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Abstract Territoriality is a phenomenon exhibited throughout nature. On the individ-
ual level, it is the processes by which organisms exclude others of the same species
from certain parts of space. On the population level, it is the segregation of space into
separate areas, each used by subsections of the population.Proving mathematically
that such individual-level processes can cause observed population-level patterns to
form is necessary for linking these two levels of description in a non-speculative way.
Previous mathematical analysis has relied upon assuming animals are attracted to a
central area. This can either be a fixed geographical point, such as a den- or nest-site,
or a region where they have previously visited. However, recent simulation-based
studies suggest that this attractive potential is not necessary for territorial pattern for-
mation. Here, we construct a partial differential equation(PDE) model of territorial
interactions based on the individual-based model (IBM) from those simulation stud-
ies. The resulting PDE does not rely on attraction to spatiallocations, but purely on
conspecific avoidance, mediated via scent-marking. We showanalytically that steady-
state patterns can form, as long as (i) the scent does not decay faster than it takes the
animal to traverse the terrain, and (ii) the spatial scale over which animals detect scent
is incorporated into the PDE. As part of the analysis, we develop a general method
for taking the PDE limit of an IBM that avoids destroying any intrinsic spatial scale
in the underlying behavioral decisions.
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1 Introduction

Territoriality is a wide-spread phenomenon throughout nature. A territory is an area
of space used exclusively by an organism, or a group of organisms (Burt, 1943). It
is formed by deliberately excluding others of the same species (calledconspecifics)
from the area, either by aggressive confrontations or mutual consent (Adams, 2001).
In the last two decades, there have been a number of studies that show analytically
how territorial patterns can form from the movements and interactions of animals
(Lewis & Murray, 1993; Moorcroft & Lewis, 2006; Potts & Lewis, 2014). These use
mean-field approximations to model the animals’ behavioraldecisions as partial dif-
ferential equations (PDEs), and so enable territory formation to be analyzed using
standard tools from PDE theory (Murray, 2002).

Despite their success in uncovering drivers behind space use patterns (Moorcroftet al.,
2006), previous analytical models assume an attractive potential influencing the an-
imals’ movements. This could either be fidelity to a central place such as a den- or
nest-site (Lewiset al., 1997), or a tendency to move towards places that the animal
has previously visited (Briscoeet al., 2002). However, it is not clear that such an
attractive potential is in fact necessary for territory formation (Moorcroft, 2012).

In this paper, we present a PDE model of territorial pattern formation based purely
on conspecific avoidance, with no attractive potential. It is based on an individual
based model (IBM) of so-calledterritorial random walkers(Giuggioli et al., 2011a).
Previous work used simulation analysis to demonstrate empirically that territories can
form in this system (Giuggioliet al., 2011a). Here, we show analytically the circum-
stances under which territorial patterns may form. Specifically, necessary conditions
for territorial pattern formation include

– spatial aversion to scent marks
– scent marks that persist for longer than it takes the animal to traverse the terrain,

and
– a reaction to conspecific scent averaged over a small area around the animal.

As is often the case in ecological applications, it is important that the discrete
spatial nature of each interaction is present in the model (Durrett & Levin, 1994). In
the case of territorial interactions, this discreteness isinherent in the fact that animals
have a non-zero perceptive radius for determining the presence of scent. As part of
this study, we develop a limiting procedure that enables thetransition from IBM to
PDE without losing this important aspect of spatially discrete interactions. This has
the potential for general use, as previous limiting procedures have often failed in this
regard (Durrett & Levin, 1994).

The paper is organized as follows. Section 2 derives the PDE from the IBM
model. Sections 3 and 4 investigate the conditions under which patterns may form.
Section 5 gives some concluding remarks.
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Fig. 1 Pictorial representation of the underlying model.The territory of each agent represents the sites
containing that agent’s scent. In panel (a), agent 1 is unable to move to the right in the next step, since there
is active scent of agent 2 there. However, agent 2 can move in either direction. In panel (b), we show the
case where the lattice spacing,a, is halved, so response to scent is averaged over several sites, given by the
grey ovals. As the lattice spacing is reduced by a factor ofh(a), so the response to scent is averaged over
2h(a)−1 sites. In this situation, agent 1 has a higher probability of moving left than right, while agent 2
has equal probability of moving in both directions.

2 From the individual-level description to a system of PDEs

2.1 Description of model

The individual based model (IBM) is based on a 1D model of territoriality which was
recently proposed by Giuggioliet al. (2011a), but then slightly modified and studied
in detail by Giuggioliet al. (2011b) and Pottset al. (2012). The model consists of
two agents moving on a 1D lattice. The agents represent either a single individual
responsible for territorial defense, or a group of individuals moving together, such as
a pack or a flock. For example, the former is appropriate when modelling fox (Vulpes
vulpes) behaviour where the dominant male in each group marks and secures the
territory (Harris, 1980), whereas the latter may be more appropriate for modelling
wolf (Canis lupus) packs (Lewis & Murray, 1993).

Agents move as discrete-time discrete-space nearest-neighbour random walkers,
depositing scent marks as they move. In the model of Giuggioli et al. (2011b), the
scent remains present for a finite amount of time, called theactive scent timeand
denoted by the symbolTAS. Once this time is up, provided the lattice site has not been
re-scented, the mark is no longer considered by conspecificsto be ‘active’. Agents
cannot move into any lattice site that contains the active scent of another agent (Figure
1a).
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Table 1 Glossary of symbols.The first column shows the symbol, the second a definition, andthe third
whether it pertains to the discrete (lattice) model or the continuous limit or both. Note that some symbols
are used either as dimensional quantities or their dimensionless equivalents, depending on the context (see
section 2.5).

Symbol Definition Model
n Arbitrary lattice site Discrete
m Arbitrary time step Discrete
Ei(n,m) For animali, the probability that there is conspecific scent at(n,m) Discrete
τ Length of a single time step Discrete
a Lattice spacing Discrete
κ (a) Probability that scent is deposited when the agent visits a lattice site Discrete
h(a) Number of lattice sites constituting the agent’s perceptive radius Discrete
f m
i (n|n′) Probability of agenti moving ton next jump, given it is atn′ at timestepm Discrete

U(n,m) Probability that agent 1 is atn at timestepm Discrete
V(n,m) Probability that agent 2 is atn at timestepm Discrete
P(n,m) Probability that scent of agent 1 is present atn at timestepm Discrete
Q(n,m) Probability that scent of agent 2 is present atn at timestepm Discrete
µ Mean rate of scent decay Both
λ Mean scent deposition over a unit of space in a unit of time Both
x Arbitrary position in continuous space Continuous
t Arbitrary continuous time Continuous
u(x,t) Probability density function of agent 1 at timet Continuous
v(x,t) Probability density function of agent 2 at timet Continuous
p(x,t) Probability that scent of agent 1 is present at(x,t) Continuous
q(x,t) Probability that scent of agent 2 is present at(x,t) Continuous
D Diffusion constant Continuous
δ The agent’s perceptive radius Continuous
p̄(x,t) Mean ofp(x,t) in aδ-ball aroundx Continuous
q̄(x,t) Mean ofq(x,t) in aδ-ball aroundx Continuous
L Width of terrain Continuous
m Dimensionless composite variableµL/λ Continuous
ε Dimensionless composite variableD/Lλ Continuous

Our model set-up will take three stages. Stage 1 uses the formalism of coupled
step selection functions (Pottset al., 2014) to describe a stochastic IBM algorithm
which generalizes that of Giuggioliet al. (2011b). Stage 2 describes how to derive a
mean-field probabilistic model from the IBM. Stage 3 involves taking the PDE limit
of the probabilistic model.

2.2 Stochastic algorithm for the individual based model

If unconstrained by scent marks, an agent is simply a nearest-neighbor random walker.
Therefore the probability that agenti (i ∈ {1,2}) moves from siten′ to n is φi(n|n′) =
1/2 if |n−n′|= 1 andφi(n|n′)= 0 otherwise. This functionφi(n|n′) is theenvironment-
independent movement kernel.

Now we add the effect of scent marks, which for this paper are thought of as
constituting of the animal’s ‘environment’. For each agenti, let the environment,
Ei(n,m), be the probability that there is conspecific scent at lattice siten and timestep
m. We give two possible definitions forEi(n,m+ 1), denoted byE1

i (n,m+ 1) and
E2

i (n,m+1), and both defined in terms of the state of the system at timestep m. The



Territory formation without attraction 5

first is given by

E1
i (n,m+1) =











1 if an agentj 6= i is at positionn at any time

betweenm−TAS+1 andm,

0 otherwise.

(1)

If E1
i (n,m) = 1 then there is conspecific scent present, otherwise there isnot. This is

the definition used by Giuggioliet al. (2011b) and Pottset al. (2012).
An alternative to equation (1) is the following definition

E2
i (n,m+1) =











1− µτ with probabilityκ (a), if an agentj 6= i is at

positionn at timestepm,

(1− µτ )E2
i (n,m) otherwise,

(2)

whereτ is the length of a timestep andκ (a) is the probability that scent is deposited
when the animal visits a lattice site. Notice that scent leftat timestepm has a proba-
bility 1 − µτ of remaining present at timestepm+1.

Introducingκ (a) allows us to change the lattice spacinga without changing the
average distance moved between scent depositions, by insisting thata/κ (a) is kept
constant. From Section 2.3 onwards, we will use equation (2)to describe scent de-
position and decay. However, the stochastic algorithm of this section can be defined
equally well using either equation (1) or (2).

We now define the interaction term, which denotes how the scent affects the
agent’s movement. Animals typically have a perceptive radius that determines the
spatial area over which they respond to scent. The model of Giuggioli et al. (2011b)
implicitly identified this perceptive radius with the lattice spacinga. However, this
limits the model’s flexibility: if the lattice spacing is changed then the model assump-
tions about the animal’s perceptive radius are also changed. Therefore, to ensure our
model is not constrained by the choice ofa, we define the interaction term,C j

i (n,m),
to be a Bernoulli random variable taking value 1 with probability

ϕ = 1− 1
2h(a)−1

h(a)−1

∑
l=1−h(a)

E j
i (n+ l ,m), (3)

where j ∈ {1,2}, h(a) is defined so thatah(a) is the perceptive radius of the animal,
andC j

i (n,m) takes value 0 with probability 1− ϕ . The model from Giuggioliet al.
(2011b) implicitly hadh(a) = 1. In general, to change the lattice spacing whilst keep-
ing the perceptive radiusδ constant requires settingh(a) = δ/a, which holds as long
ash(a) is an integer (see Figure 1b).

The probabilityf m
i (n|n′) of agenti moving ton at timestepm, given that is was

previously at positionn′, is a combination ofφi(n|n′) andC j
i (n,m), written as follows

f m
i (n|n′) =







φi(n|n′)C j
i (n,m)

φi(n′+1|n′)C j
i (n

′+1,m)+φi(n′−1|n′)C j
i (n

′−1,m)
if C j

i (n
′+1,m)+C j

i (n
′−1,m) 6= 0,

δk(n−n′) otherwise,
(4)
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whereδk is the Kronecker delta.

Equation (4) allows us to describe the stochastic algorithm. This is a one-step
Markov process, so can be fully described by determining thepossible states of the
system at timestepm+ 1, given the state at timem. Suppose that, for somem, we
knowE j

i (n,m) for everyn. Suppose further that animali is at positionni at timestep
m. Then the algorithm is as follows

1. CalculateE j
i (n,m+1) for eachn.

2. Define a categorical distribution taking one of three valuesni −1,ni,ni +1 with
probabilities given byf m

i (ni − 1|ni), f m
i (ni |ni) and f m

i (ni + 1|ni) respectively.
These values are the possible future positions of animali.

3. Draw a random variable from this categorical distribution and move the animal to
the position just drawn.

4. Repeat steps 2 and 3 for each animal in turn.

2.3 Probability distribution of an agent in a given scent distribution

To construct a probabilistic master equation describing the above stochastic process,
we first assume that the evolution of the scent marks can be decoupled from the
movement of the agent. In other words, we calculate the equation governing a single
step of each agent’s movement that is true for any fixed, arbitrary scent distribution of
the other agent. This is a so-called mean-field approximation, that assumes covariates
between the agent and conspecific scent are small enough to ignore.

LetU(n,m) (resp.V(n,m)) be the probability of agent 1 (resp. 2) being at position
n at timestepmandP(n,m) (resp.Q(n,m)) the probability of there being scent present
of agent 1 (resp. 2) at positionn at timestepm. By analysing the probability of moving
to siten from either siten−1, n, or n+1 in one timestep, we eventually arrive at the
following discrete space-time master equations

U(n,m+1) =[1−Q(n+ i,m)]

{

1
2

U(n−1,m)[1+Q(n+ i−2,m)]+

1
2

U(n+1,m)[1+Q(n+ i+2,m)]

}

+

U(n,m)Q(n+ i −1,m)Q(n+ i +1,m), (5)

V(n,m+1) =[1−P(n+ i,m)]

{

1
2

V(n−1,m)[1+P(n+ i−2,m)]+

1
2

V(n+1,m)[1+P(n+ i +2,m)]

}

+

V(n,m)P(n+ i −1,m)P(n+ i +1,m), (6)
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where the following implicit summation notation (Einstein, 1916) is used

P(n+ i, t) :=
1

2h(a)−1

h(a)−1

∑
i=1−h(a)

P(n+ i, t),

Q(n+ i, t) :=
1

2h(a)−1

h(a)−1

∑
i=1−h(a)

Q(n+ i, t), (7)

anda is the lattice spacing and the productah(a) is the perceptive radius of the agent.

To give some intuition behind equations (5) and (6), we focuson equation (5),
and note that all of the comments in this paragraph hold equally well for equation
(6). The initial [1− Q(n+ i,m)] factor in equation (5) ensures that there is a low
probability of moving to positionn if there is a high probability of active conspecific
scent being present at or around positionn. The factor[1+Q(n+ i − 2,m)] (resp.
[1+Q(n+ i + 2,m)]) means that if scent is likely to be present at or aroundn− 2
(n+ 2) and the animal is atn− 1 (n+ 1) at timem then it will be likely to move
to n at timem+1. The final summandU(n,m)Q(n+ i −1,m)Q(n+ i +1,m) means
that if the presence of scent is highly probable both to the left and right of an animal
at time m, then it is likely to stay where it is. Notice that if∑nU(n,m) = 1 then
∑nU(n,m+1) = 1 so that probabilities are conserved.

Let τ be the waiting-time between successive jumps. Then equations (5) and (6)
rearrange to give

U(n,m+1)−U(n,m)

τ
=

1
2τ

[1−Q(n+ i,m)]{U(n−1,m)[1+Q(n+ i −2,m)]+

U(n+1,m)[1+Q(n+ i +2,m)]}−
1
τ
[1−Q(n+ i −1,m)Q(n+ i+1,m)]U(n,m), (8)

V(n,m+1)−V(n,m)

τ
=

1
2τ

[1−P(n+ i,m)]{V(n−1,m)[1+P(n+ i −2,m)]+

V(n+1,m)[1+P(n+ i+2,m)]}−
1
τ
[1−P(n+ i −1,m)P(n+ i +1,m)]V(n,m), (9)
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Equation (8) can be re-written as follows

U(n,m+1)−U(n,m)

τ
=

a2

2τ

{

1
a

[

U(n+1, t)−U(n, t)
a

− U(n, t)−U(n−1, t)
a

]

+

(10)

1
2a

[

4U(n+1, t)
Q(n+ i +2, t)−Q(n+ i, t)

2a
−

4U(n−1, t)
Q(n+ i, t)−Q(n+ i −2, t)

2a

]

+

1
a

[

U(n, t)Q(n+ i +1, t)Q(n+ i −1, t)−U(n−1, t)Q(n+ i, t)Q(n+ i −2, t)
a

−

U(n+1, t)Q(n+ i +2, t)Q(n+ i, t)−U(n, t)Q(n+ i+1, t)Q(n+ i −1, t)
a

]}

,

and similarly for equation (9). Taking the limit asa,τ → 0 andn,m,h(a)→ ∞ such
thatD = a2/(2τ ), x = na, t = mτ , ah(a) = δ in the limit, and writingu(x, t) (resp.
v(x, t)) for the probability density functions of agent 1’s (resp. 2’s) position andp(x, t)
(resp.q(x, t)) for the probability that agent 1’s (resp. 2’s) active scentis present at po-
sitionxat timet, we arrive at the following PDE (see Appendix A for a full derivation)

∂u
∂ t

= D
∂2

∂x2 [(1− q̄2)u]+4D
∂
∂x

[

∂ q̄
∂x

u

]

. (11)

The equation governing the evolution ofv(x, t) over time is analogous

∂v
∂ t

= D
∂2

∂x2 [(1− p̄2)v]+4D
∂
∂x

[

∂ p̄
∂x

v

]

. (12)

Here,p̄(x, t) andq̄(x, t) are the locally averaged scent of agents 1 and 2, respectively

p̄(x, t)
1

2δ

∫ δ

−δ
p(x+ z, t)dz, (13)

q̄(x, t)
1

2δ

∫ δ

−δ
q(x+ z, t)dz. (14)

2.4 Evolution of the scent distribution

Recall that we gave two different formulae for the scent decay process, equations (1)
and (2). For the purposes of our mean-field analysis, it is convenient to use equation
(2). In other words, the probability of scent being present at lattice siten decays by a
factor of 1− τµ each timestep of lengthτ . Additionally, when a site is visited by the
animal, the probability that there is active scent present jumps to 1 with probability
κ (a).
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The following master equation follows directly from takingthe expectation of
either side of equation (2)

P(n,m+1) = (1− µτ )U(n,m)κ (a)+ (1− µτ ) [1−U(n,m)κ (a)]P(n,m). (15)

The probability density version of equation (15) is the limit asa,κ (a),τ → 0 and
n,m→ ∞ of

p(na,mτ + τ ) =(1− µτ )u(na,mτ )aκ (a)+ (1−µτ ) [1−u(na,mτ )aκ (a)]p(na,mτ ),
(16)

such thatx= na, t = mτ andλ = aκ (a)/τ in this limit.
Subtractingp(na,mτ ) from both sides of equation (16), dividing byτ and tak-

ing this limit leads to the following ordinary differentialequation (ODE) governing
p(x, t)

∂ p
∂ t

= λ (1− p)u− µ p. (17)

We can interpretλ as representing the amount of scent deposited over a unit of space
in a single unit of time. The derivation forq(x, t) is similar and gives

∂q
∂ t

= λ (1−q)v− µq. (18)

Analyzing the system of equations (11), (12), (17) and (18) requires choosing
an appropriate domain and boundary conditions. A simple andbiologically realistic
choice is to assume that agents are confined in a domain[0,L] with zero flux bound-
ary conditions. The boundary conditions could either come about by being confined
in a valley or on a small island. Alternatively, the conditions could model a situation
where the rate of migration of animals into the domain is equal to the rate of move-
ment outwards. In other words, the population is assumed to be exhibiting a certain
spatial and temporal stability. These boundary conditionsare given as follows

{

∂
∂x

[(1− q̄2)u]+4

[

∂ q̄
∂x

u

]}∣

∣

∣

∣

x=0
=

{

∂
∂x

[(1− q̄2)u]+4

[

∂ q̄
∂x

u

]}∣

∣

∣

∣

x=L
= 0, (19)

{

∂
∂x

[(1− p̄2)v]+4

[

∂ p̄
∂x

v

]}∣

∣

∣

∣

x=0
=

{

∂
∂x

[(1− p̄2)v]+4

[

∂ p̄
∂x

v

]}∣

∣

∣

∣

x=L
= 0. (20)

The existence of the boundary requires that we need to redefine p̄(x, t) andq̄(x, t)
in the cases wherex< δ andx> L−δ, as follows

p̄(x, t) =











1
x+δ

∫ δ
−x p(x+ z, t)dz if x< δ,

1
2δ

∫ δ
−δ p(x+ z, t)dz if δ ≤ x≤ L−δ,

1
L−x+δ

∫ L−x
−δ p(x+ z, t)dz if x> L−δ,

(21)
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q̄(x, t) =











1
x+δ

∫ δ
−xq(x+ z, t)dz if x< δ,

1
2δ

∫ δ
−δ q(x+ z, t)dz if δ ≤ x≤ L−δ,

1
L−x+δ

∫ L−x
−δ q(x+ z, t)dz if x> L−δ.

(22)

In addition to the boundary conditions, it is necessary to impose integral condi-
tions on the initial probability distributionsu(x,0) andv(x,0), to ensure that proba-
bility is conserved. In other words

∫ L

0
u(x,0)dx=

∫ L

0
v(x,0)dx= 1. (23)

A consequence of equations (19) and (20) is that the time-derivative of
∫ L

0 u(x, t)dx is
zero. Therefore the initial conditions from equation (23) imply that probabilities are
conserved at every point in time, i.e.

∫ L

0
u(x, t)dx=

∫ L

0
v(x, t)dx= 1. (24)

2.5 A dimensionless version of the model

To minimize the number of model parameters, we re-write equations (11), (12), (17),
and (18), using the following dimensionless parameters

ũ= Lu, ṽ= Lv, x̃=
x
L
, t̃ =

tD
L2 , m=

µL
λ

, ε =
D
Lλ

. (25)

Dropping the tildes over the letters to ease notation, we arrive at the following di-
mensionless system of equations, which will be the object ofstudy for the rest of this
paper

∂u
∂ t

=
∂2

∂x2

[

(1− q̄2)u
]

+4
∂
∂x

[

∂ q̄
∂x

u

]

, (26)

∂v
∂ t

=
∂2

∂x2

[

(1− p̄2)v
]

+4
∂
∂x

[

∂ p̄
∂x

v

]

, (27)

ε
∂ p
∂ t

= (1− p)u−mp, (28)

ε
∂q
∂ t

= (1−q)v−mq. (29)
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3 Territorial patterns

We define aterritorial pattern to be a non-trivial steady-state solution to equations
(26)-(29). These are found by setting to zero the left-hand sides of equations (26)-
(29). Setting equation (28) (resp. equation 29) to zero enables the steady state solution
of p(x, t) (resp.q(x, t)), denoted byp∗(x) (resp.q∗(x)), to be written in terms of the
steady state solution ofu(x, t) (resp.v(x, t)), denoted byu∗(x) (resp.v∗(x)) as follows

p∗(x) =
u∗(x)

m+u∗(x)
, (30)

q∗(x) =
v∗(x)

m+ v∗(x)
. (31)

To ease notation, we will henceforth drop the asterisks. By setting equations (26) and
(27) to zero and integrating with respect tox, we have that

d
dx

{(1− q̄[v(·),x]2)u(x)}+4

[

dq̄
dx

u(x)

]

= c1, (32)

d
dx

{(1− p̄[u(·),x]2)v(x)}+4

[

dp̄
dx

v(x)

]

= c2, (33)

for constantsc1 andc2. The boundary conditions given by equations (19) and (20)
imply thatc1 = c2 = 0.

We use the notation ¯p[u(·),x] andq̄[v(·),x] to emphasize the fact that ¯p andq̄ are
functionals. That is, they map the functionsu(·) andv(·), respectively, to the interval
[0,1]. These functionals are given by the following formulae

p̄[u(·),x] =















1
x+δ

∫ δ
−x

u(x+z)
m+u(x+z)dz, if x< δ,

1
2δ

∫ δ
−δ

u(x+z)
m+u(x+z)dz if δ ≤ x≤ 1−δ,

1
1−x+δ

∫ 1−x
−δ

u(x+z)
m+u(x+z)dz if x> 1−δ,

(34)

q̄[v(·),x] =















1
x+δ

∫ δ
−x

v(x+z)
m+v(x+z)dz, if x< δ,

1
2δ

∫ δ
−δ

v(x+z)
m+v(x+z)dz if δ ≤ x≤ 1−δ,

1
1−x+δ

∫ 1−x
−δ

v(x+z)
m+v(x+z)dz if x> 1−δ,

(35)

In sum, as well as equations (34) and (35), we have the following system of
equations, whose non-constant solutions correspond to territorial patterns

d
dx

{(1− q̄[v(·),x]2)u(x)}+4

[

dq̄
dx

u(x)

]

= 0, (36)

d
dx

{(1− p̄[u(·),x]2)v(x)}+4

[

dp̄
dx

v(x)

]

= 0, (37)
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p(x) =
u(x)

m+u(x)
, (38)

q(x) =
v(x)

m+ v(x)
. (39)

3.1 Territorial patterns with only local interactions

We first examine the case whereδ → 0 so that agents only respond to scent at the
exact position where they are situated. This means equations (36) and (37) become

d
dx

{(1−q(x)2)u(x)}+4

[

dq
dx

u(x)

]

= 0, (40)

d
dx

{(1− p(x)2)v}+4

[

dp
dx

v(x)

]

= 0. (41)

The limit δ → 0 means that the functionals ¯p[u(·),x] andq̄[v(·),x] have been replaced
by functionsp(x) and q(x), which makes analysis tractable. To ease notation, we
hencefore drop the explicit dependence of the functionsu, v, p, andq onx.

By substituting equations (38) and (39) into (40) and (41), the following system
of ODEs for the steady state solution of(u,v) is found

Au̇ = 0,

A= m

(

(m+2v)(m+ v) 2u(2m+ v)
2v(2m+u) (m+2u)(m+u)

)

,

u̇ =

(

du/dx
dv/dx

)

. (42)

The system of ODEs in equation (42) is simple enough to analyze mathematically.
The results of this analysis are summarized in the following

Theorem 1 1. No scent decay.If m = 0 then p(x) = q(x) = 1 and u(x), v(x) can
take any value.

2. Positive scent decay.If m> 0 then there are no non-constant solutions to equa-
tion (42). Hence no territorial patterns can form in this case.

Proof See appendix B.
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3.2 Territorial patterns with non-local interactions

In the case whereδ > 0, equations (36)-(39) give a system of integral-ODEs, so are
harder to analyse analytically. Instead, we solve them numerically using the method
of false transients (Mallinson & de Vahl Davis, 1973). This involves solving equa-
tions (26)-(29) forward in time until the solution is unchanging.

Our algorithm uses a forward-difference approximation fortime and a central
difference approximation for space. We divide the interval[0,1] into 1,000 equal,
non-intersecting, sub-intervals of length 0.001. We iterate finite-difference versions
of equations (26)-(29) using timesteps of 0.01, until all of theu(x, t) or v(x, t) values
in all of the sub-sections are increasing by less than 10−8 over each timestep. The
initial conditions have all ofu(x) concentrated on the sub-interval[0.25,0.251) and
all of v(x) on the sub-interval[0.75,0.751). This meansu(x) andv(x) are zero outside
the sub-intervals[0.25,0.251) and[0.75,0.751) respectively, and each integrate to 1
over[0,1].

Numerical analysis shows that patterns emerge from this system corresponding
to two territories:u(x) on the left andv(x) on the right (figure 2a,b). Notice that a
larger scent averaging radius leads to wider overlap of the probability distributions,
meaning that the perceptive scale of the animal plays a largerole in the territorial
patterns that emerge.

These can be compared with the territories that form in the original IBM with
the interaction rules from Giuggioliet al. (2011b). Although there is some qualita-
tive agreement, the patterns generated by the IBM are still quite different to the PDE.
In the IBM, at any point in time, there is a border between the two territories. This
border fluctuates about the central point, typically much slower than the movement
of the agent. Each agent is free to move within its territory borders. Consequently,
the probability density of both agents combined (u+ v) ends up being roughly uni-
form (figure 2c). This does not happen in the mean field approximation studied here.
Indeed, the value ofu+ v appears to be lower in the middle of the terrain. Since this
is just an artifact of the assumptions made in using the PDE limit, it is necessary to
be cautious when inferring biological lessons from such pattern features.

4 Investigating pattern formation via linear analysis

A common technique for examining whether patterns spontaneously form in a dy-
namical system is to linearize the system about the uniform steady state and examine
the resulting dispersion relation, e.g. Murray (2002) chapter 2. For our system, the
uniform steady state is

(us,vs, ps,qs) =

(

1,1,
1

1+m
,

1
1+m

)

. (43)

Thatus = vs = 1 arises from the integral conditions (equation 24). The values forps

andqs then follow from equations (38) and (39).



14 Jonathan R. Potts, Mark A. Lewis

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5 a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

c)

Fig. 2 Numerical steady state solutions of the model.Solid red (resp. black) lines denote values ofu(x)
(resp.v(x)), whereas dotted red (resp. black) lines show values ofp(x) (resp.q(x)). In both panels,m= 0.4
andε = 0.01. In panel (a),δ = 0.1, whilst panel (b) hasδ = 0.01. Notice that a larger the scent-averaging
radius,δ, gives a larger overlap between territories. Panel (c) compares steady states of simulations of the
original IBM (dashed lines) with numerical results from thePDE approximation (solid lines). As in panels
(a) and (b), dotted red (resp. black) lines show values ofp(x) (resp.q(x)). Here,δ = 0.01, m= 0.4, and
ε = 0.01. This corresponds, in the IBM, toTAS/τ = 500 andN = 100.
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Fig. 3 Dispersion relations.Panel (a) show the dispersion relation for the dynamical system in equations
(26-29), wherem= 0.1 (solid line),m= 0.5 (dotted),m= 1 (dashed), andm= 3 (dot-dashed). We set
ε = 0.01 andδ = 0.01 throughout. Panel (b) shows the same dispersion relations, but this time the animals
respond only to the scent density at the particular point in which they reside, i.e. we take the limitδ → 0.
This system is given in equations (28), (29), (46) and (47). The values ofε andm are identical to those in
panel (a).

Lettingw = (û, v̂, p̂, q̂) = (u−us,v−vs, p− ps,q−qs), we use equations (26-29)
to give the linearized system

∂ û
∂ t

=

[

1− 1
(1+m)2

]

∂2û
∂x2 +2

[

2− 1
1+m

]

∂2 ˆ̄q
∂x2 ,

∂ v̂
∂ t

=

[

1− 1
(1+m)2

]

∂2v̂
∂x2 +2

[

2− 1
1+m

]

∂2 ˆ̄p
∂x2 ,

∂ p̂
∂ t

=
m

ε(1+m)
û− 1+m

ε
p̂,

∂ q̂
∂ t

=
m

ε(1+m)
v̂− 1+m

ε
q̂. (44)
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Searching for solutions of the formw= (u0,v0, p0,q0)exp(σt + ikx), we obtain the
following eigenvector equation

Aw = σw

A=













[

1
(1+m)2

−1
]

k2 0 0 −2
[

2− 1
1+m

]

k
δ sinδk

0
[

1
(1+m)2

−1
]

k2 −2
[

2− 1
1+m

]

k
δ sinδk 0

m
ε(1+m) 0 − 1+m

ε 0

0 m
ε(1+m) 0 − 1+m

ε













.

(45)

The dispersion relation is given by plotting the real valuesof σ as a function of the
wave numberk, wherever det(A−σ I) = 0. As shown in Figure 3a, patterns can form
for a finite range of wavelengths as long asm< 1; that is, as long as the scent decay
is not too rapid.

We can gain biological insight by relating this result back to the underlying IBM.
Recall thatm= µL/λ (equation 25). Recall also thatλ is the limit ofaκ (a)/τ . In the
original lattice model, whereκ (a) = 1, aκ (a)/τ is simply the speed of the animal.
Thenm< 1 if and only if the time it would take a freely moving animal onthe lattice
to traverse the whole terrain is less than the characteristic timescale for scent-mark
decay 1/µ .

The dispersion relation changes somewhat if we examine the case whereδ → 0,
so that animals only respond to scent in the exact place that they are located at any
point in time. In this case, ¯p and q̄ are replaced byp and q respectively, so that
equations (26) and (27) are replaced by

∂u
∂ t

=
∂2

∂x2

[

(1−q2)u
]

+4
∂
∂x

[

∂q
∂x

u

]

, (46)

∂v
∂ t

=
∂2

∂x2

[

(1− p2)v
]

+4
∂
∂x

[

∂ p
∂x

v

]

. (47)

Equation (45) becomes

A=













[

1
(1+m)2

−1
]

k2 0 0 −2
[

2− 1
1+m

]

k2

0
[

1
(1+m)2

−1
]

k2 −2
[

2− 1
1+m

]

k2 0
m

ε(1+m) 0 − 1+m
ε 0

0 m
ε(1+m)

0 − 1+m
ε













, (48)

which is the limit asδ → 0 of equation (45). The corresponding dispersion relation is
given in Figure 3b. Here, for 0< m< 1, σ is an increasing function ofk, indicating
that the steady state is unstable but arbitrarily large wavenumbers grow fastest. In
other words, this is an ill-posed problem.
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5 Discussion and conclusions

We have shown how stable territorial patterns can form purely from a conspecific
avoidance mechanism, without requiring any attractive potential. Our model is con-
structed by taking the continuous space-time limit of a discrete lattice model. There-
fore it can be rigorously linked to the underlying movement and interaction processes.
We have demonstrated that patterns will only form if the scent marks last for a suffi-
ciently long time. If they decay too quickly, i.e.m≥ 1, the territorial structure breaks
down. This can be interpreted as saying territories can onlyemerge if the animal is
able to patrol its territory faster than the scent marks decay.

Similarly, patterns will only form reliably if the animals react to the averaged
scent density across the local vicinity of the animal. From abiological perspective,
an animal will always have a perceptive radius over which it will react to scent.
Therefore this spatial averaging is implicit in the system being modeled. As such,
our study demonstrates the importance of ensuring that the mathematical limiting
process, moving from discrete to continuous space, does notdestroy a key feature of
the underlying biology. Our procedure for performing this limiting process has the
potential for broad application, since there are many examples where the discreteness
of ecological interactions is known to be an important feature of the modeling process
(Durrett & Levin, 1994).

The model is derived from an individual-based model, previously studied using
stochastic simulations (Giuggioliet al., 2011a; Pottset al., 2012). As noted in recent
reviews (Giuggioli & Kenkre, 2014; Potts & Lewis, 2014), oneof the advantages of
this approach is that it gives a clear delineation between the related notions of ‘home
range’ and ‘territory’. The territory of an animal is definedas the area containing
active scent marks of the animal (Burt, 1943). Therefore, inthe model presented
here,p(x, t) andq(x, t) can be considered the probabilities of positionx being part of
the animals’territoriesat timet.

On the other hand, the home range of an animal is its utilization distribution
(Burt, 1943). Thereforeu(x, t) andv(x, t) can be considered as thehome rangesof the
animals at timet. The utilization distribution of an animal is typically much easier to
measure in the field than the fluctuating locations of the territory border (Pottset al.,
2012). In our approach, the concepts of territory and home range are related by rather
simple steady-state equations (30) and (31). This gives an explicit way to calculate
the probable location of a territory border, given data on its home range.

A key reason for studying PDE limits of IBMs is to provide mathematical analysis
of the conditions under which patterns may form, rather thanrelying on empirical ev-
idence from computer simulations. However, as shown here, patterns that form from
numerically solving the PDE may to be quantitatively different from those formed
by simulating the IBM. Therefore, if such PDE models were fitted to data on real
systems, it is important for the user to check that the PDE results are not signifi-
cantly different to those given by the IBM. Otherwise, thereis a danger of making
incorrect inferences about biological patterns, that may merely arise as artifacts of
the mean-field approximation and/or limiting procedure.

Models such as ours could be of use in analyzing territory formation when there
is no reason to believe the animals have any fidelity towards particular locations, or
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where these locations are not known, e.g. Batemanet al. (2015). Though memory
processes have recently been invoked to explain pattern formation (Briscoeet al.,
2002; Moorcroft, 2012), it is unclear how to find out what is going on inside the minds
of the animals using current science. This makes conjectures about memory difficult
to falsify. Conspecific avoidance mechanisms, on the other hand, can be measured
directly, e.g. Arnoldet al. (2011). Therefore our model of territorial emergence has
the potential to be parametrized from empirically measuredinteraction mechanisms.
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Appendix A

Letu(x, t), v(x, t), p(x, t) andq(x, t) be the density functions corresponding toU(n,m),
V(n,m), P(n,m) andQ(n,m) respectively, wherex = an andt = mτ . First note the
following limit asa→ 0, k(a)→ ∞, ak(a)→ δ

1
2k(a)−1

k(a)−1

∑
i=1−k(a)

Q(n+ i,m) =
1

2k(a)−1

k(a)−1

∑
i=1−k(a)

q(x+ai, t)a→ 1
2δ

∫ δ

−δ
q(x+ z, t)dz.

(49)

Using the definition of ¯q(x, t) given in equation (14), and writing equation (10) down
in terms of the density functions, we have

u(x, t + τ )−u(x, t)
τ

=
a2

2τ

{

1
a

[

u(x+a, t)−u(x, t)
a

− u(x, t)−u(x−a, t)
a

]

+ (50)

1
2a

[

4u(x+a, t)
q̄(x+2a, t)− q̄(x, t)

2a
−4u(x−a, t)

q̄(x, t)− q̄(x−2a, t)
2a

]

+

1
a

[

u(x, t)q̄(x+a, t)q̄(x−a, t)−u(x−a, t)q̄(x, t)q̄(x−2a, t)
a

−

u(x+a, t)q̄(x+2a, t)q̄(x, t)−u(x, t)q̄(x+a, t)q̄(x−a, t)
a

]}

.

We keepx constant in the limit asa → 0,n → ∞. Taylor expanding the right-hand
side aboutx, assuminga is arbitrarily small, gives the following expression

u(x, t + τ )−u(x, t)
τ

=
a2

2τ

{

d2u
dx2 −

[

4
du
dx

dq̄
dx

+4u
d2q̄
dx2

]

−
[

2uq̄
d2q̄
dx2 +2u

dq̄
dx

dq̄
dx

+
d2u
dx2 q̄2+4

du
dx

dq̄
dx

q̄

]

+O(a)

}

.

(51)

In the limit asa,τ → 0 such thata2/(2τ )→ D, this simplifies to give equation (11).
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Appendix B

We look for solutions to equation (42) in two cases: det(A) 6= 0 and det(A) = 0. For
det(A) 6= 0, one solution is to havėu = 0, implying thatu(x) andv(x) are constant
functions so territorial patterns do not form.

Otherwise, suppose that det(A) 6= 0, du/dx= 0 and dv/dx 6= 0. Then the following
equations hold

2u(2m+ v) = 0, (52)

(m+2u)(m+u) = 0. (53)

Equation (52) impliesu= 0 orv=−2m. However, ifu= 0 then equation (53) would
imply m= 0, which contradicts det(A) 6= 0. Furthermore, ifv = −2m thenv < 0,
which contradicts the fact thatv(x) is a probability density function. In conclusion,
if det(A) 6= 0, we cannot have du/dx = 0 and dv/dx 6= 0. Similarly, if det(A) 6= 0,
we cannot have dv/dx= 0 and du/dx 6= 0. Therefore the only possible way for non-
constant steady states to arise is if det(A) = 0.

Lemma 1 If det(A) = 0 then there are two possibilities.

1. No scent decay.If m= 0 then p(x) = q(x) = 1 and u(x), v(x) can take any value.
2. Positive scent decay.If m > 0 then, for each x∈ [0,1], there are finitely many

possible values for u(x) and v(x), one of which is u(x) = v(x) = m. Furthermore,
all solutions other than u(x) = v(x) = m have u(x),v(x) 6= m.

Proof If m= 0 then det(A) = 0. Furthermore, by equations (30) and (31), we have
p(x) = q(x) = 1. Therefore dp/dx= dq/dx= 0 so that equations (32) and (33) hold
regardless of the values ofu(x) andv(x), proving part 1 of the lemma. Indeed, in the
time-dependent PDEs (28,29,46,47), if an initial condition of p(x,0) = q(x,0) = 1 is
given andm= 0 then dp/dt = dq/dt = du/dt = dv/dt = 0 sou(x, t) = u(x,0) and
v(x, t) = v(x,0) remain unchanged for all timest.

Now supposem 6= 0. For notational ease, we drop the explicit dependencies ofu
andv onx for the rest of this proof, noting that they always refer to the steady states.
Then the equation det(A) = 0 implies the following polynomial holds

(m+2v)(m+2u)(m+u)(m+v)= 4uv(2m+u)(2m+ v). (54)

Equation (54) can be rearranged to give

u2(2m−2v)+u(3m2−7mv−2v2)+ (m3+3m2v+2mv2) = 0. (55)

Clearlym= u= v satisfies equation (55). Furthermore, it follows from equation (55)
thatu = m if and only if v = m. Hence any solution other thanu= v = m has both
u 6= m andv 6= m.

Differentiating equation (54) with respect tox, we find

du
dx

=
dv
dx

7mu−3m2−4mv+2u2+4uv
3m2−7mv+4mu−2v2−4uv

. (56)
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Using equation (56) and the top line of the vector equation (42), together with our
assumption thatdu/dx,dv/dx 6= 0, we find that

(7mu−3m2−4mv+2u2+4uv)(m+2v)(m+ v)+

(4mu+2uv)(3m2−7mv+4mu−2v2−4uv) = 0. (57)

Proving part 2 of the lemma requires applying Bézout’s Theorem (Fulton, 1969)
to equations (55) and (57). Bézout’s Theorem states that iftwo projective plane curves
are zeros of polynomials with no non-constant greatest common divisor, then the
curves intersect at finitely many points. The polynomials onthe left-hand sides of
equations (55) and (57) are homogeneous in three unknowns, therefore equations (55)
and (57) describe curves in the real projective plane. Thus,to prove part 2 of Lemma
1, it suffices to show that these two polynomials have no non-constant common factor.

Let f (m,u,v) be the polynomial on the left-hand side of equation (55). Since this
is quadratic inu, it written as precisely one of the following two possible decompo-
sitions:

f (m,u,v) = [a1(m,v)u+b1(m,v)][a2(m,v)u+b2(m,v)]c(m,v), (58)

or

f (m,u,v) = α (m,u,v)β(m,v), (59)

wherea1(m,v), a2(m,v), b1(m,v), b2(m,v), andβ(m,v) are polynomials, andα (m,u,v)
is an irreducible polynomial. By solving equation (55) in terms ofu, we find that

u=
7mv+2v2−3m2±

√

4(v− γ+m)(v− γ−m)(v−ϑ+m)(v−ϑ−m)

4(m− v)
, (60)

where

γ± =
1
4

[

−11−4
√

3±2

√

225
4

+30
√

3

]

,

ϑ± =−11
4

+
√

3± 1
4

√

15(15−8
√

3). (61)

Therefore the numerator of equation (60) is not a polynomial, so the decomposition
given in equation (58) cannot hold.

It follows that f (m,u,v) = α (m,u,v)β(m,v) whereα (m,u,v) is irreducible and
β(m,v) is the greatest common divisor of the coefficients ofun in f (m,u,v) for
n= 0,1,2. These coefficients are 2m−2v, 3m2−7mv−2v2 andm3+3m2v+2mv2

(equation 55). Sincem− v does not divide 3m2−7mv−2v2 or m3+3m2v+2mv2, it
follows thatβ(m,v) is a constant. Hencef (m,u,v) is irreducible.

Since f (m,u,v) is both irreducible and not a constant multiple of the polynomial
in equation (57), there is no non-constant greatest common divisor of the polynomials
in equations (55) and (57). The proof of part 2 then follows from Bézout’s Theorem.

⊓⊔
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Fig. 4 Possible values ofum = u(x)/m and vm = v(x)/m. The black curve denotes solutions to equation
(62), whereas the grey curve shows solutions to equation (63). There appears to be only one crossing-point
for positive real values of bothum andvm, which is whereum = vm = 1, so thatu= v= m.

Lemma 1 enables us to prove Theorem 1 from Section 3, as follows.

Proof of Theorem 1.Part 1 of Theorem 1 is identical to part 1 of Lemma 1. To show
part 2, note that classical solutions must be continuous. Lemma 1 states that there are
only finitely many possible values ofu andv. Therefore any classical solution must
be constant. ⊓⊔
Note 1 Numerical analysis suggests thatu= v= m is the only positive real solution
(Fig. 4). Since we are interested in the casem 6= 0, we setvm = v/m, um = u/m and
assumev 6= m. Then equation (55) implies

um =
7vm+2v2

m−3±
√

(3−7vm−2v2
m)

2−8(1− vm)(1+3vm+2v2
m)

4(1− vm)
. (62)

Furthermore, equation (57) rearranges to giveum as another two-valued function of
vm

um =
4v3

m+4v2
m+3vm+19

8v2
m+4vm−36

±
√

(4v3
m+4v2

m+3vm+19)2−4(4v2
m+2vm−18)(8v3

m+18v2
m+13vm+3)

8v2
m+4vm−36

.

(63)
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The black curve in Fig. 4 has an asymptote atvm = 1, where the denominator of
the right-hand side of equation (62) tends to 0. The grey curve has an asymptote at
vm = (

√
73− 1)/4, where the denominator of the right-hand side of equation (63)

tends to 0, so the two curves do not cross at values ofum higher than those shown in
Fig. 4.
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