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Abstract

We investigate the numerical reconstruction of the missing thermal and mechanical

boundary conditions on an inaccessible part of the boundary in the case of three-dimensional

linear isotropic thermoelastic materials from the knowledge of over-prescribed noisy data on

the remaining accessible boundary. We employ the method of fundamental solutions (MFS)

and several singular value decomposition (SVD)-based regularization methods, e.g. the

Tikhonov regularization method (Tikhonov and Arsenin, 1986), the damped SVD and the

truncated SVD (Hansen, 1998), whilst the regularization parameter is selected according

to the discrepancy principle (Morozov, 1966), generalized cross-validation criterion (Golub

et al., 1979) and Hansen’s L-curve method (Hansen and O’Leary, 1993).
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1 Introduction

For forward/direct boundary value problems (BVPs) in thermoelasticity, the thermo-mechanical

equilibrium equations have to be solved in a known geometry by assuming that the material

constants, the heat sources and/or body forces, and the boundary and initial conditions for the

mechanical and thermal fields are all known. The total or partial lack of knowledge of at least

one of these conditions leads to a so-called inverse problem. A classical example of an inverse

problem is represented by the so-called inverse BVPs in which the geometry of the solution

domain, the thermo-mechanical material constants and the heat sources and body forces are

all known, while boundary data are not available on an inaccessible part of the boundary and,

instead, over-prescribed boundary conditions are provided on the remaining boundary part. It

is well-known that such inverse BVPs are generally ill-posed, in the sense that their solution in

general does not exist and even if it exists, it does not depend continuously on the input data.

Consequently, small errors in the input data may cause large errors in the output solution and

thus a special treatment of these problems is required.

Over the last decade, the MFS and various regularization methods, such as the Tikhonov

regularization method (TRM) and the singular value decomposition (SVD), have been used

increasingly for the numerical solution of inverse problems. For thermo-mechanical problems

in solid bodies, we mention the Cauchy problem associated with the heat conduction equa-

tion (Hon and Wei, 2004, 2005; Marin, 2008), linear elasticity (Marin, 2005a; Marin and Lesnic,

2004), steady-state heat conduction in functionally graded materials (Marin, 2005b), Helmholtz-

type equations (Marin, 2005c; Marin and Lesnic, 2005a), two-dimensional linear thermoelastic-

ity (Karageorghis et al., 2014; Marin and Karageorghis, 2013b) etc. have all been successfully

solved by the MFS. For further applications of the MFS to inverse problems, we refer the reader

to the survey by Karageorghis et al. (2011).

The Cauchy and the general inverse BVPs in static planar thermoelasticity have been ad-

dressed by Marin and Karageorghis (2013b), and Karageorghis et al. (2014), respectively, who

applied the MFS, Hansen’s L-curve criterion and the numerical inversion of the normal sys-

tem of equations generated by the minimisation of the zeroth-order Tikhonov functional. Re-

cently, Marin et al. (2015) studied both the Cauchy problem and the general inverse BVP in

two-dimensional linear isotropic thermoelastic solids by employing singular value decomposi-

tion (SVD)-based non-iterative regularization methods, such as the Tikhonov regularization

method (TRM) (Tikhonov and Arsenin, 1986), the damped SVD (DSVD) and the truncated
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SVD (TSVD) (Hansen, 1998), in conjunction with several criteria for the selection of the corre-

sponding regularization parameter, i.e. Morozov’s discrepancy principle (DP) (Morozov, 1966),

generalized cross-validation (GCV) criterion (Golub et al., 1979) and Hansen’s L-curve (LC)

method (Hansen and O’Leary, 1993). In this paper we extend that analysis to three-dimensions.

Although the mathematical formulation is very similar in two- and three-dimensions, the numer-

ical implementation is obviously more involved in the latter case. The extension of the MFS from

two to three dimensions is considerably simpler then the extension of other, more traditional,

discretisation methods from two to three dimensions. This, in itself, is an important advantage

of the MFS over more traditional discretisation methods which is due to the fact that it is both

a meshless and a boundary-type method.

The paper is organised as follows: In Section 2 we formulate mathematically the inverse

BVPs under investigation and present some analysis employing a particular solution of the ther-

moelasticity system. New three-dimensional formulae for the MFS are provided and combined

with the SVD-based non-iterative regularization methods mentioned above is presented in Sec-

tion 3. The accuracy and stability of the numerical results obtained using these regularization

methods and selection criteria are thoroughly analysed for two examples in three dimensions in

Section 4. Finally, some concluding remarks are provided in Section 5.

2 Mathematical Formulation and Analysis

We consider an isotropic solid which occupies a bounded domain Ω ⊂ R
3 and is characterised by

the following material constants: the thermal conductivity, κ, the coefficient of linear thermal

expansion, αT, Poisson’s ratio, ν, and the shear modulus, G.

In the framework of isotropic linear thermoelasticity, the strain tensor, ϵ = [ϵij]1≤i,j≤3,

satisfies the kinematic relation

ϵ(x) =
1

2

(
∇u(x) + ∇u(x)T

)
, x ∈ Ω , (1)

and is related to the stress tensor, σ = [σij]1≤i,j≤3, by means of the following constitutive

law (Nowacki, 1986)

σ(x) = 2G

[
ϵ(x) +

ν

1 − 2ν
tr (ϵ(x)) I

]
− γT(x) I , x ∈ Ω , (2a)

where I = [δij]1≤i,j≤3 is the identity matrix in R
3 and

γ = 2GαT(1 + ν)
/

(1 − 2ν) . (2b)
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The kinematic relation (1) combined with the constitutive law of isotropic thermoelasticity (2a)

yields

σ(x) = G

[(
∇u(x) + ∇u(x)T

)
+

2ν

1 − 2ν

(
∇ · u(x)

)
I

]
− γT(x) I , x ∈ Ω . (3)

In the absence of body forces, the equilibrium equations of three-dimensional isotropic linear

thermoelasticity, in terms of the displacement vector and the temperature, become

−∇ · σ(x) ≡ L u(x) + γ∇T(x) = 0 x ∈ Ω . (4)

Here L = (L1,L2,L3)
T is the partial differential operator associated with the three-dimensional

Navier-Lamé system of isotropic linear elasticity, i.e.

L u(x) ≡ −G

[
∇ ·

(
∇u(x) + ∇u(x)T

)
+

2ν

1 − 2ν
∇
(
∇ · u(x)

)]
, x ∈ Ω . (5)

In the absence of heat sources, the governing steady-state heat conduction equation becomes

−κ∇2T(x) = 0 , x ∈ Ω . (6)

We also let n(x) be the outward unit normal vector to the boundary ∂Ω of Ω, q(x) be the

normal heat flux at a point x ∈ ∂Ω defined by

q(x) ≡ −
(
κ∇T(x)

)
· n(x) , x ∈ ∂Ω , (7)

and t(x) be the traction vector at x ∈ ∂Ω given by

t(x) ≡ σ(x)n(x) , x ∈ ∂Ω . (8)

In many practical situations, only a part of the boundary, say Γ1 ⊂ ∂Ω, is accessible for

measurements, while the remaining boundary part, Γ2 = ∂Ω \ Γ1, is inaccessible and hence no

boundary data is available on it. In this case, additional measurements are available on Γ1, thus

compensating for the lack of boundary data on Γ2, and this corresponds to an inverse BVP.

In the sequel, we consider the following two inverse BVPs for three-dimensional steady-state

isotropic linear thermoelasticity:

Problem (A): The Cauchy problem given by (4) and (6) and the following over-prescribed ther-

mal and mechanical boundary conditions:

T(x) = T̃(x) and q(x) = q̃(x) , x ∈ Γ1 , (9a)

u(x) = ũ(x) and t(x) = t̃(x) , x ∈ Γ1 . (9b)

4



Problem (B): The inverse BVP given by (4) and (6) and the following boundary conditions:

T(x) = T̃(x) , x ∈ Γ1 , (10a)

u(x) = ũ(x) , x ∈ Γ1 , (10b)

t(x) = t̃(x) , x ∈ ∂Ω . (10c)

In the case of the Cauchy problem (4), (6), (9a) and (9b), we can decouple the solutions for

T and u. Indeed, by first solving the Cauchy problem for the Laplace equation given by Eqs. (6)

and (9a), we can obtain the temperature T and its gradient ∇T in Ω. Then, introducing this

gradient into (4), we are left to solve the Cauchy problem for the Navier-Lamé system of isotropic

linear elasticity given by Eqs. (4) and (9b). This decoupling is useful to show the uniqueness of

the solution (T,u) of Problem (A), but we still need to deal with solving two Cauchy problems

which are ill-posed by violating the continuous dependence on the input data. In the case of the

inverse BVP given by Eqs. (4), (6), (10a) and (10b), the uniqueness of the solution was proved

by Kozlov et al. (2009), but the problem is still ill-posed. In order to deal with the ill-posedness

of these problems, suitable regularization procedures should be employed.

3 Method of Fundamental Solutions

Nevertheless, the numerical discretisation of the thermoelasticity system of equations (4) and (6)

in three-dimensional homogeneous materials can be conveniently performed using the boundary

element method (BEM) as described by Rizzo and Shippy (1977). This results in advantageously

having to discretise two-dimensional boundary (surface) integrals instead of three-dimensional

volume integrals as it happens with domain discretisation methods such as the finite element

method (FEM). However, in this study we are able to simplify the numerical implementation

even further and employ instead the meshless MFS. For the coupled system (4) and (6) of

steady-state linear thermoelasticity the MFS is described in the next subsections.

3.1 Approximation for the thermal problem

The fundamental solution of the three-dimensional Laplace equation (6) is given by

F(x,ξ) =
1

4πκ

1

∥x− ξ∥
, (x, ξ) ∈ R

3 × R
3 . (11)
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In the MFS, the temperature is approximated by a linear combination of fundamental solutions

with respect to NL sources,
{
ξ(n)

}
n=1,NL

⊂ R
3 \ Ω, in the form

T(x) ≈ TNL
(c(1),ξ;x) =

NL∑

n=1

F
(
x,ξ(n)

)
c(1)n , x ∈ Ω , (12)

where c(1) =
(
c
(1)
1 , . . . , c

(1)
NL

)
∈ R

NL and ξ ∈ R
3NL is a vector containing the coordinates of the

sources.

From Eqs. (7) and (12), it follows that the normal heat flux can be approximated by

q(x) ≈ qNL
(c(1),ξ;x) =

1

4π

NL∑

n=1

(
x− ξ(n)

)
· n(x)

∥x− ξ(n)∥3
c(1)n , x ∈ ∂Ω . (13)

Next, we select M1
L collocation points,

{
x(n)

}
n=1,M1

L

, on the boundary Γ1 and M2
L collocation

points,
{
x(M1

L
+n)

}
n=1,M2

L

, on the boundary Γ2, such that M1
L + M2

L = ML. By collocating the

thermal boundary conditions (9a) or (10a), one obtains the following linear system of equations

for the unknown coefficients c(1) ∈ R
NL :

A(11) c(1) = f (1). (14)

Here A(11) is the MFS matrix associated with the thermal part of the inverse problem under

investigation and f (1) contains the corresponding discretised thermal data. More precisely, the

dimensions of A(11) and f (1) are given by

(i) A(11) ∈ R
2M1

L
×NL and f (1) ∈ R

2M1

L for Problem (A);

(ii) A(11) ∈ R
M1

L
×NL and f (1) ∈ R

M1

L for Problem (B).

Next, we seek the displacement u as a superposition, see Marin and Karageorghis (2013a),

u = u(H) + u(P) , (15)

where u(P) is a particular solution of the non-homogeneous system (4) and u(H) is the solution

of the homogeneous problem

L u(H)(x) = 0 , x ∈ Ω , (16a)

u(H)(x) = ũ(x) − u(P)(x) , x ∈ Γ1 , (16b)

t(H)(x) = t̃(x) − t(P)(x) , x ∈ ∂Ω . (16c)
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3.2 Approximation for the Non-Homogeneous Equilibrium Equa-

tions (4)

A particular solution to the non-homogeneous equilibrium equations (4) in R
3 is given by, see

e.g. Karageorghis and Smyrlis (2007),

u(P)(y) ≈ u
(P)
NL

(c(1),ξ;y) =
αT

2

(
1 + ν

1 − ν

) NL∑

n=1

F
(
y,ξ(n)

) (
y−ξ(n)

)
c(1)n , y ∈ R

3\

NL∪

n=1

{
ξ(n)

}
. (17)

The corresponding approximation for the particular traction vector is given by

t(P)(y) ≈ −
αTG

4πκ

(
1 + ν

1 − ν

) NL∑

n=1

[
−

1

1 − 2ν

1

∥y − ξ(n)∥
n(y)

+

(
y − ξ(n)

)
· n(y)

∥y − ξ(n)∥3

(
y − ξ(n)

)
]

c
(1)
n , y ∈ ∂Ω .

(18)

3.3 Approximation for the Homogeneous Mechanical Problem

The fundamental solution matrix U = [Uij]1≤i,j≤3 for the displacement vector in three-dimensional

isotropic linear elasticity is given by (Aliabadi, 2002)

Uij(y,η) =
1

16πG(1 − ν)

1

∥y − η∥

[
(3 − 4ν) δij +

yi − ηi

∥y − η∥

yj − ηj

∥y − η∥

]
,

(y,η) ∈ R
3 × R

3 , i, j = 1, 2, 3.

(19)

By differentiating Eq. (19) with respect to yk, k = 1, 2, 3, one obtains the derivatives of the

fundamental solution for the displacement vector, denoted by ∂ykUij(y,η), where ∂yk ≡ ∂ /∂yk .

The fundamental solution matrix T = [Tij]1≤i,j≤3 for the traction vector in the case of three-

dimensional isotropic linear elasticity is then obtained by combining equation (19) with the

definition of the traction vector (8) and Hooke’s constitutive law of isotropic linear elastic-

ity (Aliabadi, 2002), namely

T1k(y,η) =
2G

1 − 2ν

[
(1 − ν) ∂y1U1k(y,η) + ν

(
∂y2U2k(y,η) + ∂y3U3k(y,η)

)]
n1(y)

+ G
[
∂y2U1k(y,η) + ∂y1U2k(y,η)

]
n2(y) + G

[
∂y3U1k(y,η) + ∂y1U3k(y,η)

]
n3(y),

k = 1, 2, 3,

(20a)

T2k(y,η) =
2G

1 − 2ν

[
(1 − ν) ∂y2U2k(y,η) + ν

(
∂y3U3k(y,η) + ∂y1U1k(y,η)

)]
n2(y)

+ G
[
∂y3U2k(y,η) + ∂y2U3k(y,η)

]
n3(y) + G

[
∂y1U2k(y,η) + ∂y2U1k(y,η)

]
n1(y),

k = 1, 2, 3,

(20b)
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and

T3k(y,η) =
2G

1 − 2ν

[
(1 − ν) ∂y3U3k(y,η) + ν

(
∂y1U1k(y,η) + ∂y2U2k(y,η)

)]
n3(y)

+ G
[
∂y1U3k(y,η) + ∂y3U1k(y,η)

]
n1(y) + G

[
∂y2U3k(y,η) + ∂y3U2k(y,η)

]
n2(y),

k = 1, 2, 3.

(20c)

As for the thermal problem, we consider NE sources,
{
η(n)

}
n=1,NE

, and approximate the

displacement vector, u(H), associated with the homogeneous equilibrium equation (16a) by a

linear combination of the displacement fundamental solutions (19) with respect to these sources,

i.e.

u(H)(y) ≈ u
(H)
NE

(c(2),η;y) =

NE∑

n=1

U(y,η(n)) c(2)n , y ∈ Ω , (21)

where c
(2)
n ∈ R

3, n = 1, NE, c(2) =
(
c
(2)
1 , c

(2)
2 , . . . , c

(2)
NE

)
∈ R

3NE and η ∈ R
3NE is a vector

containing the coordinates of the sources
{
η(n)

}
n=1,NE

. In a similar manner, the traction vector,

t(H), associated with the homogeneous equilibrium equation (16a) is approximated by a linear

combination of the traction fundamental solutions (20a)–(20c), namely

t(H)(y) ≈ t
(H)
NE

(c(2),η;y) =

NE∑

n=1

T(y,η(n)) c(2)n , y ∈ ∂Ω . (22)

By collocating the corresponding boundary conditions (16b) and (16c) at the points
{
y(n)

}
n=1,M1

E

on the boundary portion Γ1 and, eventually,
{
y(M1

E
+n)

}
n=1,M2

E

on the boundary portion Γ2, one

obtains the following linear system of equations for the unknown coefficients c(2) ∈ R
3NE :

A(22) c(2) = f (2) −A(21) c(1) . (23)

Here A(22) is the MFS matrix associated with the homogeneous mechanical part of the inverse

problem under investigation, f (2) is the right-hand side vector containing the corresponding

discretised mechanical data available on Γ1 and, eventually, Γ2. The matrix A(21) represents

the coupling of the mechanical part of the inverse problem considered with its thermal part

(more specifically, the influence of the thermal field on the mechanical field). More precisely, the

dimensions of A(21), A(22) and f (2) are given by:

(i) A(21) ∈ R
6M1

E
×NL , A(22) ∈ R

6M1

E
×3NEand f (2) ∈ R

6M1

E for Problem (A);

(ii) A(21) ∈ R
(6M1

E
+3M2

E
)×NL , A(22) ∈ R

(6M1

E
+3M2

E
)×3NE and f (2) ∈ R

6M1

E
+3M2

E for Problem (B).
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3.4 Regularization of the Inverse Thermoelasticity Problems

From Eqs. (14) and (23), it follows that the MFS formulation for both inverse problems (A) and

(B) may be recast as

Ac = f . (24a)

The matrix A ∈ R
m×n and the vectors c ∈ R

n and f ∈ R
m in (24a), where m = 2M1

L + 6M1
E

and n = NL + 3NE, and m = M1
L + 6M1

E + 3M2
E and n = NL + 3NE for inverse problems (A)

and (B), respectively, are given by

A =


 A(11) 0

A(21) A(22)


 , c =


c(1)

c(2)


 , f =


f (1)

f (2)


 . (24b)

Clearly, once the MFS coefficients c(1) ∈ R
NL and c(2) ∈ R

3NE have been determined accu-

rately, the approximations for the unknown temperature and displacement are obtained using

the superposition principle together with Eqs. (15), (17), (18) and (22).

In order to uniquely determine the solution c ∈ R
NL+3NE of the system of equations (24a),

the numbers of boundary collocation points and sources must satisfy the inequality 2M1
L +

6M1
E ≥ NL + 3NE for inverse problem (A), or M1

L + 6M1
E + 3M2

E ≥ NL + 3NE for inverse

problem (B). In practice, the same collocation points and sources are used for both the thermal

and the mechanical problems, i.e.
{
x(m)

}
m=1,ML

=
{
y(m)

}
m=1,ME

with ML = ME =: M and
{
ξ(n)

}
n=1,NL

=
{
η(n)

}
n=1,NE

with NL = NE =: N , respectively. Consequently, the inequality

that ensures the uniqueness of the solution of the system of equations (24a) reduces to 2M1 ≥ N

for inverse problem (A), or M1 + 3M/4 ≥ N for inverse problem (B), where Mj := M j
L = M j

E,

j = 1, 2.

Since inverse problems (A) and (B) are ill-posed, the system of equations (24a) is ill-

conditioned and needs to be regularized. For this purpose, we compare several regularization

methods such as:

(R1) the Tikhonov regularization method (TRM);

(R2) the damped SVD (DSVD);

(R3) the truncated SVD (TSVD);

with the choice of the regularization parameter given by

(C1) the L-curve criterion (LC);
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(C2) the discrepancy principle (DP);

(C3) the generalized cross-validation (GCV).

The full description of these methods and criteria for selecting the regularization parameter λ

for the TRM and DSVD and truncation number k for the TSVD can be found in Marin et al.

(2015).

4 Numerical Results

In this section, we apply the regularized MFS described in Section 3 to two test problems. More

precisely, we solve the inverse problems (A) and (B) in three-dimensional simply connected

domains with smooth or piecewise smooth boundaries, for an isotropic linear thermoelastic

material (copper alloy) characterised by the material constants G = 4.80× 1010 N/m2, ν = 0.34,

κ = 4.01 W m−1 K−1 and αT = 16.5 × 10−6 ◦C−1.

Example 1 (Simply connected domain with a piecewise smooth boundary): We consider the

inverse Cauchy problem (A) in the cube Ω = (−0.5, 0.5)3, with the analytical solution given by

T(x) =
K∑

k=1

Tk

∥x− x(k)∥
, x ∈ Ω , (25a)

u(x) =
γ

4G

(
1 − 2ν

1 − ν

) K∑

k=1

Tk

x− x(k)

∥x− x(k)∥
, x ∈ Ω , (25b)

q(x) = −κ

K∑

k=1

Tk

(
x− x(k)

)
· n(x)

∥x− x(k)∥3
, x ∈ ∂Ω , (25c)

t(x) = −
γ

2

(
1 − 2ν

1 − ν

) K∑

k=1

Tk

∥x− x(k)∥

[
n(x) +

(
x− x(k)

)
· n(x)

∥x− x(k)∥2
(
x− x(k)

)
]

− γn(x)
K∑

k=1

Tk

∥x− x(k)∥
, x ∈ ∂Ω ,

(25d)

with K = 2, x(1) = (−5.0,−5.0, 5.0), T1 = −1.000◦C, x(2) = (2.0,−4.0, 4.0) and T2 = 200◦C.

Clearly, the analytical solutions (25a)–(25b) satisfy the thermoelasticity system of equations (4)

and (6) because they are just superpositions of non-singular fundamental solutions, as in the

MFS expansions (12) and (17). Although they appear simple in form, they in fact are severe

test examples because expressions (25a)–(25b) cannot be analytically continued to the whole of
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R
3, since they possess singularities at x(1) and x(2). This in turn places some restrictions on the

placement of the fictitious boundary ∂Ω̃, enclosing the solution domain Ω, can be located, as

Ω̃ cannot contain the singularity points x(1) and x(2). For Example 1, we consider three cases,

namely

(a) Over-determined Cauchy data, i.e.

Γ1 =
{
x ∈ ∂Ω

∣∣ x1 = ±0.5
}
∪
{
x ∈ ∂Ω

∣∣ x2 = −0.5
}
∪
{
x ∈ ∂Ω

∣∣ x3 = −0.5
}

;

Γ2 =
{
x ∈ ∂Ω

∣∣ x2 = 0.5
}
∪
{
x ∈ ∂Ω

∣∣ x3 = 0.5
}
.

(b) Equally determined Cauchy data, i.e.

Γ1 =
{
x ∈ ∂Ω

∣∣ x1 = −0.5
}
∪
{
x ∈ ∂Ω

∣∣ x2 = −0.5
}
∪
{
x ∈ ∂Ω

∣∣ x3 = −0.5
}

;

Γ2 =
{
x ∈ ∂Ω

∣∣ x1 = 0.5
}
∪
{
x ∈ ∂Ω

∣∣ x2 = 0.5
}
∪
{
x ∈ ∂Ω

∣∣ x3 = 0.5
}
.

(c) Under-determined Cauchy data, i.e.

Γ1 =
{
x ∈ ∂Ω

∣∣ x1 = −0.5
}
∪
{
x ∈ ∂Ω

∣∣ x2 = −0.5
}

;

Γ2 =
{
x ∈ ∂Ω

∣∣ x1 = 0.5
}
∪
{
x ∈ ∂Ω

∣∣ x2 = 0.5
}
∪
{
x ∈ ∂Ω

∣∣ x3 = ±0.5
}
.

Example 2 (Simply connected domain with a smooth boundary): We consider the inverse BVP

(B) in the sphere Ω =
{
x ∈ R

3
∣∣ ∥x∥ < R

}
, R = 1.0, with the analytical solution given by

Eqs. (25a)–(25d), with K = 2, x(1) = (5.0, 5.0, 5.0), T1 = 2.000◦C, x(2) = (−2.0, 4.0, 4.0) and

T2 = −500◦C. Here, we consider Γ1 =
{
x ∈ ∂Ω

∣∣ ρ(x) = R, θ(x) ∈ [0, 2π), ϕ(x) ∈ [0,ϕ0]
}

,

where ϕ0 ∈
{
π/2, 2π/3

}
and

(
ρ(x), θ(x),ϕ(x)

)
are the spherical coordinates associated with

x ∈ R
3, whilst Γ2 = ∂Ω \ Γ1.

At this stage, it is worth mentioning that although Examples 1 and 2 are formulated in

simple three-dimensional geometries such as a cube or a sphere, the MFS may be applied in

almost exactly the same way to any other arbitrary and irregular domains as the data prepara-

tion required and the implementational details involved are similar. In fact, this is one of the

important advantages that the MFS has over other discretisation methods. This advantage is,

clearly, even more pronounced in (higher) three-dimensions.

In all examples we took M j
L = M j

E = Mj uniformly distributed collocation points on Γj,

j = 1, 2, such that M1 + M2 = M . Also, we took NL = NE = N uniformly distributed sources
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associated with both the over- and under-specified boundaries Γ1 and Γ2, respectively. Moreover,

the sources are preassigned and kept fixed throughout the solution process (i.e. the so-called

static MFS approach has been employed) on a pseudo-boundary ∂Ω̃ of a similar shape to that

of ∂Ω such that dist
(
∂Ω̃, ∂Ω

)
is a fixed constant (Gorzelańczyk and Ko lodziej, 2008). According

to the notation used in Section 3, the corresponding MFS parameters have been set as follows:

(i) Example 1: N = 486 on ∂Ω̃, where Ω̃ =
(
−0.5−d, 0.5+d

)3
and d = 4.0, and M1 = ℓN/6

on Γ1, with ℓ ∈
{

4, 3, 2
}

corresponding to cases (a)–(c), respectively.

(ii) Example 2: N = 840 on ∂Ω̃ =
{
x ∈ R

3
∣∣ ∥x∥ = R+d

}
, where d = 4.0 and M = (ϕ0/π)N

on Γ1, for ϕ0 ∈
{
π/2, 2π/3

}
.

In order to simulate the inherent measurement errors, we consider that the boundary data

corresponding to the inverse problems investigated herein is noisy. More precisely, we assume

that the given exact boundary data F̃
∣∣
Γ1

= F(an)
∣∣
Γ1

or, eventually, F̃
∣∣
∂Ω

= F(an)
∣∣
∂Ω

has been

perturbed as

F̃ε(x) =
(
1 + pFζ

)
F(an)(x) , x ∈ Γ , (26)

where Γ = Γ1 or Γ = ∂Ω, pF is the percentage noise and ζ is a pseudo-random number drawn

from the standard uniform distribution on the interval [-1, 1] generated using the MATLAB c⃝

command −1 + 2 ∗ rand(·). It should be mentioned that, for the inverse problems with noisy

boundary data considered, the accuracy of the numerical results was found to be quite insensitive

with respect to the location of the MFS pseudo-boundary. For all examples considered, the L-

curves, the DP curves and the GCV functions, as well as the calculation of the corresponding

values of the regularization parameters, were carried out using the MATLAB c⃝ routines available

in Hansen’s regularization tools package (Hansen, 1994, 2007).

Further, to assess the accuracy and convergence of the combined MFS-MPS approach and

SVD-based regularizing methods (R1)–(R3) in conjunction with the selection criteria (C1)–

(C3), for any real-valued function f : Γ −→ R, where Γ = Γ2 or Γ = ∂Ω, and any set of points
{
x(n)

}
n=1,NΓ

⊂ Γ, we introduce the following relative root mean square (RMS ) error of f on Γ:

eΓ(f) =

√√√√ 1

NΓ

NΓ∑

n=1

[
f (num)

(
x(n)

)
− f

(
x(n)

)]2
/√√√√ 1

NΓ

NΓ∑

n=1

f
(
x(n)

)2
, (27a)

where f (num)(x) denotes an approximate numerical value for f(x), x ∈ Γ. To investigate the

local accuracy of the numerical solution, one could also employ the following pointwise normalized
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error of f at x ∈ Γ:

Ef (x) =

∣∣f (num)(x) − f(x)
∣∣

maxy∈Γ

∣∣f(y)
∣∣ , x ∈ Γ . (27b)

Tables 1–3 present the values of the regularization parameter λ or the truncation number

k and the corresponding RMS errors, eΓ2
(T), eΓ2

(q), eΓ2
(u) and eΓ2

(t), obtained using the

non-iterative regularization methods (R1)–(R3), the criteria (C1)–(C3) and various amounts of

noise added to the data (9a)–(9b), for Example 1 with |Γ1|
/
|Γ2| ∈

{
2, 1, 1/2

}
, i.e. cases (a)–

(c), respectively. It can be observed from these tables that each of the regularization methods

(R1)–(R3) has a stabilising/regularizing effect on the numerical solution of Cauchy problem

(A), provided that an appropriate criterion is employed for the selection of the regularization

parameter λ or the truncation number k, for over-, equally- and under-determined Cauchy data.

More precisely, all of the criteria (C1)–(C3) are suitable criteria for the regularization methods

(R1)–(R3).

In Figures 1 and 2 we present the numerical results retrieved in case of Example 1 with

|Γ1|
/
|Γ2| = 1, i.e. case (b), using the TRM-LC approach and various levels of noise in the

Dirichlet data T
∣∣
Γ1

and u
∣∣
Γ1

, for the unknown thermal boundary data (i.e. T
∣∣
x2=0.5

and q
∣∣
x2=0.5

),

in comparison with their corresponding exact values. The exact and the numerical results

obtained for the unknown mechanical boundary data (i.e. u1

∣∣
x3=0.5

and t2
∣∣
x3=0.5

) are displayed in

Figures 3 and 4. From Figures 1–4, as well as Tables 1–3, one can conclude that, for Example 1,

very accurate and stable numerical solutions are obtained if all three regularization methods

(R1)–(R3) are combined with any of the criteria (C1)–(C3), for over-, equally- and under-

determined Cauchy data.

Next, we investigate the influence of the length of the over-specified boundary segment Γ1 on

the accuracy of the numerical solutions retrieved using the non-iterative regularization methods

(R1)–(R3), the criteria (C1)–(C3) and various amounts of noise added to the data (9a)–(9b),

for Example 1. To do so, we set N = 486, d = 4 and pT = pu = 5%, and vary M1 = ℓN/6

on Γ1, with ℓ ∈
{

4, 3, 2
}

corresponding to cases (a)–(c), respectively. The exact and numeri-

cal approximations retrieved using the TSVD–DP approach and |Γ1|
/
|Γ2| ∈

{
1/2, 1, 2

}
, for the

temperature T
∣∣
x2=0.5

, normal heat flux q
∣∣
x2=0.5

, displacement u1

∣∣
x3=0.5

and traction t2
∣∣
x3=0.5

are

presented in Figures 1–4, respectively. From these figures it can be observed that, as expected,

the numerically reconstructed thermal and mechanical boundary data on Γ2 become more inac-

curate as the value of the ratio |Γ1|
/
|Γ2| decreases, i.e. the surface of the boundary part Γ1 on
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which Cauchy measurements are available decreases.

Each of the regularization methods (R1)–(R3) has also a stabilising/regularizing effect on

the numerical solution of Problem (B) in a three-dimensional simply connected domain with a

smooth boundary, such as the sphere considered in Example 2, provided that an appropriate

criterion is employed for the selection of the regularization parameter λ or the truncation number

k. This can be seen from Table 4, which displays the values of the regularization parameter

and the corresponding RMS errors, eΓ2
(T), e∂Ω(q) and eΓ2

(u), obtained using the regularization

methods (R1)–(R3), the criteria (C1)–(C3) and various amounts of noise added to the data (10a)–

(10c), for Example 2 with |Γ1|
/
|Γ2| = 2, i.e. ϕ0 = 2π/3. More precisely, all of the criteria

(C1)–(C3) are suitable criteria for both the TRM and the DSVD, whilst the same conclusion

holds if the TSVD is employed together with the DP only, i.e. both the LC and the GCV fail

to provide a good value for k when the TSVD is used as regularization method for the inverse

BVP (B) given by Example 2 with |Γ1|
/
|Γ2| = 2.

Figures 9 and 10 display the numerical results retrieved in case of Example 2 with |Γ1|
/
|Γ2| =

2 (i.e. ϕ0 = 2π/3), using the DSVD-DP approach and various levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and

t
∣∣
∂Ω

, for the unknown thermal (i.e. T
∣∣
Γ2

and q
∣∣
∂Ω

) and the mechanical boundary data (i.e.

u1

∣∣
Γ2

), respectively, in terms of their corresponding pointwise normalized errors (27b). From

these figures, as well as Table 4, one can conclude that the numerical solutions obtained using

the DSVD-DP are all very accurate and stable with respect to decreasing the amount of noise

in the data, for Example 2 with |Γ1|
/
|Γ2| = 2.

In Table 5 we present the values of the regularization parameter and the corresponding RMS

errors, eΓ2
(T), e∂Ω(q) and eΓ2

(u), obtained using the regularization methods (R1)–(R3), the

criteria (C1)–(C3) and various amounts of noise added to the data (9a)–(9b), for Example 2

with |Γ1|
/
|Γ2| = 1, i.e. ϕ0 = π/2. From this table we see that each of the regularization

methods (R1)–(R3) has a stabilising/regularizing effect on the numerical solution of Example 2

with |Γ1|
/
|Γ2| = 1, provided that an appropriate criterion is employed for the selection of the

regularization parameter λ or the truncation number k. More precisely, both the DP and the

LC are suitable criteria for all of the regularization methods (R1)–(R3), whilst the GCV fails

to provide a good value for λ or k for all regularization methods in the case of Example 2 with

|Γ1|
/
|Γ2| = 1. Also, by comparing Tables 4 and 5, one can conclude that, as expected, the

smaller the boundary Γ2 of the solution domain on which over-determined data are available,

the more inaccurate the numerical reconstruction of the unknown boundary data.
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Finally, we investigate the sensitivity of the numerical results obtained using the regulariza-

tion methods (R1)–(R3), together with the criteria (C1)–(C3) for selecting the optimal value of

the regularization parameter, with respect to the distance between the boundary ∂Ω and the

pseudo-boundary ∂Ω̃ on which the singularities are located, i.e. d = dist
(
∂Ω̃, ∂Ω

)
. We consider

the BVP given by Example 1 case (b), set N = 486 singularities on ∂Ω̃ =
{
x ∈ R

3
∣∣ ∥x∥ = R+d

}
,

M = N/2 collocation points on Γ1 and pT = pu = 3%, and vary d ∈ (0, 10]. Figures 11(a)–11(c)

present the accuracy errors eΓ2
(T), eΓ2

(q), eΓ2
(u) and eΓ2

(t) as functions of the distance d, ob-

tained using the TRM-LC, DSVD-LC and TSVD-DP, respectively. From these figures it can be

seen that, as expected, all the errors decrease until d reaches a threshold value, after which they

stabilise reaching a plateau region.

5 Conclusions

In this paper, we have investigated the reconstruction of the missing thermal and mechanical

data on an inaccessible part of the boundary for three-dimensional linear isotropic thermoelastic

materials from over-prescribed noisy measurements taken on the remaining accessible boundary

part. Two types of inverse problems, i.e. Eqs. (4) and (6) together with either (9) or (10), were

solved by employing the MFS. The stabilisation/regularization of the inverse BVPs considered

was achieved by using several SVD-based regularization methods, such as the TRM (Tikhonov

and Arsenin, 1986), the DSVD and the TSVD (Hansen, 1998), while the regularization param-

eter or the truncation number was chosen according to the DP (Morozov, 1966), GCV crite-

rion (Golub et al., 1979) and Hansen’s LC method (Hansen and O’Leary, 1993). The following

major conclusions have been drawn from the present study:

(i) All three regularization methods (R1)–(R3) provide us with a stable solution of the three-

dimensional inverse problems (A) and (B), provided that a suitable criterion for the selec-

tion of the regularization parameter is used.

(ii) For the inverse Cauchy problem (A) in a three-dimensional simply connected domain with

a piecewise smooth boundary (e.g. Example 1), an accurate and stable solution is obtained

if all three regularization methods (R1)–(R3) are combined with any of the criteria (C1)–

(C3), for over-, equally- and under-determined Cauchy data.

(iii) The inverse BVP (B) in a three-dimensional simply connected domain with a smooth

boundary (e.g. Example 2) can be solved, in a stable and accurate manner, provided that:
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(i) the TRM and DSVD are combined with any of the criteria (C1)–(C3), or the TSVD

is employed together with the DP, when over-prescribed data are available on at least two

thirds of the boundary; and (ii) all three regularization methods (R1)–(R3) are combined

with either the DP or the LC, when over-prescribed data are available on at least a half of

the boundary.
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Method pT = pu λ or k eΓ2
(T) eΓ2

(q) eΓ2
(u) eΓ2

(t)

TRM–LC

1% 1.90 × 10−3 1.58 × 10−4 4.55 × 10−3 7.43 × 10−5 7.13 × 10−4

3% 8.11 × 10−3 6.49 × 10−4 1.80 × 10−2 2.25 × 10−4 2.52 × 10−3

5% 1.08 × 10−2 8.27 × 10−4 2.32 × 10−2 3.38 × 10−4 3.19 × 10−3

TRM–GCV

1% 8.23 × 10−4 9.64 × 10−5 2.98 × 10−3 7.53 × 10−5 1.15 × 10−3

3% 2.08 × 10−3 2.52 × 10−4 7.66 × 10−3 1.87 × 10−4 1.23 × 10−3

5% 3.89 × 10−3 4.52 × 10−4 1.34 × 10−2 3.03 × 10−4 9.28 × 10−4

TRM–DP

1% 2.87 × 10−4 1.49 × 10−4 3.95 × 10−3 1.34 × 10−4 3.39 × 10−3

3% 6.61 × 10−4 2.82 × 10−4 7.87 × 10−3 2.38 × 10−4 4.61 × 10−3

5% 9.24 × 10−4 4.08 × 10−4 1.18 × 10−2 3.48 × 10−4 5.47 × 10−3

DSVD–LC

1% 3.29 × 10−3 2.69 × 10−4 7.29 × 10−3 7.80 × 10−5 9.11 × 10−4

3% 1.13 × 10−2 8.12 × 10−4 2.52 × 10−2 2.57 × 10−4 3.38 × 10−3

5% 2.08 × 10−2 1.23 × 10−3 3.28 × 10−2 4.05 × 10−4 5.07 × 10−3

DSVD–GCV

1% 2.36 × 10−4 2.52 × 10−4 6.32 × 10−3 2.11 × 10−4 4.55 × 10−3

3% 7.61 × 10−4 5.84 × 10−4 1.05 × 10−2 4.67 × 10−4 6.70 × 10−3

5% 1.33 × 10−3 8.88 × 10−4 1.46 × 10−2 7.31 × 10−4 7.52 × 10−3

DSVD–DP

1% 1.47 × 10−4 2.64 × 10−4 8.67 × 10−3 2.27 × 10−4 5.88 × 10−3

3% 3.39 × 10−4 5.82 × 10−4 1.52 × 10−2 4.61 × 10−4 1.15 × 10−2

5% 5.59 × 10−4 8.10 × 10−4 1.89 × 10−2 6.08 × 10−4 1.43 × 10−2

TSVD–LC

1% 202 1.38 × 10−3 1.14 × 10−1 9.27 × 10−4 3.20 × 10−2

3% 202 4.13 × 10−3 3.42 × 10−1 2.78 × 10−3 9.61 × 10−2

5% 202 6.89 × 10−3 5.70 × 10−1 4.63 × 10−3 1.60 × 10−1

TSVD–GCV

1% 61 9.21 × 10−5 2.96 × 10−3 1.20 × 10−4 1.62 × 10−3

3% 61 1.82 × 10−4 6.07 × 10−3 2.21 × 10−4 2.09 × 10−3

5% 61 2.88 × 10−4 9.62 × 10−3 3.39 × 10−4 2.92 × 10−3

TSVD–DP

1% 90 7.12 × 10−5 2.12 × 10−3 8.90 × 10−5 1.99 × 10−3

3% 83 2.53 × 10−4 7.24 × 10−3 1.89 × 10−4 2.47 × 10−3

5% 78 4.40 × 10−4 1.24 × 10−2 3.19 × 10−4 3.99 × 10−3

Table 1: The values of the regularization parameter, λ or truncation number k, and the corre-

sponding accuracy RMS errors, eΓ2
(T), eΓ2

(q), eΓ2
(u) and eΓ2

(t), obtained using the regulariza-

tion methods (R1)–(R3) with the criteria (C1)–(C3) for various amounts of noise added in the

Dirichlet data, i.e. pT = pu ∈ {1%, 3%, 5%}, for Example 1 with |Γ1|
/
|Γ2| = 2.
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Method pT = pu λ or k eΓ2
(T) eΓ2

(q) eΓ2
(u) eΓ2

(t)

TRM–LC

1% 3.33 × 10−3 6.04 × 10−4 2.12 × 10−2 4.50 × 10−4 2.45 × 10−3

3% 7.41 × 10−3 1.07 × 10−3 3.81 × 10−2 1.25 × 10−3 4.05 × 10−3

5% 1.00 × 10−2 1.33 × 10−3 4.55 × 10−2 1.99 × 10−3 4.84 × 10−3

TRM–GCV

1% 6.04 × 10−4 4.63 × 10−4 1.67 × 10−2 3.97 × 10−4 1.82 × 10−3

3% 1.98 × 10−3 1.29 × 10−3 4.57 × 10−2 1.17 × 10−3 2.18 × 10−3

5% 4.41 × 10−3 1.85 × 10−3 6.39 × 10−2 1.97 × 10−3 3.15 × 10−3

TRM–DP

1% 5.73 × 10−4 4.66 × 10−4 1.68 × 10−2 3.98 × 10−4 1.87 × 10−3

3% 1.85 × 10−3 1.30 × 10−3 4.58 × 10−2 1.17 × 10−3 2.18 × 10−3

5% 3.05 × 10−3 2.02 × 10−3 6.93 × 10−2 1.95 × 10−3 2.78 × 10−3

DSVD–LC

1% 3.52 × 10−3 6.12 × 10−4 2.15 × 10−2 4.55 × 10−4 2.54 × 10−3

3% 1.23 × 10−2 1.05 × 10−3 3.51 × 10−2 1.31 × 10−3 5.62 × 10−3

5% 2.82 × 10−2 1.58 × 10−3 4.43 × 10−2 2.09 × 10−3 1.10 × 10−2

DSVD–GCV

1% 2.05 × 10−4 8.21 × 10−4 2.70 × 10−2 6.48 × 10−4 6.24 × 10−3

3% 6.60 × 10−4 1.70 × 10−3 5.59 × 10−2 1.69 × 10−3 8.02 × 10−3

5% 1.18 × 10−3 2.50 × 10−3 7.94 × 10−2 2.76 × 10−3 8.36 × 10−3

DSVD–DP

1% 2.93 × 10−4 7.39 × 10−4 2.40 × 10−2 6.71 × 10−4 4.93 × 10−3

3% 8.00 × 10−4 1.66 × 10−3 5.33 × 10−2 1.77 × 10−3 6.88 × 10−3

5% 1.32 × 10−3 2.48 × 10−3 7.73 × 10−2 2.84 × 10−3 7.60 × 10−3

TSVD–LC

1% 49 6.46 × 10−4 2.09 × 10−2 4.73 × 10−4 3.52 × 10−3

3% 49 1.37 × 10−3 4.66 × 10−2 1.21 × 10−3 3.57 × 10−3

5% 49 2.23 × 10−3 7.46 × 10−2 1.98 × 10−3 3.73 × 10−3

TSVD–GCV

1% 74 4.95 × 10−4 1.55 × 10−2 3.96 × 10−4 2.20 × 10−3

3% 58 1.36 × 10−3 4.61 × 10−2 1.17 × 10−3 2.05 × 10−3

5% 33 1.06 × 10−3 3.02 × 10−2 2.12 × 10−3 7.76 × 10−3

TSVD–DP

1% 74 4.95 × 10−4 1.55 × 10−2 3.96 × 10−4 2.20 × 10−3

3% 58 1.36 × 10−3 4.61 × 10−2 1.17 × 10−3 2.05 × 10−3

5% 58 2.23 × 10−3 7.42 × 10−2 1.94 × 10−3 2.74 × 10−3

Table 2: The values of the regularization parameter, λ or truncation number k, and the corre-

sponding accuracy RMS errors, eΓ2
(T), eΓ2

(q), eΓ2
(u) and eΓ2

(t), obtained using the regulariza-

tion methods (R1)–(R3) with the criteria (C1)–(C3) for various amounts of noise added in the

Dirichlet data, i.e. pT = pu ∈ {1%, 3%, 5%}, for Example 1 with |Γ1|
/
|Γ2| = 1.
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Method pT = pu λ or k eΓ2
(T) eΓ2

(q) eΓ2
(u) eΓ2

(t)

TRM–LC

1% 3.27 × 10−3 1.16 × 10−3 3.42 × 10−2 1.28 × 10−3 8.04 × 10−3

3% 6.09 × 10−3 3.29 × 10−3 7.59 × 10−2 3.65 × 10−3 2.13 × 10−2

5% 8.18 × 10−3 5.35 × 10−3 1.25 × 10−1 5.68 × 10−3 3.30 × 10−2

TRM–GCV

1% 6.37 × 10−4 1.60 × 10−3 4.72 × 10−2 1.22 × 10−3 1.03 × 10−2

3% 1.65 × 10−3 3.86 × 10−3 1.41 × 10−1 3.48 × 10−3 2.14 × 10−2

5% 3.92 × 10−3 5.16 × 10−3 1.32 × 10−1 5.98 × 10−3 3.49 × 10−2

TRM–DP

1% 1.08 × 10−3 1.40 × 10−3 4.48 × 10−2 1.14 × 10−3 8.07 × 10−3

3% 2.94 × 10−3 3.26 × 10−3 9.03 × 10−2 3.58 × 10−3 2.06 × 10−2

5% 5.74 × 10−3 5.11 × 10−3 1.23 × 10−1 5.92 × 10−3 3.43 × 10−2

DSVD–LC

1% 2.98 × 10−3 1.14 × 10−3 3.47 × 10−2 1.25 × 10−3 7.55 × 10−3

3% 1.05 × 10−2 4.05 × 10−3 9.50 × 10−2 3.41 × 10−3 2.06 × 10−2

5% 2.00 × 10−2 7.75 × 10−3 1.81 × 10−1 3.99 × 10−3 2.48 × 10−2

DSVD–GCV

1% 1.98 × 10−4 2.73 × 10−3 5.37 × 10−2 1.66 × 10−3 1.57 × 10−2

3% 6.89 × 10−4 5.49 × 10−3 1.25 × 10−1 4.09 × 10−3 2.64 × 10−2

5% 1.14 × 10−3 7.99 × 10−3 1.89 × 10−1 6.46 × 10−3 3.55 × 10−2

DSVD–DP

1% 3.96 × 10−4 2.23 × 10−3 4.74 × 10−2 1.54 × 10−3 1.16 × 10−2

3% 1.08 × 10−3 5.06 × 10−3 1.17 × 10−1 4.12 × 10−3 2.15 × 10−2

5% 2.11 × 10−3 7.32 × 10−3 1.69 × 10−1 6.72 × 10−3 2.97 × 10−2

TSVD–LC

1% 113 1.01 × 10−2 1.83 × 10−1 5.18 × 10−3 4.92 × 10−2

3% 113 3.03 × 10−2 5.48 × 10−1 1.55 × 10−2 1.47 × 10−1

5% 117 5.05 × 10−2 9.14 × 10−1 2.57 × 10−2 2.46 × 10−1

TSVD–GCV

1% 55 1.69 × 10−3 4.83 × 10−2 7.46 × 10−3 9.20 × 10−2

3% 49 4.52 × 10−3 1.49 × 10−1 3.65 × 10−3 3.22 × 10−2

5% 30 4.85 × 10−3 1.10 × 10−1 6.51 × 10−3 3.89 × 10−2

TSVD–DP

1% 54 1.53 × 10−3 5.80 × 10−2 1.10 × 10−3 1.04 × 10−2

3% 49 4.52 × 10−3 1.49 × 10−1 3.65 × 10−3 3.22 × 10−2

5% 47 7.67 × 10−3 2.43 × 10−1 6.20 × 10−3 5.21 × 10−2

Table 3: The values of the regularization parameter, λ or truncation number k, and the corre-

sponding accuracy RMS errors, eΓ2
(T), eΓ2

(q), eΓ2
(u) and eΓ2

(t), obtained using the regulariza-

tion methods (R1)–(R3) with the criteria (C1)–(C3) for various amounts of noise added in the

Dirichlet data, i.e. pT = pu ∈ {1%, 3%, 5%}, for Example 1 with |Γ1|
/
|Γ2| = 1/2.

21



Method pT = pu = pt λ or k eΓ2
(T) e∂Ω(q) eΓ2

(u)

TRM–LC

1% 5.23 × 10−3 1.47 × 10−3 5.22 × 10−2 1.04 × 10−4

3% 3.01 × 10−2 9.34 × 10−3 2.46 × 10−1 6.68 × 10−4

5% 3.93 × 10−2 1.05 × 10−2 2.80 × 10−1 9.12 × 10−4

TRM–GCV

1% 1.19 × 10−3 6.74 × 10−4 3.07 × 10−2 5.94 × 10−5

3% 2.31 × 10−3 2.35 × 10−3 7.33 × 10−2 2.03 × 10−4

5% 3.01 × 10−3 4.31 × 10−3 1.13 × 10−1 3.60 × 10−4

TRM–DP

1% 2.95 × 10−3 8.20 × 10−4 3.62 × 10−2 7.02 × 10−5

3% 8.03 × 10−3 4.09 × 10−3 9.91 × 10−2 2.94 × 10−4

5% 1.12 × 10−2 6.57 × 10−3 1.49 × 10−1 4.72 × 10−4

DSVD–LC

1% 7.79 × 10−3 2.39 × 10−3 7.17 × 10−2 1.56 × 10−4

3% 2.97 × 10−2 9.29 × 10−3 2.44 × 10−1 6.62 × 10−4

5% 5.47 × 10−2 1.13 × 10−2 3.11 × 10−1 1.37 × 10−3

DSVD–GCV

1% 2.76 × 10−4 2.34 × 10−3 6.19 × 10−2 1.68 × 10−4

3% 8.46 × 10−4 4.60 × 10−3 1.24 × 10−1 4.28 × 10−4

5% 1.44 × 10−3 6.39 × 10−3 1.70 × 10−1 6.85 × 10−4

DSVD–DP

1% 1.08 × 10−3 1.57 × 10−3 4.62 × 10−2 3.81 × 10−4

3% 2.95 × 10−3 3.76 × 10−3 1.03 × 10−1 1.04 × 10−3

5% 4.86 × 10−3 5.63 × 10−3 1.51 × 10−1 1.71 × 10−3

TSVD–LC

1% 46 1.18 × 10−2 3.21 × 10−1 6.87 × 10−4

3% 412 5.49 × 10−2 1.95 × 100 2.61 × 10−3

5% 412 9.15 × 10−2 3.25 × 100 4.53 × 10−3

TSVD–GCV

1% 101 8.41 × 102 8.56 × 104 1.69 × 101

3% 3359 2.52 × 103 2.57 × 105 4.94 × 101

5% 3359 4.20 × 103 4.28 × 105 8.14 × 101

TSVD–DP

1% 101 7.88 × 10−4 3.00 × 10−2 6.73 × 10−5

3% 68 2.85 × 10−3 7.77 × 10−2 2.23 × 10−4

5% 67 1.06 × 10−2 2.02 × 10−1 6.96 × 10−4

Table 4: The values of the regularization parameter, λ or truncation number k, and the cor-

responding accuracy RMS errors, eΓ2
(T), e∂Ω(q) and eΓ2

(u), obtained using the regularization

methods (R1)–(R3) with the criteria (C1)–(C3) for various amounts of noise added in the bound-

ary data, i.e. pT = pu = pt ∈ {1%, 3%, 5%}, for 2 with |Γ1|
/
|Γ2| = 2, i.e. ϕ0 = 2π/3.
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Method pT = pu = pt λ or k eΓ2
(T) e∂Ω(q) eΓ2

(u)

TRM–LC

1% 4.05 × 10−3 5.34 × 10−3 8.65 × 10−2 4.03 × 10−4

3% 2.32 × 10−2 1.74 × 10−2 2.92 × 10−1 1.57 × 10−3

5% 2.95 × 10−2 1.73 × 10−2 3.08 × 10−1 2.15 × 10−3

TRM–GCV

1% 1.10 × 10−5 8.39 × 10−2 1.59 × 100 5.04 × 10−3

3% 1.10 × 10−5 2.52 × 10−1 4.78 × 100 1.51 × 10−2

5% 5.83 × 10−3 9.93 × 10−3 1.85 × 10−1 1.24 × 10−3

TRM–DP

1% 2.82 × 10−3 3.21 × 10−3 6.19 × 10−2 2.93 × 10−4

3% 7.68 × 10−3 1.11 × 10−2 1.79 × 10−1 9.48 × 10−4

5% 1.27 × 10−2 1.44 × 10−2 2.48 × 10−1 1.43 × 10−3

DSVD–LC

1% 7.27 × 10−3 1.02 × 10−2 1.51 × 10−1 7.09 × 10−4

3% 2.60 × 10−2 1.78 × 10−2 3.00 × 10−1 1.70 × 10−3

5% 4.76 × 10−2 1.86 × 10−2 3.35 × 10−1 3.50 × 10−3

DSVD–GCV

1% 9.33 × 10−6 8.03 × 10−2 1.63 × 100 4.71 × 10−3

3% 9.33 × 10−6 2.41 × 10−1 4.89 × 100 1.41 × 10−2

5% 9.33 × 10−6 4.01 × 10−1 8.15 × 100 2.36 × 10−2

DSVD–DP

1% 1.03 × 10−3 1.42 × 10−3 5.07 × 10−2 7.17 × 10−4

3% 3.33 × 10−3 4.14 × 10−3 1.20 × 10−1 2.25 × 10−3

5% 5.50 × 10−3 6.06 × 10−3 1.72 × 10−1 3.71 × 10−3

TSVD–LC

1% 93 2.12 × 10−3 6.09 × 10−2 2.61 × 10−4

3% 58 1.80 × 10−2 3.33 × 10−1 1.29 × 10−3

5% 58 1.91 × 10−2 3.38 × 10−1 1.39 × 10−3

TSVD–GCV

1% 3359 6.27 × 104 5.16 × 106 1.42 × 103

3% 3359 1.88 × 105 1.55 × 107 4.25 × 103

5% 3359 3.13 × 105 2.58 × 107 7.08 × 103

TSVD–DP

1% 104 2.16 × 10−3 6.03 × 10−2 2.60 × 10−4

3% 67 1.77 × 10−2 2.47 × 10−1 1.33 × 10−3

5% 67 1.76 × 10−2 2.68 × 10−1 1.55 × 10−3

Table 5: The values of the regularization parameter, λ or truncation number k, and the cor-

responding accuracy RMS errors, eΓ2
(T), e∂Ω(q) and eΓ2

(u), obtained using the regularization

methods (R1)–(R3) with the criteria (C1)–(C3) for various amounts of noise added in the bound-

ary data, i.e. pT = pu = pt ∈ {1%, 3%, 5%}, for Example 2 with |Γ1|
/
|Γ2| = 1, i.e. ϕ0 = π/2.
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Figure 1: The (a) analytical T(an)
∣∣
x2=0.5

, and (b)–(d) numerical temperatures T(num)
∣∣
x2=0.5

, ob-

tained using the TRM–LC approach and various levels of noise added in T
∣∣
Γ1

and u
∣∣
Γ1

, for

Example 1 with |Γ1|
/
|Γ2| = 1.
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Figure 2: The (a) analytical q(an)
∣∣
x2=0.5

, and (b)–(d) numerical fluxes q(num)
∣∣
x2=0.5

, obtained

using the TRM–LC approach and various levels of noise added in T
∣∣
Γ1

and u
∣∣
Γ1

, for Example 1

with |Γ1|
/
|Γ2| = 1.
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Figure 3: The (a) analytical u
(an)
1

∣∣
x3=0.5

, and (b)–(d) numerical displacements u
(num)
1

∣∣
x3=0.5

, ob-

tained using the TRM–LC approach and various levels of noise added in T
∣∣
Γ1

and u
∣∣
Γ1

, for

Example 1 with |Γ1|
/
|Γ2| = 1.
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Figure 4: The (a) analytical t
(an)
2

∣∣
x3=0.5

, and (b)–(d) numerical tractions t
(num)
2

∣∣
x3=0.5

, obtained

using the TRM–LC approach and various levels of noise added in T
∣∣
Γ1

and u
∣∣
Γ1

, for Example 1

with |Γ1|
/
|Γ2| = 1.
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Figure 5: The (a) analytical T(an)
∣∣
x2=0.5

, and numerical temperatures T(num)
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x2=0.5

, obtained

using the TSVD–DP approach and pT = pu = 5%, for Example 1 with (b) |Γ1|
/
|Γ2| = 2,

(c) |Γ1|
/
|Γ2| = 1, and (d) |Γ1|

/
|Γ2| = 1/2.
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Figure 6: The (a) analytical q(an)
∣∣
x2=0.5

, and numerical normal heat fluxes q(num)
∣∣
x2=0.5

, obtained

using the TSVD–DP approach and pT = pu = 5%, for Example 1 with (b) |Γ1|
/
|Γ2| = 2,

(c) |Γ1|
/
|Γ2| = 1, and (d) |Γ1|

/
|Γ2| = 1/2.
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Figure 7: The (a) analytical u
(an)
1

∣∣
x3=0.5

, and numerical displacements u
(num)
1

∣∣
x3=0.5

, obtained

using the TSVD–DP approach and pT = pu = 5%, for Example 1 with (b) |Γ1|
/
|Γ2| = 2,

(c) |Γ1|
/
|Γ2| = 1, and (d) |Γ1|

/
|Γ2| = 1/2.
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Figure 8: The (a) analytical t
(an)
2

∣∣
x3=0.5

, and numerical displacements t
(num)
2
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x3=0.5

, obtained

using the TSVD–DP approach and pT = pu = 5%, for Example 1 with (b) |Γ1|
/
|Γ2| = 2,

(c) |Γ1|
/
|Γ2| = 1, and (d) |Γ1|

/
|Γ2| = 1/2.

31



0
0.2

0.4
0.6

0.8

0.7
0.75

0.8
0.85

0.9
0.95

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

T

(a) ET

∣∣
Γ2

: pT = pu = pt = 1%

0
0.2

0.4
0.6

0.8

0.2

0.4

0.6

0.8

0.01

0.02

0.03

0.04

0.05

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

q

(b) Eq

∣∣
∂Ω

: pT = pu = pt = 1%

0
0.2

0.4
0.6

0.8

0.7
0.75

0.8
0.85

0.9
0.95

1

2

3

4

5

6

7

8

x 10
−3

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

T

(c) ET

∣∣
Γ2

: pT = pu = pt = 3%

0
0.2

0.4
0.6

0.8

0.2

0.4

0.6

0.8

0.02

0.04

0.06

0.08

0.1

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

q

(d) Eq

∣∣
∂Ω

: pT = pu = pt = 3%

0
0.2

0.4
0.6

0.8

0.7
0.75

0.8
0.85

0.9
0.95

2

4

6

8

10

12

x 10
−3

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

T

(e) ET

∣∣
Γ2

: pT = pu = pt = 5%

0
0.2

0.4
0.6

0.8

0.2

0.4

0.6

0.8

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

q

(f) Eq

∣∣
∂Ω

: pT = pu = pt = 5%

Figure 9: The normalized errors (a), (c) and (e) ET

∣∣
Γ2

, and (b), (d) and (f) Eq

∣∣
∂Ω

, obtained

using the DSVD–DP approach and various levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
∂Ω

, for Example 2

with |Γ1|
/
|Γ2| = 2, i.e. ϕ0 = 2π/3.

32



0
0.2

0.4
0.6

0.8

0.7
0.75

0.8
0.85

0.9
0.95

4.5

5

5.5

6

6.5

7

7.5

x 10
−4

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

u
1

(a) Eu1

∣∣
Γ2

: pT = pu = pt = 1%

0
0.2

0.4
0.6

0.8

0.7
0.75

0.8
0.85

0.9
0.95

4

4.5

5

5.5

6

6.5

7

7.5

x 10
−4

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

u
2

(b) Eu2

∣∣
Γ2

: pT = pu = pt = 1%

0
0.2

0.4
0.6

0.8

0.7
0.75

0.8
0.85

0.9
0.95

1.4

1.6

1.8

2

x 10
−3

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

u
1

(c) Eu1

∣∣
Γ2

: pT = pu = pt = 3%

0
0.2

0.4
0.6

0.8

0.7
0.75

0.8
0.85

0.9
0.95

1.2

1.4

1.6

1.8

2

x 10
−3

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

u
2

(d) Eu2

∣∣
Γ2

: pT = pu = pt = 3%

0
0.2

0.4
0.6

0.8

0.7
0.75

0.8
0.85

0.9
0.95

2.2

2.4

2.6

2.8

3

3.2

3.4

x 10
−3

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

u
1

(e) Eu1

∣∣
Γ2

: pT = pu = pt = 5%

0
0.2

0.4
0.6

0.8

0.7
0.75

0.8
0.85

0.9
0.95

2.2

2.4

2.6

2.8

3

3.2

3.4

x 10
−3

θ/2πφ/π

N
o
rm

a
li
ze
d
er
ro
r,
E

u
2

(f) Eu2

∣∣
Γ2

: pT = pu = pt = 5%

Figure 10: The normalized error (a), (c) and (e) Eu1

∣∣
Γ2

, and (b), (d) and (f) Eu2

∣∣
Γ2

, obtained

using the DSVD–DP approach and various levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
∂Ω

, for Example 2

with |Γ1|
/
|Γ2| = 2, i.e. ϕ0 = 2π/3.
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(a) Example 1: TRM–LC
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(b) Example 1: DSVD–LC
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(c) Example 1: TSVD–DP

Figure 11: The RMS errors eΓ2
(T), eΓ2

(q), eΓ2
(u) and eΓ2

(t) as functions of the distance d,
obtained using pT = pu = pt = 3% noise and (a) TRM–LC, (b) DSVD–LC, and (c) TSVD–DP,
for Example 1 with |Γ1|

/
|Γ2| = 1.
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