).

Agents move as discrete-time discrete-space nearedthmigrandom walkers,
depositing scent marks as they move. In the model of Giupeiall. (2011b), the
scent remains present for a finite amount of time, calledatttieve scent timeand
denoted by the symbdhs. Once this time is up, provided the lattice site has not been
re-scented, the mark is no longer considered by conspetifibe ‘active’. Agents
cannot move into any lattice site that contains the actieatsaf another agent (Figure

[a).
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Table 1 Glossary of symbolsThe first column shows the symbol, the second a definition tlaadhird
whether it pertains to the discrete (lattice) model or thetiooous limit or both. Note that some symbols
are used either as dimensional quantities or their dimalese equivalents, depending on the context (see
section 2.5).

Symbol | Definition Model

n Arbitrary lattice site Discrete

m Arbitrary time step Discrete
Ei(n,m) | For animali, the probability that there is conspecific scentram) Discrete

T Length of a single time step Discrete

a Lattice spacing Discrete
K(a) Probability that scent is deposited when the agent visigdtieé site Discrete
h(a) Number of lattice sites constituting the agent’s perceptadius Discrete
fM(n|n’) | Probability of agent moving ton next jump, given it is ab’ at timestepm | Discrete
U(n,m) Probability that agent 1 is atat timestepm Discrete
V(n,m) Probability that agent 2 is atat timestepm Discrete
P(n,m) Probability that scent of agent 1 is presenh at timestepm Discrete
Q(n,m) Probability that scent of agent 2 is presenn at timestepm Discrete

u Mean rate of scent decay Both

A Mean scent deposition over a unit of space in a unit of time Both

X Arbitrary position in continuous space Continuous
t Arbitrary continuous time Continuous
u(x,t) Probability density function of agent 1 at tirhe Continuous
v(x,t) Probability density function of agent 2 at tirhe Continuous
p(x,t) Probability that scent of agent 1 is presenfxat) Continuous
q(x,t) Probability that scent of agent 2 is presenfxat) Continuous
D Diffusion constant Continuous
) The agent's perceptive radius Continuous
p(x,t) Mean ofp(x,t) in a &-ball aroundx Continuous
q(x,t) Mean ofq(x,t) in a d-ball aroundx Continuous
L Width of terrain Continuous
m Dimensionless composite variatjlg /A Continuous
£ Dimensionless composite variatigy'LA Continuous

Our model set-up will take three stages. Stage 1 uses theafisrmof coupled
step selection functions_(Pots al., [2014) to describe a stochastic IBM algorithm
which generalizes that of Giuggidt al. (2011b). Stage 2 describes how to derive a
mean-field probabilistic model from the IBM. Stage 3 invataking the PDE limit
of the probabilistic model.

2.2 Stochastic algorithm for the individual based model

If unconstrained by scent marks, an agent is simply a neasghbor random walker.
Therefore the probability that ageri € {1,2}) moves from siten’ tonis @(n|n’) =
1/2if ]n—n/| =1 andg(n|n’) = 0 otherwise. This functiog (n|n’) is theenvironment-
independent movement kernel

Now we add the effect of scent marks, which for this paper hoaight of as
constituting of the animal’'s ‘environment’. For each agenet the environment,
Ei(n,m), be the probability that there is conspecific scent at aiten and timestep
m. We give two possible definitions fdg (n,m+ 1), denoted byE!(n,m+ 1) and
EZ(n,m+ 1), and both defined in terms of the state of the system at tipest&he
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first is given by

1 ifanagent #i is at positiom at any time
El(nm+1) = betweerm— Tas+ 1 andm, (1)
0 otherwise.

If EX(n,m) = 1 then there is conspecific scent present, otherwise thew.iJhis is
the definition used by Giuggioét al. (2011b) and Pottst al. (2012).
An alternative to equationl1) is the following definition

l—yurt with probabilityk (a), if an agentj # i is at
E(n,m+1) = positionn at timestepn,
(1— ut)E?(n,m) otherwise,

)

wherert is the length of a timestep amda) is the probability that scent is deposited
when the animal visits a lattice site. Notice that scentdeftimestepm has a proba-
bility 1 — ut of remaining present at timestep+ 1.

Introducingk (a) allows us to change the lattice spacmwithout changing the
average distance moved between scent depositions, btingsisata/k (a) is kept
constant. From Sectidn 2.3 onwards, we will use equalibno(@escribe scent de-
position and decay. However, the stochastic algorithm igfgaction can be defined
equally well using either equationl (1) &1 (2).

We now define the interaction term, which denotes how thetsaffects the
agent's movement. Animals typically have a perceptiveuadhat determines the
spatial area over which they respond to scent. The modelud@idli et all (2011b)
implicitly identified this perceptive radius with the lati spacinga. However, this
limits the model’s flexibility: if the lattice spacing is chged then the model assump-
tions about the animal’s perceptive radius are also charigestefore, to ensure our
model is not constrained by the choicespfve define the interaction teri@; (n,m),
to be a Bernoulli random variable taking value 1 with prokigbi

1 h(a)—1 j
¢:1_7 E (n+|7m)7 (3)
2h(a) — 1|:1Zh(a) '

wherej € {1,2}, h(a) is defined so thaih(a) is the perceptive radius of the animal,
andC! (n,m) takes value 0 with probability 2 ¢. The model from Giuggiolét all
(2011b) implicitly hach(a) = 1. In general, to change the lattice spacing whilst keep-
ing the perceptive radius constant requires settifia) = d/a, which holds as long
ash(a) is an integer (see Figuié 1b).

The probabilityf™(n|n’) of agenti moving ton at timestepm, given that is was
previously at positiom’, is a combination of (n|n’) andC' (n,m), written as follows

@(W+1r)C! (W1 m)+q@ (W -2)C) (W —1,m)

el . )

fm(n|n’) @(n[m)C/ (n,m) if CiJ (W +1,m) +Cij(n’ —1,m)£0,

i -
&(n—n) otherwise,

(4)
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whered is the Kronecker delta.

Equation [[#) allows us to describe the stochastic algoritfihis is a one-step
Markov process, so can be fully described by determiningothssible states of the
system at timestem+ 1, given the state at timen. Suppose that, for sonma, we
know E/ (n,m) for everyn. Suppose further that animiais at positiomn; at timestep
m. Then the algorithm is as follows

CalculateE! (n,m-+ 1) for eachn.

2. Define a categorical distribution taking one of three galy — 1, n;,n; + 1 with
probabilities given byf™(nj — 1|n;), f™(nijni) and f™(ni + 1|n;) respectively.
These values are the possible future positions of animal

3. Draw a random variable from this categorical distribnimd move the animal to
the position just drawn.

4. Repeat steps 2 and 3 for each animal in turn.

=

2.3 Probability distribution of an agent in a given scentriisition

To construct a probabilistic master equation describiegaihove stochastic process,
we first assume that the evolution of the scent marks can beugéd from the
movement of the agent. In other words, we calculate the ajugbverning a single
step of each agent’s movement that is true for any fixed rargiscent distribution of
the other agent. This is a so-called mean-field approximatiat assumes covariates
between the agent and conspecific scent are small enoughaeig

LetU (n,m) (respV (n,m)) be the probability of agent 1 (resp. 2) being at position
nat timestepnandP(n,m) (resp.Q(n, m)) the probability of there being scent present
of agent 1 (resp. 2) at positiorat timestepnm. By analysing the probability of moving
to siten from either siten— 1, n, orn+ 1 in one timestep, we eventually arrive at the
following discrete space-time master equations

U(n,m+1) :[1—Q(n+i,m)]{%U(n—1,m)[1+Q(n+i —2,m)]+

%U(nJr 1,m)[1+Q(n+i+2, m)]}+
U(n,mQ(n+i—1,mQ(n+i+1,m), (5)

V(inm+1)=[1- P(n+i,m)]{%V(n— 1L m)[1+P(n+i—-2m)+

%V(n—i— 1Lm)[1+P(n+i+2, m)]}—i—

V(n,mP(n+i—1,mP(n+i-+1m), (6)
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where the following implicit summation notation (Einstei®16) is used

h(a)-1
P(n+i,t):= 2h(a)*1izlzh(a)P(n+l’t)7
. 1 h@ -1 .
A+iY= =g 3 QN+, @)

andais the lattice spacing and the prodat(a) is the perceptive radius of the agent.

To give some intuition behind equations (5) ahll (6), we foouequation[{b),
and note that all of the comments in this paragraph hold &quadll for equation
(). The initial [1 — Q(n+i,m)] factor in equation[(5) ensures that there is a low
probability of moving to positiom if there is a high probability of active conspecific
scent being present at or around positiorThe factor[1+ Q(n+i — 2,m)] (resp.
[14+ Q(n+i+2,m)]) means that if scent is likely to be present at or aronre2
(n+2) and the animal is at — 1 (n+ 1) at timem then it will be likely to move
to n at timem+ 1. The final summantd (n,mQ(n—+i—1,mQ(n+i+ 1,m) means
that if the presence of scent is highly probable both to tftealed right of an animal
at timem, then it is likely to stay where it is. Notice that }f,U(n,m) = 1 then
ynU(n,m+ 1) = 1 so that probabilities are conserved.

Let T be the waiting-time between successive jumps. Then eqsafl) and[(b)
rearrange to give

Vinm+1)=UMm _ 10 o m{u(n—1m1+0Mn+i—2,m+

T 21
Un+1m1+Q(n+i+2,m)}—
%[1—Q(n+i —1,mQ(n+i+1,m)U(n,m), (8)
V(”’m“f\/(”’m) = (1P MV (N~ L)1+ P(n+i - 2,m)]+
V(n+1,m)[1+P(n+i+2,m)}—
1[1— P(n+i—1,mP(n+i+1,m)V(n,m), 9

T
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Equation[(B) can be re-written as follows

Unm+1)—U(nm a2 [1[UMn+Lt)—U(nt) U(nt)—U(n—1t)
T —E{a[ +

a a
(10)
1 Q(n+i+2t)—Q(n+i,t)
Z{ALU(ML 1t) >3 -
Q(n+i,t) —Q(n+i—2t)

4U(n—1,t) 23 :|Jr
1 [U (nHYQ(N+i+1)Qn+i—1t)-U((M-11)Q(n+i,t)Q(n+i—21t)
a a
Un+1,t)Q(n+i+2,t)Q(n+i,t) —U(nt)Q(n+i+1,t)Q(n+i— 1,t)] }

a ?

and similarly for equatior{9). Taking the limit @1 — 0 andn,m,h(a) — « such
thatD = a?/(21), x = na, t = mr, ah(a) = & in the limit, and writingu(x,t) (resp.
v(x,t)) for the probability density functions of agent 1's (resig) position andp(x,t)
(resp.q(x,t)) for the probability that agent 1’s (resp. 2’s) active sdemiresent at po-
sitionx at timet, we arrive at the following PDE (see Appendix A for a full dextion)

Jdu 9? 5 d [0q ]
The equation governing the evolutionwdk, t) over time is analogous
ov 9? — 0 [ap ]

Here,p(x,t) andq(x,t) are the locally averaged scent of agents 1 and 2, respactivel

5
pT(x,t)2—16 /75 p(x+zt)dz, (13)

5
q_(x,t)2—16 /,5q(x+ zt)dz (14)

2.4 Evolution of the scent distribution

Recall that we gave two different formulae for the scent glgwracess, equationis|(1)
and [2). For the purposes of our mean-field analysis, it iseoient to use equation
(2). In other words, the probability of scent being presedtice siten decays by a
factor of 1— tu each timestep of length Additionally, when a site is visited by the
animal, the probability that there is active scent presemigs to 1 with probability
K(a).
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The following master equation follows directly from takitige expectation of
either side of equatiof}2)

P(h,m+1)=(1-pur)U(n,mk(a)+ (1—ut)[1-U(n,mk(a)]P(n,m). (15)

The probability density version of equatidn15) is the tims a,x(a),7 — 0 and
n,m— oo Of

p(na,mr + 1) =(1— pt)u(na mr)ax(a) + (1— ut) [1 - u(na mr)ax (a)] p(na,mr),
(16)

such thak = na,t = mr andA = ak(a)/1 in this limit.
Subtractingp(na, mr) from both sides of equatiofi{lL6), dividing liyand tak-
ing this limit leads to the following ordinary differentiagquation (ODE) governing

p(x,t)

%®_,

ot (1—pu—pp. 17)

We can interpred as representing the amount of scent deposited over a uraoés
in a single unit of time. The derivation fayx,t) is similar and gives

% =A(1-qv—uaq. (18)
Analyzing the system of equatiors {11}, 12),1(17) dnd (E8juires choosing
an appropriate domain and boundary conditions. A simpletamidgically realistic
choice is to assume that agents are confined in a dofdihwith zero flux bound-
ary conditions. The boundary conditions could either cobauaby being confined
in a valley or on a small island. Alternatively, the conditiocould model a situation
where the rate of migration of animals into the domain is étputhe rate of move-
ment outwards. In other words, the population is assumee txhibiting a certain
spatial and temporal stability. These boundary conditamesgiven as follows

{sia-mu+a| 2} XO={§X[<1—52>v1+4[§—ﬂ}

The existence of the boundary requires that we need to red&fitt) andq(x,t)
in the cases whenre< 6 andx > L — 9, as follows

=0, (19)
X=L

—=0. (20)
X=L

o 12 p(x+zt)dz if x< 9,
pIxt) = § 75 S5 p(x+2 t)dz if5<x<L-9, (21)
?1% fkgx p(x+zt)dz if x>L-20,
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s 2 a(x+z t)dz if X< &,
qxt) =4 & [°sa(x+zt)dz if §<x<L-3, (22)
s S5 ax+zt)dz if x> L3

In addition to the boundary conditions, it is necessary tpdee integral condi-
tions on the initial probability distributions(x, 0) andv(x,0), to ensure that proba-
bility is conserved. In other words

L

L
/ u(x,0)dx = / v(x,0)dx = 1. (23)
0 Jo

A consequence of equations{19) aind (20) is that the timizatime of fOL u(x,t)dxis
zero. Therefore the initial conditions from equatibn] (28ply that probabilities are
conserved at every pointin time, i.e.

L L
/0 u(x,t)dx:/0 vix t)dx = 1. (24)

2.5 A dimensionless version of the model

To minimize the number of model parameters, we re-write gouga(11), [12),[(T7),
and [18), using the following dimensionless parameters

~ tD L D
t:t m:“— £E=—. (25)

=LuV=Lv,X= —
’ ’ L2’ A LA

X
L7
Dropping the tildes over the letters to ease notation, wiseaat the following di-

mensionless system of equations, which will be the objestuay for the rest of this

paper

S la-d a2 [S8). (26)
%’ = ;—XZZ (1 p?)V] +4§—X :‘;—fv: , (27)
e%P— (1 pu-mp (28)
2 (1-qv-mq (29)
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3 Territorial patterns

We define aerritorial patternto be a non-trivial steady-state solution to equations
(26)-(29). These are found by setting to zero the left-hadessof equationd (26)-
(29). Setting equatiof (28) (resp. equafioh 29) to zerolesdbe steady state solution
of p(x,t) (resp.q(x,t)), denoted byp*(x) (resp.g*(x)), to be written in terms of the
steady state solution ofx,t) (resp.v(x,t)), denoted by*(x) (resp.v*(x)) as follows

P09 = (30)
709 = s @)

To ease notation, we will henceforth drop the asterisks.eBjrgy equation$ (26) and
(27) to zero and integrating with respecttove have that

S L= OR200) + 4| Fhuo| e, @2)
(1= PO} +4 | v | =ca (@9)

for constants; andc,. The boundary conditions given by equations] (19) (20)
imply thatc; = ¢, =0.

We use the notatiop[u(-),x] andg[v(-),x] to emphasize the fact thatandq are
functionals. That is, they map the functiams) andv(-), respectively, to the interval
[0,1]. These functionals are given by the following formulae

x+6 % mj&i’z) dz, if x< 9,

plu(-),x = < 55 f B mé&?z> dz ifo<x<1-0, (34)
s [ mi:f(iz dz ifx>1-39,
s [ mtEadz, i x <,

V()X =1 5 Lomunigdz o <x<1-8, (35)

1 V(X+2Z H
- 5Xm+<V<XJZZ)dZ if x>1-19,

In sum, as well as equations {34) and](35), we have the faligvglystem of
equations, whose non-constant solutions correspondrttotal patterns

Sl O x2u00) + 4| Ghuo| o (36)

(1= OO0} + 4| v | =0 @)
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PO = it (39
A = s (39)

3.1 Territorial patterns with only local interactions

We first examine the case whede— 0 so that agents only respond to scent at the
exact position where they are situated. This means equf#) and[(37) become

(1= a0} + 4| o] =0 (40)
%( (1— p(x)?)v} +4 [%’v(x)} =0. (41)

The limit 8 — 0 means that the functiongt$u(-),x] andqv(-),X] have been replaced
by functionsp(x) and g(x), which makes analysis tractable. To ease notation, we
hencefore drop the explicit dependence of the functigrs p, andg on x.

By substituting equation§ (B8) arld {39) infal(40) dnd (418, following system
of ODEs for the steady state solution(ef v) is found

AU =0,

A (m+2v)(m+v) 2u(2m+v)
o ( 2v(2m+u) (m+2u)(m+u))’

om (208,

The system of ODEs in equation {42) is simple enough to aeatyathematically.
The results of this analysis are summarized in the following

Theorem 1 1. No scent decaylf m = 0 then gx) = q(x) = 1 and uXx), v(x) can
take any value.

2. Positive scent decaylf m > 0 then there are no non-constant solutions to equa-
tion (42). Hence no territorial patterns can form in this eas

Proof See appendix B.
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3.2 Territorial patterns with non-local interactions

In the case wheré > 0, equationd(36)=(39) give a system of integral-ODEs, so ar
harder to analyse analytically. Instead, we solve them migadly using the method
of false transients_(Mallinson & de Vahl Davis, 1973). Thmsdlves solving equa-
tions [26)29) forward in time until the solution is unclggmg.

Our algorithm uses a forward-difference approximationtfore and a central
difference approximation for space. We divide the intef@al] into 1,000 equal,
non-intersecting, sub-intervals of lengti®01. We iterate finite-difference versions
of equations[{26)E(29) using timesteps 0®D, until all of theu(x,t) or v(x,t) values
in all of the sub-sections are increasing by less tharf iver each timestep. The
initial conditions have all ofi(x) concentrated on the sub-interj@l25,0.251) and
all of v(x) on the sub-intervgD.75,0.751). This meansi(x) andv(x) are zero outside
the sub-interval§0.25,0.251) and[0.75,0.751) respectively, and each integrate to 1
over|0,1].

Numerical analysis shows that patterns emerge from thigsysorresponding
to two territories:u(x) on the left andv(x) on the right (figur¢2a,b). Notice that a
larger scent averaging radius leads to wider overlap of tbhbability distributions,
meaning that the perceptive scale of the animal plays a lengein the territorial
patterns that emerge.

These can be compared with the territories that form in thgir@l IBM with
the interaction rules frorn Giuggiadit al. (2011b). Although there is some qualita-
tive agreement, the patterns generated by the IBM are sttt glifferent to the PDE.
In the IBM, at any point in time, there is a border between the territories. This
border fluctuates about the central point, typically muchvel than the movement
of the agent. Each agent is free to move within its territooyders. Consequently,
the probability density of both agents combinedHv) ends up being roughly uni-
form (figure2c). This does not happen in the mean field appration studied here.
Indeed, the value ai+ v appears to be lower in the middle of the terrain. Since this
is just an artifact of the assumptions made in using the PBI, lit is necessary to
be cautious when inferring biological lessons from suchepatfeatures.

4 Investigating pattern formation via linear analysis

A common technique for examining whether patterns spowotasig form in a dy-
namical system is to linearize the system about the uniféeady state and examine
the resulting dispersion relation, e.g. Muiray (2002) ¢ba@. For our system, the
uniform steady state is

1 1
(Us, Vs, Ps,0s) = (17 1, Trm H—m) . (43)

Thatus = vs = 1 arises from the integral conditions (equafioh 24). Theesfforps
andgs then follow from equation$(38) and (39).
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Fig. 2 Numerical steady state solutions of the modeSolid red (resp. black) lines denote valuesiof)
(resp.v(x)), whereas dotted red (resp. black) lines show valuggxf(resp.q(x)). In both panelsm= 0.4
ande = 0.01. In panel (a)p = 0.1, whilst panel (b) ha® = 0.01. Notice that a larger the scent-averaging
radius,d, gives a larger overlap between territories. Panel (c) @ewgpsteady states of simulations of the
original IBM (dashed lines) with numerical results from ®BE approximation (solid lines). As in panels
(a) and (b), dotted red (resp. black) lines show valuep(gf (resp.q(x)). Here,6 = 0.01, m= 0.4, and

€ = 0.01. This corresponds, in the IBM, fas/7 = 500 andN = 100.

W N 1 . . L . I I 1 . 1 .
10 20 30 40 50 60 70 50 100 150 200 250 300 350

Fig. 3 Dispersion relations.Panel (a) show the dispersion relation for the dynamicaksysn equations
(268i29), wherem = 0.1 (solid line),m = 0.5 (dotted),m = 1 (dashed), andth = 3 (dot-dashed). We set
£ =0.01 andd = 0.01 throughout. Panel (b) shows the same dispersion retation this time the animals
respond only to the scent density at the particular pointhicivthey reside, i.e. we take the lindit— 0.
This system is given in equatios {2§).(28).1(46) (4WMp Values of andm are identical to those in
panel (a).

Lettingw = (G,V, p,§) = (U—Us,V— Vs, p— Ps,d— Gs), We use equations (Z1619)
to give the linearized system

. 24 25
au:[l 1 }du 2{2_ 1 }dq

ot (1+m)2]| 9x2 1+m) ox2’

- 25 28

00 [ 1 1% .7, 11%

ot (1+m)2| 9x? 1+m| ox?

Jp_  m LAjilanA

ot e(1+m) e

aq m . 1+m,

o a (44)

at elim €
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Searching for solutions of the form = (u, o, Po, do) exp(at + ikx), we obtain the
following eigenvector equation

Aw = aw
Rt 0 0 —2[2— 1] ksinok
1 2 1 K oj
A 0 [k — 1 K —2[2- k) §sinak 0
m 0 _Ltm 0
e(Lm) m ¢ 1+tm
0 gy 0 —

(45)

The dispersion relation is given by plotting the real valoés as a function of the
wave numbek, wherever déA— gl) = 0. As shown in FigurEl3a, patterns can form
for a finite range of wavelengths as longmas< 1; that is, as long as the scent decay
is not too rapid.

We can gain biological insight by relating this result bagktte underlying IBM.
Recall thatm= uL/A (equatioi2b). Recall also thatis the limit ofak (a)/t. In the
original lattice model, where (a) = 1, ak(a)/1 is simply the speed of the animal.
Thenm< 1 if and only if the time it would take a freely moving animal the lattice
to traverse the whole terrain is less than the charactetistiescale for scent-mark
decay Y.

The dispersion relation changes somewhat if we examineabe wher& — 0,
so that animals only respond to scent in the exact place ltegtdre located at any
point in time. In this casep and g are replaced by andq respectively, so that
equations[(26) an@ (27) are replaced by

du 92 ) 0 [dq ]
5”32 [(1—q )u]+4a—x _&u_, (46)
ov 92 ) d [dp ]
TR [(1-p°)V] +45( _EV_ . (47)
Equation[(4b) becomes
(ke -1 0 0 —2[2— L]k
1 2 1712
A= 0 [ 1K ~22- malk 0 . (48)
e(1+m) 0 T e N
m +m
0 e(1+m) 0 T e

which is the limit a®d — 0 of equation[(45). The corresponding dispersion relagon i
given in FigurdBb. Here, for @ m< 1, o is an increasing function d, indicating
that the steady state is unstable but arbitrarily large wawrabers grow fastest. In
other words, this is an ill-posed problem.
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5 Discussion and conclusions

We have shown how stable territorial patterns can form guireim a conspecific
avoidance mechanism, without requiring any attractiveptal. Our model is con-
structed by taking the continuous space-time limit of amditlattice model. There-
fore it can be rigorously linked to the underlying movemeant anteraction processes.
We have demonstrated that patterns will only form if the scearks last for a suffi-
ciently long time. If they decay too quickly, i.en > 1, the territorial structure breaks
down. This can be interpreted as saying territories can emigrge if the animal is
able to patrol its territory faster than the scent marks deca

Similarly, patterns will only form reliably if the animal®act to the averaged
scent density across the local vicinity of the animal. Frobiaddogical perspective,
an animal will always have a perceptive radius over whichilt mact to scent.
Therefore this spatial averaging is implicit in the systeginly modeled. As such,
our study demonstrates the importance of ensuring that tibematical limiting
process, moving from discrete to continuous space, doedastitoy a key feature of
the underlying biology. Our procedure for performing thiaiting process has the
potential for broad application, since there are many exesnphere the discreteness
of ecological interactions is known to be an important featf the modeling process
(Durrett & | evin,[1994).

The model is derived from an individual-based model, presip studied using
stochastic simulations (Giuggiadt al.,[2011a; Pottet al,,[2012). As noted in recent
reviews (Giuggioli & Kenkre, 2014; Potts & Lewis, 2014), ookthe advantages of
this approach is that it gives a clear delineation betweemetated notions of ‘home
range’ and ‘territory’. The territory of an animal is definad the area containing
active scent marks of the animal (Burt, 1943). Thereforethin model presented
here,p(x,t) andq(x,t) can be considered the probabilities of positidmeing part of
the animalsterritories at timet.

On the other hand, the home range of an animal is its utiimadiistribution
(Burt,[1943). Therefora(x,t) andv(x,t) can be considered as theme rangesf the
animals at time. The utilization distribution of an animal is typically mueasier to
measure in the field than the fluctuating locations of thétteyrborder (Pottet all,
2012). In our approach, the concepts of territory and homgeare related by rather
simple steady-state equatiofis](30) and (31). This givesplici way to calculate
the probable location of a territory border, given data ermime range.

A key reason for studying PDE limits of IBMs is to provide mathatical analysis
of the conditions under which patterns may form, rather tiedying on empirical ev-
idence from computer simulations. However, as shown hattems that form from
numerically solving the PDE may to be quantitatively diffiet from those formed
by simulating the IBM. Therefore, if such PDE models wereeéitto data on real
systems, it is important for the user to check that the PDEIt®sire not signifi-
cantly different to those given by the IBM. Otherwise, thexe danger of making
incorrect inferences about biological patterns, that mayety arise as artifacts of
the mean-field approximation and/or limiting procedure.

Models such as ours could be of use in analyzing territorsnégion when there
is no reason to believe the animals have any fidelity towaadqular locations, or
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where these locations are not known, e.g. Bateeta (2015). Though memory
processes have recently been invoked to explain pattemafiozn (Briscoeet all,
2002; Moorcroft, 2012), itis unclear how to find out what isrgpon inside the minds

of the animals using current science. This makes conjezalveut memory difficult

to falsify. Conspecific avoidance mechanisms, on the othedhcan be measured
directly, e.gL Arnoldet all (2011). Therefore our model of territorial emergence has
the potential to be parametrized from empirically measimttaction mechanisms.
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Appendix A

Letu(x,t), v(x,t), p(x,t) andg(x,t) be the density functions correspondingt(, m),
V(n,m), P(n,m) andQ(n, m) respectively, wherg = an andt = mr. First note the
following limitasa — 0, k(a) — «, ak(a) — &

1 k(a)—1 k(a)—1

k(@)1 Qn+im = S =1

E)
g(x+ai,t)a— i/ g(x+zt)dz
i=1—k(a) 20 )-5

i=1-k(a)
(49)

Using the definition ofj(x,t) given in equation{14), and writing equatién10) down
in terms of the density functions, we have

ux,t+1)—uxt) & (1[u(x+at)—uxt) uxt)—ux—at)
. e
%i {4u(x+ a,t)q(XjLza’Zt;fq(X’t) —4u(x—a,t)q(x’t)g;xza’t)} +
1 [u(x,t)q_(x+a,t)q_(x— at) —u(x—at)qxt)ax—2at)
a a
u(x+a,t)q(x+ 2a,t)q(x,t) — u(x,t)q(x+a,t)q(x — a,t)} }
3 :

We keepx constant in the limit ag — 0,n — . Taylor expanding the right-hand
side abouk, assuminga is arbitrarily small, gives the following expression

uxt+1)—uxt) a®fdu dudg , d%q
a@  |[Yaxax " Vae|

T T2t

_?§ _ dqdq du_, dudg
(51)

In the limit asa, T — 0 such that?/(21) — D, this simplifies to give equatiof (L 1).
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Appendix B

We look for solutions to equatiof . (¥2) in two cases:(8¢t~ 0 and defA) = 0. For
det(A) # 0, one solution is to havé = 0, implying thatu(x) andv(x) are constant
functions so territorial patterns do not form.

Otherwise, suppose that @&y # 0, du/dx= 0 and d//dx # 0. Then the following
equations hold

: (52)
: (53)

2u(2m+v)

=0
(m+2u)(m+u)=0
Equation[(5R) impliesi = 0 orv = —2m. However, ifu = 0 then equatior (33) would
imply m = 0, which contradicts def) # 0. Furthermore, iv = —2m thenv < 0,
which contradicts the fact thatx) is a probability density function. In conclusion,
if det(A) £ 0, we cannot haveufdx = 0 and d//dx # 0. Similarly, if de{A) # 0,
we cannot havewydx = 0 and di/dx # 0. Therefore the only possible way for non-
constant steady states to arise is if{@¢t= 0.

Lemma 1 If det(A) = 0 then there are two possibilities.

1. No scent decaylf m= 0then gx) = q(x) = 1 and ux), v(x) can take any value.

2. Positive scent decaylf m > 0 then, for each x [0,1], there are finitely many
possible values for(x) and \(x), one of which is (x) = v(x) = m. Furthermore,
all solutions other than (x) = v(x) = m have (x), v(x) # m.

Proof If m= 0 then defA) = 0. Furthermore, by equatioris {30) and](31), we have
p(x) = gq(x) = 1. Therefore ¢/dx = dg/dx = 0 so that equations (B2) arld(33) hold
regardless of the values ofx) andv(x), proving part 1 of the lemma. Indeed, in the
time-dependent PDEE (28]29][46,47), if an initial conditdd p(x,0) = g(x,0) =1 is
given andm = 0 then ¢/dt = dq/dt = du/dt = dv/dt = 0 sou(x,t) = u(x,0) and
v(x,t) = v(x,0) remain unchanged for all timés

Now supposen # 0. For notational ease, we drop the explicit dependencias of
andv onx for the rest of this proof, noting that they always refer te siteady states.
Then the equation dg&) = 0 implies the following polynomial holds

(M4 2v)(m+ 2u) (m+ u)(m+v) = 4uv(2m+ u)(2m+v). (54)
Equation[[5#) can be rearranged to give
u?(2m— 2v) + u(3m? — 7mv— 2v%) + (m® + 3mPv+ 2mv?) = 0. (55)

Clearlym = u = v satisfies equation (b5). Furthermore, it follows from egquafs3)
thatu = mif and only if v=m. Hence any solution other than= v = m has both
u = mandv # m.

Differentiating equatior {34) with respectxpwe find

du  dv7mu—3nm?— 4mv+ 2u®+ 4uv
dx  dx3m2 — 7mv+4mu— 22— 4uv’

(56)
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Using equation[(36) and the top line of the vector equafid),(tbgether with our
assumption thadu/dx,dv/dx= 0, we find that

(7mu— 3n? — 4mv-+ 2u% 4 4uv) (M4 2v) (M+ v)+
(4mu-+ 2uv) (3m? — 7mv+-4mu— 2v2 — 4uv) = 0. (57)

Proving part 2 of the lemma requires applying Bézout's Theo(Fulton, 1969)
to equationd(35) anf (57). Bézout's Theorem states thabiprojective plane curves
are zeros of polynomials with no non-constant greatest comdivisor, then the
curves intersect at finitely many points. The polynomialsiom left-hand sides of
equationd(35) an@(57) are homogeneous in three unkndwarsfore equationg (b5)
and [57) describe curves in the real projective plane. Tioysrove part 2 of Lemma
1, it suffices to show that these two polynomials have no rmrstant common factor.

Let f(m,u,v) be the polynomial on the left-hand side of equatlod (55)cSifis
is quadratic inu, it written as precisely one of the following two possibleedmpo-
sitions:

f(m,u,v) = [a1(m,v)u+ by (m,v)][az(m,v)u+ by(m,v)]c(m,v), (58)
or
f(m,u,v) = a(m,u,v)B(m,v), (59)

wherea; (m,v), ax(m,v), b1 (m,v), bp(m,v), andf3(m,v) are polynomials, and (m, u, v)
is an irreducible polynomial. By solving equatién55) innes ofu, we find that

Yo Tmv-+ 22— 3P £ \/A(v—yym)(v—y_m)(v— I, m)(v—3_m)

4(m—v) ’ (60)
where
Ve = % [114@1 24/ 2725+30\@] ,
11 1
Si:fjwﬂ/ﬁiz 15(15—8V/3). (61)

Therefore the numerator of equati@nl(60) is not a polynors@the decomposition
given in equation(38) cannot hold.

It follows that f(m,u,v) = a(m,u,v)3(m,v) wherea (m,u,v) is irreducible and
B(m,v) is the greatest common divisor of the coefficientsubfin f(m,u,v) for
n=0,1,2. These coefficients arer2- 2v, 3nm? — 7mv— 2v? andm?® + 3mv + 2mv?
(equatiori.5b). Sincen— v does not divide 87 — 7mv— 2v2 or m® + 3mPv + 2m\2, it
follows thatB3(m,v) is a constant. HencE(m, u,v) is irreducible.

Sincef(m,u,v) is both irreducible and not a constant multiple of the potyied
in equation[(5l7), there is no non-constant greatest comrvéodof the polynomials
in equations[(55) and (57). The proof of part 2 then follovesfBézout's Theorem.

O
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Fig. 4 Possible values ofinm = u(x)/mand vy = v(x)/m. The black curve denotes solutions to equation
(62), whereas the grey curve shows solutions to equdfign TB@re appears to be only one crossing-point
for positive real values of bothy, andvy, which is wherauy, = vy, =1, sothai=v=m.

Lemmd enables us to prove Theoifgm 1 from Seéfion 3, as fellow

Proof of Theoreriil1Part 1 of Theorerl1 is identical to part 1 of Lemida 1. To show
part 2, note that classical solutions must be continuousirhd states that there are
only finitely many possible values ofandv. Therefore any classical solution must
be constant. O

Note 1 Numerical analysis suggests that v = mis the only positive real solution
(Fig.[4). Since we are interested in the cas¢ 0, we sey = v/m, uy = u/mand
assume/ # m. Then equatior{35) implies

T+ 2v2 — 3£ /(3— TVim— 2v3)2 — 8(1 — Vi) (1 + 3vin + 2V2)
- 4(1—vm)

Furthermore, equatiof (b7) rearranges to giyeas another two-valued function of
Vm

. (62)

m

! A3+ AvE + 3+ 19
M 8v2,+4vy— 36
/(43,4 AV2,+ 3V + 19)2 — 4(4VZ, + 2V — 18)(8v3,+ 182, + 13vi + 3)
82,4 4vm — 36

(63)
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The black curve in Figl4 has an asymptotevat= 1, where the denominator of
the right-hand side of equation_(62) tends to 0. The greyetias an asymptote at
Vm = (V73— 1)/4, where the denominator of the right-hand side of equali@) (
tends to O, so the two curves do not cross at values,dfigher than those shown in
Fig.[4.
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