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Abstract

We consider distributed detection in a clustered wireless sensor network (WSN) deployed randomly in a large field for
the purpose of intrusion detection. The WSN is modeled by a homogeneous Poisson point process. The sensor nodes
(SNs) compute local decisions about the intruder’s presence and send them to the cluster heads (CHs). A stochastic
geometry framework is employed to derive the optimal cluster-based fusion rule (OCR), which is a weighted average
of the local decision sum of each cluster. Interestingly, this structure reduces the effect of false alarm on the detection
performance. Moreover, a generalized likelihood ratio test (GLRT) for cluster-based fusion (GCR) is developed to
handle the case of unknown intruder’s parameters. Simulation results show that the OCR performance is close to the
Chair-Varshney rule. In fact, the latter benchmark can be reached by forming more clusters in the network without
increasing the SN deployment intensity. Simulation results also show that the GCR performs very closely to the OCR
when the number of clusters is large enough. The performance is further improved when the SN deployment
intensity is increased.
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1 Introduction
Awireless sensor network (WSN) consists of a large num-
ber of geographically distributed low-cost sensor nodes
(SNs) forming a network via wireless links. This structure
enabled the instrumentation of WSNs in many applica-
tions [1]. Detecting an intruder in a monitored region
of interest (ROI) is one of the most important applica-
tions of WSNs [2, 3]. The SNs monitor the ROI to detect
abnormal phenomena, which might take the form of tem-
perature, electromagnetic, or acoustic disturbances. Such
physical signals are usually localized in space, i.e., the
signal’s power attenuates with the distance between the
source and the sensor. The sensor nodes (SNs) sample
the physical signal and then wirelessly communicate their
data to a remote fusion center (FC), where the final deci-
sion about any intrusion is made. Due to bandwidth and
power constraints, the data is often compressed to a sin-
gle bit representing the local decision of the SN.When the
ROI is very large, theWSN is divided into clusters to man-
age the large number of SNs needed to provide adequate
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coverage. In each cluster, the SNs send data to a cluster
head (CH), which subsequently reports to the FC.
There is a large body of literature studying the prob-

lem of distributed detection and decision fusion for a
single fusion center network configuration [4–6]. Chair
and Varshney derived the optimum fusion rule in [7],
which requires knowledge of local detection and false
alarm probabilities for each SN. Niu and Varshney relaxed
the latter requirement leading to the suboptimal counting
rule (CR) [8]. The performance of the CR was investi-
gated in [9]. However, the CR suffers from the problem
of spurious detection in large WSN. This problem was
tackled by using the scan statistic (SS) detector in [10]
and [11]. In SS, a moving FC travels across the ROI and
scans the SNs. This can be interpreted as sliding a win-
dow across the ROI, summing the number of positive local
decisions, and continuously testing against a threshold.
However, the SS rule is sequential in nature and hence
incurs communication and delay penalties.
For a cluster-based WSN on the other hand, clus-

tering algorithms for WSN [12] have been extensively
studied in various contexts such as energy management
[13] and routing [14]. Clustering and data aggregation in
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WSNs have been surveyed in [15]. Power-constrained dis-
tributed estimation in WSNs was addressed in [16] where
network communication was based on the amplify-and-
forward scheme. The latter was also adopted in [17] where
the optimum power allocation strategy was investigated.
Quantized sensor observations were used in [18, 19] for
distributed estimation in a clustered multi-hop WSN.
Decentralized detection in multi-level clustered WSNs

has been considered in [20]. Each level of CHs uses
a majority-like fusion rule to fuse the data from the
level beneath it. The results in [20] (surprisingly) show
that clustering decreases the detection performance. The
effect of uniform and nonuniform clustering work was
studied in [21]. In [22], the authors studied the perfor-
mance of data fusion in a clustered Zigbee WSN imple-
mentation of [20]. The effect of communication errors
on distributed detection in multi-hop clustered WSN was
considered in [23] where it was shown that the optimal
fusion rule is a weighted order statistic filter.
In this paper, we adopt the network configuration in

[8] in which a vast WSN is divided into geographical
regionsmanaged by CHs. However, we assume that within
each CH, the SNs send a single bit, representing their
local decision, to the CH due to bandwidth and power
constraints. The CHs then send the sums of the local deci-
sions to the FC where the ultimate detection decision is
made. We expand our previous work [24] using a stochas-
tic geometry framework [25, 26] to derive the optimal
cluster-based fusion rule (OCR). In contrast to [20], we
show that clustering significantly improves the detection
performance. In fact, the OCR is shown to have a perfor-
mance very close to that of the optimal Chair-Varshney
fusion rule (CVR) while it does not require the knowl-
edge of the exact SNs locations unlike the CVR.Moreover,
using stochastic geometry, we develop a generalized likeli-
hood ratio test (GLRT) for the clustered-based fusion rule
to handle the case of unknown intruder’s parameters.
The paper is organized as follows. Section 2 presents

models for the intruder, sensing, and communication. In
Section 3, fusion rules for a single fusion point network
are reviewed. The optimal fusion rule is presented in
Section 4, which also contains the GLRT development.
In Section 5, the simulation results are presented show-
ing the performance of the proposed fusion rules. Finally,
conclusions are given in Section 6.

2 Systemmodel
In this section, we present the models for sensing, the sen-
sor network, and communication in theWSN. In addition,
a stochastic geometry model is presented for the WSN.

2.1 Sensing and sensor network model
Consider a WSN deployed in a certain area, A ⊂ R

2

where A is assumed to be significantly large. The SNs are

randomly dispersed inA according to a uniform distribu-
tion, i.e., the coordinate of the ith SN, xi = (xi, yi)T , is
a uniform random variable (RV) in A. Also, the number
of the SNs, N, is assumed to be a RV. The random char-
acteristic of N can be justified by SN failure or battery
exhaustion.
The WSN is tasked with the detection of any intruder

entering the ROI. An intruder at location x0 ∈ A leaves a
signature signal sensed by the SNs. Similar to [8, 11], this
signature is assumed to decay with distance according to
a power law. Thus, the intruder’s parameters are given in
the vector θ = [P0, x0]T , where P0 is the intruder’s signal
power. The noise-free signal received at the ith SN has the
following form:

a(xi) =
√
P0

max (d0, di)
, (1)

where d0 is the reference distance to the node’s sensor
and di = ‖x0 − xi‖ is the Euclidean distance between
the intruder and the ith SN. Note that the measured sig-
nal is saturated if the distance to the target is smaller than
d0. The above model can adequately describe acoustic or
electromagnetic signals.
Each SN samples the environment to decide whether

an intruder is present. The collected data at the ith SN
under the null and alternative hypotheses, H0 and H1,
respectively, takes the following form:

H1 : s(xi) = a(xi) + n(xi) (2)
H0 : s(xi) = n(xi), (3)

where n(xi) is a white Gaussian noise at the SN located at
xi with zero mean and variance σ 2

s . The noise is assumed
to be identically and independently distributed over all the
SNs. The sensing signal-to-noise ratio (SNR) is defined as

SNRs = P0
σ 2
s
. (4)

Each SN computes its binary local decision, I(xi) =
{0, 1}, by comparing the collected data with a local deci-
sion threshold τ , i.e.,

I(xi) =
{
1, s(xi) ≥ τ

0, s(xi) < τ
. (5)

Here, τ is the same for all SNs. Therefore, the local
probabilities of detection and false alarm are given by

Pd(xi) = Q
(

τ − a(xi)
σs

)
(6)

Pfa = Q
(

τ

σs

)
(7)

where Q(·) is the Gaussian Q-function given by

Q(x) =
∫ ∞

x

1√
2π

e−
t2
2 dt. (8)
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Note, however, that the probability of detection in (6)
depends on the target parameters P0 and x0 through (1).

2.2 Stochastic geometry model
The WSN defined above can be elegantly modeled using
stochastic geometry [25], which has recently attracted
interest in the modeling of wireless networks [27, 28] and
cognitive radios [29].
We model the spatial distribution of the SNs as a Pois-

son point process (PPP) � = {x1, x2, · · · , xN } in A. This
implies that the xi’s ∈ � are uniform RVs and their num-
ber N = |�| is a Poisson RV, i.e., N ∼ Pois(λ|A|),
where λ is the average number of points (SNs) in a unit
area (deployment intensity) and |A| is the area of A.
� is assumed to be simple (no two points occupy the
same location) and stationary in space, i.e., its statistical
properties do not change if � is shifted. A PPP is called
homogeneous if the intensity, λ, is independent of the
location x. Otherwise, it is called inhomogeneous.
The thinning of a PPP is the process of removing points

from the original PPP that do not adhere to some rule, and
hence, a point is removed from the PPP with some proba-
bility. Thinning can be independent (p-thinning), i.e., the
thinning probability does not depend on the location of
the point under consideration, or it can be dependent, i.e.,
the thinning probability depends on the point’s location.
Thinning is used here to model the local detection oper-

ation. If � is thinned to produce �d , the PPP of detecting
SNs

�d = {xi ∈ � : I(xi) = 1} (9)

The properties of �d are used to derive the optimal
fusion rule as given in Section 4.

2.3 Communication model
Due to the vastness of the ROI, the WSN is geographi-
cally divided into M disjoint zones: C1, C2, · · · , CM, where
Cm ∈ A form = 1, · · · ,M. Each zone is managed by a CH
located at xm /∈ �. The number of clusters is fixed, and
their locations are also fixed and known to the WSN. SNs
located at xi ∈ Cm send their decisions to themth CH. The
CHs in turn report back to the FC.
Due to cost and bandwidth constraints, SNs use on-

off keying (OOK) to transmit their binary local decisions
to the CH. Only the SNs making positive local decisions
report to the CHs. These SNs are assumed to be syn-
chronized to the same time slot. Furthermore, a power
control strategy is assumed to be used at the SNs in order
to ensure that the powers of the signals received from the
SNs at the CH are all equal to the same desired value. This
power level is chosen such that the effect of the channel
noise is negligible.
Each CH then communicates with the FC over wireless

channel that is less restricted in bandwidth. Moreover, the

CH encodes its data for protection against errors. This is
justified by the argument that the network has only M 	
N CHs, and so it can afford having more sophistication in
the CHs.

3 Fusion rules for single cluster WSNs
In this section, we review fusion rules for distributed
detection in a cluster WSN.
In this configuration, all SNs in the network report to a

single CH that acts as the FC. The optimal hard decision
fusion rule in this case is CVR, which is given by [7]

�CVR =
N∑
i=1

I(xi) log
(
Pd(xi)
Pfa

)

+ (1 − I(xi)) log
(
1 − Pd(xi)
1 − Pfa

)
. (10)

This rule requires the complete knowledge of the
intruder’s parameters in addition to both the number of
SNs and their locations. Such conditions are difficult to
attain in large WSNs.
Relaxing the above conditions, Niu and Varshney pro-

posed the following suboptimal counting rule [8]:

�CR =
N∑
i=1

I(xi). (11)

As can be seen in (11), the CR does not require any
information about the target or the SNs locations.
However, for a large ROI, the problem of spurious detec-

tion becomes more prevalent as shown in Fig. 1. The
intruder is located in the north-east cluster, in which the
number of detecting SNs is relatively large, whereas the
number of detecting SNs in the south-west cluster is small.
These positive decisions are mainly due to the sensing
noise. This problem was tackled by using the scan statis-
tic (SS) detector proposed in [10]. The SS test statistic is
given by

�SS = max
i

(
λSS1
λSS0

)Zi

, i = 1, · · · , L, (12)

where L is the number of sliding window iterations, Zi
is the number of positive decisions in the ith window
slide iteration, and λSS0 and λSS1 are the mean number of
detecting SNs in a typical window under the H0 and H1
hypotheses, respectively.
The Bayesian form of the SS is given by [11]

�B−SS =
L∑

i=1

(
λSS1
λSS0

)Zi

. (13)

The SS was shown to outperform the CR for the case
where the WSN has a high node intensity [11].
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Fig. 1 Poisson field of sensor nodes. Pentagram: intruder, green circle: SN; red circle: detecting SN; blue triangle: CH. The system parameters are
λ = 0.3, P0 = 50, d0 = 1, σ 2

s = 1, Pfa = 10−2, and x0 = (15, 15)T

4 Fusion rules in clusteredWSNs
In this section, we present the fusions rules for clustered
WSNs in the CH and FC levels. For the purpose of moti-
vation, the majority-like fusion rule [20] is presented first.
Then, we propose the optimal clustered-based fusion rule
followed by the GLRT development.

4.1 Decision fusion in the cluster heads
SNs with positive decisions send their local decision to the
related CH, which acts as a fusion point for SNs in the
cluster as shown in Fig. 2. The fusion rule adopted in each
cluster is the CR. In addition to its simplicity, this handles
the situation in which information on the SNs is lacking,
which is the case in random networks.
Accordingly, the fused data from the mth cluster, �m,

takes the following form:

�m =
∑
xi∈Cm

I(xi). (14)

4.2 Majority-like fusion rule
We consider the majority-like fusion rule (MFR) with a
two-level network, i.e., one level of CHs reporting to a FC
which is the second level. Themth CH uses amajority-like
rule to produce the CH’s decisions Ĩm as follows;

Ĩm =
{
1, �m ≥ k1
0, �m < k1

, (15)

where k1 = 
|�m|/2� + 1 is the first level majority rule
threshold and |�m| is the number of SNs in the mth clus-
ter. The Ĩm’s can be thought of as the one-bit compression
of the �m.
However, in random networks, the number of SNs in

each cluster is not known. Moreover, the source signal
is spatially localized leading to a different number of
detecting SNs in each cluster. So choosing k1 as defined
previously negatively affects the performance. The Ĩm’s are
then sent to the FC for another level ofmajority rule fusion
as described next

� =
M∑

m=1
Ĩm (16)

Ig =
{
1, � ≥ k2
0, � < k2

, (17)

where k2 = 
M/2� + 1 is the second level majority rule
threshold and Ig is the global decision about the intruder’s
presence. Note that the MFR virtually uses the CR in the
CH and FC levels.

4.3 Optimal cluster-based fusion rule
In contrast to MFR, we investigate the optimal scheme
to fuse the CHs data, {�m}Mm=1. Employing the Neaman-
Pearson criterion ([30], Chap. 3), the log-likelihood ratio
(LLR) test is expressed as

�OCR =
M∑

m=1
log

(
p (�m;H1)

p (�m;H0)

)
, (18)
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Fig. 2 Functional diagram for the clustered WSN. Pentagram: intruder; xi : location of ith SN; a(xi): intruder’s signal at ith SN; n(xi): sensing AWGN at
ith SN. SN sensor node, CH cluster head, FC fusion center, Cm mth cluster

where p(�m;Hj) is the likelihood of �m under hypothesis
Hj for j = 0, 1.
To evaluate the LLR test, we investigate the properties

of the detecting point process �d in (9). The statistics of
�d underH0 are given by the following lemma.

Lemma 1. The detecting SN point process �d defined
in (9) under H0 is a homogeneous PPP with intensity of
λPfa.

Proof. See Appendix A.

Remark 1. It can be noted that if A is large, the num-
ber of detecting SNs is also large. Thus, the performance
of simple rules such as the CR will suffer degradation and
sophisticated rules such as the CVR will burden the net-
work with large communication load. This motivates the
use of clusters to divide the ROI into manageable areas
with relatively low number of false alarms and communi-
cation burden.

Similarly, the statistics of �d under H1 are given in the
following lemma.

Lemma 2. The detecting SN point process �d defined
in (9) under H1 is an inhomogeneous PPP with intensity
λPd(x).

Proof. See Appendix B.

The above lemma implies that as the distance from the
intruder increases the mean number of detecting SNs
decreases due to the nature of the detection probability Pd
defined in (6).

Remark 2. The detecting intensity of SNs decreases
gradually as we move away from the intruder until it
reaches the value of λPfa, implying that the intruder’s sig-
nal has no effect at this point. This fact also motivates the
use of clusters since the detecting SNs are much more likely
to be close to the intruder.
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From the above lemmas, the distribution of the total
number of detecting SNs in the network can be directly
inferred as stated in the following corollary.

Corollary 1. Let the total number of detecting SNs be

� =
∑
xi∈�d

1(xi). (19)

Then, � is Poisson distribution with

� ∼
{
Pois (λ0) , H0
Pois (λ1) , H1

, (20)

where λ0 and λ1 are the mean numbers of detecting SNs
underH0 andH1, respectively, and are given by

λ0 = λPfa|A| (21)

λ1 = λ

∫
A
Pd(x)dx. (22)

Proof. See Appendix B.

Consequently, the distribution of the CR test statistic is
directly given by (20) as it was shown in [24]. Furthermore,
the distribution of �m follows directly from the Poisson
property of �d as stated by the following corollary.

Corollary 2. The distribution of �m is

�m ∼
{
Pois

(
λ0,m

)
, H0

Pois
(
λ1,m

)
, H1

, (23)

where λ0,m and λ1,m are mean numbers of detecting SNs
in the mth cluster under H0 and H1, respectively, and are
given by

λ0,m = λPfa|Cm| (24)

λ1,m = λ

∫
Cm

Pd(x)dx. (25)

Proof. Since � is a Poisson RV over A and the �m’s are
defined in (14) over the Cm’s that are disjoint areas in A,
then �m is a Poisson RV over Cm.

Note that if all the Cm’s have the same area, say |C|, then
λ0,m = λPfa|C| for allm = 1, · · · ,M. Hence, underH0, all
the �m’s have the same distribution underH0.
With this information at hand, the OCR defined earlier

in (18) can be written as

�OCR =
M∑

m=1
log

⎛
⎝e−λ1,m

(
λ

�m
1,m/�m!

)
e−λ0,m

(
λ

�m
0,m/�m!

)
⎞
⎠

=
M∑

m=1
�m log

(
λ1,m
λ0,m

)
, (26)

where the constant term above is ignored in the second
line of the equation.

Remark 3. Note, however, that λ1,m is a scaled spatial
average of the detection probability in (6), which is the
direct result of applying Campbell’s theorem ([26], Chap. 2)
in (33). This relieves the OCR from knowing the SNs’ posi-
tions, in contrast to the CVR. Nonetheless, finding the λ1,m’s
requires knowing the intruder’s parameters, P0 and x0, a
topic that will be discussed later in Subsection 4.4.

Thus, the OCR is a weighted sum of the number of
positive decisions in each cluster. Clusters with larger
detecting SNs means, λ1,m, are given more weight since
it is expected that the intruder is in their vicinity. On the
other hand, clusters with smaller detecting SNs means are
given less weight since the intruder is expected to be far
away and hence the detecting SNs in such clusters are
due to false alarms. In this sense, the problem of spurious
detection is adequately handled.

4.4 Generalized likelihood ratio test for clustered-based
fusion

As mentioned earlier, the OCR requires the knowledge of
the λ1,m’s, which are implicitly dependent on the intruder’s
parameters, i.e., θ = (P0, x0)T . Unfortunately, such infor-
mation is not available in realistic scenarios since the
intruder is not cooperative with the network. In this case,
we resort to the GLRT ([30], Chap. 7) method, which con-
sists of replacing the unknown parameters in the LLR by
their maximum likelihood estimates.
The data used to estimate θ is the set {�m}Mm=1 avail-

able at the FC. The GLRT for the clustered-based fusion,
termed here (GCR), is given by

�GCR = max
θ∈θ

M∑
m=1

�m log
(

λ1,m(θ)

λ0,m

)
, (27)

where θ ⊂ R
3 is the space of all θ values.

Note that the dependence of λ1,m on θ is via the detec-
tion probability defined in (6). The GLRT in (27) can
be interpreted as finding the optimal set of weights that
maximize the weighted average of �m’s.
However, problem (27) is a nonlinear three-dimensional

optimization problem, which is usually solved via numeri-
cal techniques. To reduce the complexity, the search space
is a restricted version of the original, 	. In particular, the
search space for the target’s position is restricted to the
clusters centroids, xc,m, given by

xc,m = 1
|Cm|

∫
Cm

x dx, (28)

form = 1, · · · ,M. Although, the restricted search space is
significantly smaller than the original, the corresponding
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Table 1 Fusion rules list

Abbreviation Equation Fusion rule

CVR (10) Chair-Varshney

CR (11) Counting

SS (12) Scan statistic

B-SS (13) Bayesian SS

MFR (17) Majority-like

OCR (26) Optimal clustered-based

GCR (27) GLRT clustered-based

results as shown in Section 5 are very close to the optimal
CVR.

5 Simulation results
We simulate a WSN deployed in a 50 × 50 ROI. The
intruder’s power is P0 = 1. The sensing SNR is set to 0 dB.
The SNs have a reference distance of d0 = 1 units with a
local probability of false alarm of 10−2. We simulate the
fusion rules listed in Table 1 and compare them in using
the above setting. The proposed GCR is implemented via
a grid search, as stated earlier, on a restricted search space
as described next. The values considered for the power P0
are obtained by linearly discretizing the interval [ 0.1, 1];
ten values used for the simulations. The discretization of

x0 is done by dividing the ROI into adjacent squares girds
with side length of A/N each, where A is the ROI side
length (A = 50 in our simulation setup) and N is the
number of clusters. The centers of those squares in addi-
tion to the discretized power values are used to form the
restricted search space.
First, we validate Corollaries 1 and 2 by simulation.

Figure 3 shows the results of a Monte Carlo simulation
with 105 runs to produce the simulated and theoretical
distribution of � defined in (19) or that of �CR in (11).
The exact Poisson distribution given in Corollary 1 fits
the simulation perfectly for bothH0 andH1. For the same
setup, the WSN is divided into four squared-shaped clus-
ters and the distributions of the �m’s in the four clusters
are shown in Figs. 4 and 5. Again, the theoretical Pois-
son distributions given in Corollary 2 fit the simulation
accurately. Note, however, that underH0 all �m’s have the
same distribution. Under H1 on the other hand, �3 dif-
fers since the intruder is located in the region monitored
by the third cluster. �1, �2, and �4 have a distribution
similar to the H0 case since the intruder is not sensed by
SNs in the those clusters.
Figure 6 show the ROC diagrams for the fusion rules

mentioned in Table 1 for different values of λ, obtained by
104 Monte Carlo runs. The OCR uses 25 square-shaped
clusters to cover the ROI. The same number of clusters
is used for the MFR. The decision threshold for all the
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Fig. 3 Distribution of � (a, b). The system parameters are λ = 5, d0 = 1, SNRs = 0 dB, Pfa = 10−2, and x0 = (20, 20)T . x for simulation distribution
and solid line for Poisson distribution in Corollary 1
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Fig. 4 Distribution of CH data, �m , underH0 for λ = 5 and number of clustersM = 4 (a–d). The system parameters are λ = 5, d0 = 1, SNRs = 0 dB,
Pfa = 10−2, and x0 = (20, 20)T . x for simulated distribution and solid line for Poisson distribution in Corollary 2
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Fig. 6 ROC diagrams for a network with 25 clusters (a–d). The system parameters are d0 = 1, SNRs = 0dB, Pfa = 10−2, and x0 = (0, 0)T . CVR solid
line, CR dashed line, OCR triangle, GCR diamond, MFR square, SS asterisk, B-SS circle

CHs in the MFR are the same and are set according to
Corollary 2 to provide a cluster level false alarm rate of
0.1 approximately. To make the comparison fair, the SS
and the B-SS use a window with the same size as the
clusters used in the OCR. The OCR shows superior per-
formance compared to the rest of the rules. In fact, as λ

increases, the OCR approaches the optimal performance
of the benchmark CVR. The GCR follows a similar trend
as the OCR, in which it can be observed that the GCR
rapidly approaches the OCR as λ increases and conse-
quently it performs better than the SS, B-SS, CR, and
the MFR. The SS algorithms show better performance
when compared to the CR, which shows a relatively slow
improvement as λ increases. TheMFR performs the worst
among all rules, this is due to utilizing the least amount of
information when compared to the other rules.

Figure 7 illustrates the effect of increasing M, the num-
ber of clusters, on the performance of the fusion rules.1
It is noted that when the number of clusters is small,
the OCR resembles the CR in performance. This result
is intuitive since the limit case of a single cluster is
equivalent to the CR. The SS algorithms perform better
because they use more information for fusion. However,
as M increases, the OCR and GCR outperform the rest
of the rules and ultimately reach the benchmark perfor-
mance of the CVR. This behavior can be explained by
the fact that as the number of clusters increases, the
detecting SNs due to the intruder’s presence are con-
tained in clusters that are given large weights. On the
other hand, clusters containing the spurious detection
are given small weights, hence improving the detection
performance.
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Fig. 7 ROC diagrams for a network with λ = 5 (a–d). The system parameters are d0 = 1, SNRs = 0 dB, Pfa = 10−2, and x0 = (0, 0)T . CVR solid line, CR
dashed line, OCR triangle, GCR diamond, MFR square, SS asterisk, B-SS circle

6 Conclusions
We have studied fusion rules for distributed detection
in random clustered WSNs. In each cluster, the CH col-
lects the local decisions of the SNs and sends the sum
to the FC. Using stochastic geometry, we derived the
OCR, which is the weighted average of the sums of
local decisions at each cluster. The weights are shown
to depend on the mean number of detecting SNs under
the null and alternative hypotheses. In contrast to the
optimal Chair-Varshney rule, the OCR does not require
the locations of the SNs to be known. Furthermore,
a reduced-complexity GLRT for GCR is developed to
handle the case of unknown intruder’s parameters. Sim-
ulation results have shown that the performance of

the OCR approaches that of the Chair-Varshney rule.
Results also showed that as the number of clusters
increases, the performance rapidly reaches the Chair-
Varshney benchmark for fixed SNs deployment inten-
sity. In other words, optimal detection can be achieved
by forming more clusters in the network, in contrast
to adding more sensor nodes to it. Finally, the per-
formance of the GCR was shown to approach that of
the OCR when the number of clusters is large enough.
PAUSE

Endnote
1The B-SS is not shown in the case ofM = 4 due to a

severely bad performance.
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Appendix A
Define the following marked PPP (MPPP):

�m = {(xi, s(xi)) : xi ∈ �, s ∈ S} (29)

where the marks are chosen to be the collected data s(xi)
with the mark space S . Construct the detecting PP �d by
thinning �m. Under H0, however, the probability of xi ∈
�d is

P (xi ∈ �d) = P (I(xi) = 1;H0)

= P (s(xi) > τ ;H0) = Pfa (30)

which is constant across A, and hence the thinning prob-
ability is also constant. Therefore, the thinned �d is a
homogeneous PPP with intensity given by λPfa.

Appendix B
Define the detecting PP �d = {xi ∈ �m : s(xi) > τ }. The
former is obtained by thinning the MPPP �m defined in
(29) according to the probability

P (xi ∈ �d) = P (I(xi) = 1;H1)

= P (s(xi) > τ ;H1) = Pd(xi). (31)

Note that the thinning probability depends on the
intruder’s parameters as mentioned earlier. Also, the thin-
ning probability depends on xi and so results in dependent
thinning. Dependent thinning in turn produces an inho-
mogeneous PPP. UnderH1, the mean of the total number
of detecting SNs is given by

λ1 = E

⎡
⎣ ∑
xi∈�d

1 (xi)

⎤
⎦

= E

⎡
⎣ ∑
xi∈�′

m

1 (s(xi) > τ)

⎤
⎦ , (32)

where 1(A) is the indicator function for event A. Applying
Campbell’s theorem to find the above mean yields

λ1 = λ

∫
A

∫ ∞

0
1 (s(x) > τ ;H1) dP(s)dx

= λ

∫
A
P (s(x) > τ ;H1) dx

= λ

∫
A
Pd(x)dx, (33)

where P(A) is the probability of event A and P(s) is the
cumulative distribution function of the mark variable s.
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