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Abstract 
Planar organic spin valves were fabricated by evaporating organic semiconductor PTCDI-

C13 onto pairs of patterned Ni80Fe20 magnetic nanowires separated by 120 nm. Control over 

the relative alignment of magnetisation in the nanowires was achieved by including a domain wall Ǯnucleation padǯ at the end of one of the wires to ensure a large separation in 

magnetic switching fields. Switching behavior was investigated by optical and x-ray 

magnetic imaging. Room temperature organic magnetoresistance of -0.35% was observed, 

which is large compared to that achieved in vertical spin valves with similar materials. We 

attribute the enhanced performance of the planar geometry to the deposition of the 

semiconductor on top of the metal, which improves the quality of metal-semiconductor 

interfaces compared to the metal-on-semiconductor interfaces in vertical spin valves. 
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Introduction  

Organic semiconductors (OSCs) have attracted interest as potential charge/spin transport 

materials for use in spintronic devices, in which electron spin as well as charge is used to 

perform operations. Despite their low charge carrier mobilities, OSCs are in demand due to 

their low spin-orbit coupling and weak hyperfine interactions, which help to maintain spin 

polarisation for longer distances than is achievable in inorganic materials [1]. The scope 

and rationale for introducing spin transport phenomena into OSC devices (and vice versa) 

was reviewed by Dediu et al. [2].  

 

The most significant component in spintronic technology to date is the spin valve. This 

consists of two ferromagnetic (FM) contacts connected by a non-magnetic layer, which 

couples magnetic behaviour to electrical transport.  When current flows through the 

device, one FM contact acts to polarise and the other to analyse the spin of the charge 

carriers, such that the resistance of the device depends on the relative orientation of the FM 

contact magnetisations. The magnetoresistance, MR, of the device is defined as 

 

(eq. 1)     ሺ%ሻ  ൌ ି 


 ൈ ͷͶͶ% 

 

where RP and RAP are the resistance values of the device when the FM contact 

magnetisations are parallel (P) and anti- parallel (AP), respectively.  The magnitude of the 

MR depends on the spin polarisation in the FM contacts, the physical mechanism 

responsible for the resistance (tunnelling or scattering at layer interfaces) and the material 

used in the non-magnetic layer [3].  When the non-magnetic layer is an organic 

semiconductor, negative MR is commonly observed (RAP < RP) [4-8].  A possible explanation 

has been proposed by Schulz et al. [7], based on the assumption that injected carriers do 

not reflect the bulk (average) spin polarisation of the contact, but the spin polarisation at 

the energy level corresponding to the relevant OSC transport level (highest occupied 

molecular orbital [HOMO] for hole transport; lowest unoccupied molecular orbital [LUMO] 

for electron transport), which may be negative compared to bulk polarisation. 

  

In principle, the use of an OSC as the non-magnetic layer in the spin valve should enhance 

the MR, due to their minimal interaction with charge carrier spin.  Indeed, organic spin 

valves (OSVs) at cryogenic temperatures have been observed with MR values between -

40% and -300% [8,9,10].  However, at room temperature, the MR commonly drops to 

around -0.1% [4-7].  Such low room temperature MR values could be due to the vertical 

geometry (layers stacked on top of each other) employed to achieve sub-100 nm contact 

spacing, since the topmost interface suffers damage during the deposition of the FM contact 

onto the inherently soft OSC layer.  Sun et al. demonstrated the importance of the 

organic/FM interface quality by showing that OSVs protected by a frozen xenon buffer 
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layer during deposition of the top FM contact exhibited a 17-fold increase in MR compared 

to unprotected OSVs [9]. 

  

Here, we describe the fabrication of planar FM contact electrodes for OSVs to avoid the Ǯtop-interfaceǯ problem altogether and obtain larger MR magnitudes than similar vertical 

systems. The FM contacts are co-planar but separated by a narrow gap, with the organic 

semiconductor deposited on top.  The deposition of the organic semiconductor on to the 

FM metal causes little interfacial damage, so the planar geometry is intrinsically more 

robust than vertical OSVs. However, there are several challenges to fabricating planar OSV 

structures, which may have inhibited previous investigations of planar OSVs. By using a 

single magnetically soft material for both FM electrodes, we simplify the fabrication 

process and enable the shape of the electrodes to be used to separate their coercivities, 

providing access to both the P and AP configurations. A similar planar spin-valve has 

previously been demonstrated using graphene [11] but the MR was extremely small. The 

planar OSV reported by Kawasugi et al. [12] had a much longer gap between FM contacts, 

deposited both contacts on top of the organic (rather organic on top of both contacts), and 

showed no measurable MR. 

 

Experimental 

Planar OSVs were fabricated in three stages.  First, five pairs of magnetic contact nanowires 

(Fig. 1) were patterned by electron beam lithography into a poly(methylmethacrylate) 

(PMMA) resist, thermal evaporation of Permalloy (Ni80Fe20) and subsequent lift-off of the 

remaining resist. Lithography was performed at an electron beam energy of 10 keV, 

designing the nanowire spacing to compensate for the narrowing of the channel between 

them due to the dose proximity effect (additional removal of resist caused by the overlap of 

neighboring electron beam dose profiles). Second, non-magnetic Ti(20 nm)/Au(200 nm) 

electrodes were fabricated on top of the nanowires using photolithography, contacting the 

five pairs of nanowires in parallel, to enable electrical connectivity using spring clips. The 

non-magnetic electrodes were separated by ͳͷͲ Ɋm to ensure that current flowed through 
the magnetic nanowires. These structures were comprehensively characterised for their 

magnetic behaviour first, before completing the planar OSVs by evaporating a 50 nm thick 

film of the low molecular weight, electron-transporting OSC N,N´-ditridecyl perylene 

diimide with Ƚǡɘ - C13H27 alkyl chains (PTCDI-C13; Fig. 1d). We prefered PTCDI-C13 over 

Alq3, which was often used in OSV research previously [7-10]. The prevalence of Alq3 is 

probably for historic [13] rather than scientific reasons: PTCDI-C13 has higher charge 

carrier mobility, a deeper LUMO for better electron injection [14, 15] and avoids a metal 

core that may act as spin scattering centre. 

  

Two sets of samples were prepared: one onto intrinsically doped (high resistivity) Si (001) 

with a native oxide for electrical characterisation and examination using magneto-optical 
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Kerr effect (MOKE) magnetometry with a focussed laser spot of ~ 5 m diameter [16]; and 

another (without the photolithography or organic deposition stages) onto 100 nm thick 

Si3N4 membranes for magnetic transmission X-ray microscopy (M-TXM) [17]. M-TXM was 

performed at beamline 6.1.2 at the Advanced Light Source in Berkeley, CA, using circularly 

polarised soft x-rays tuned to the Fe L3 (706 eV) X-ray absorption edge.  M-TXM is capable 

of imaging magnetic domain walls [18], achieving in-plane magnetic contrast through X-ray 

magnetic circular dichroism (X-MCD) by tilting the sample by 60° with respect to the 

photon propagation direction.  Magnetic contrast is obtained relative to a reference image, 

taken under a saturating magnetic field of B = - 100 mT. This causes any change in 

configuration from saturation to be observed as dark contrast. 

  

The wires in each set were 1000 nm and 500 nm wide, separated by a gap (channel length, 

L) of 120 nm.  Together with the addition of a nucleation pad attached to the wider wire, 

the different wire widths ensured that the wires had different coercive fields [19-21], 

enabling the device to operate as an in-plane OSV.  In the Si substrate sample, the 

Permalloy nanowires were 30 nm thick, the lateral overlap of the nanowire pairs (channel widthǡ WȌ was Ͳ Ɋmǡ and the nucleation pad was ͳͲ Ɋm wide and ͷͻ Ɋm longǤ  To optimize 
the magnetic contrast in the M-TXM images, the sample on the Si3N4 substrate was fabricated with Permalloy thickness ͶͲ nmǡ W α ͷ Ɋm and a  Ɋm wideǡ ͵ͻ Ɋm long 
nucleation pad. 

 

 

(a) 
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(b) 

 

 

(c) 

 

 

(d) 

 

Figure 1. (a) Schematic design of contact wire pair. Note the different width of the 

nanowires, and the tapered end of the thinner wire. (b) Electron micrograph of a group of 

five contact wire pairs. (c) A higher resolution image of the channel region of one contact 

wire pair (Magnetic wires appear light and the channel dark). (d) Structure of the PTCDI-

C13 organic semiconductor used here.  

  

Magnetic characterisation 

For the FM contacts to be useful for OSVs, the following two requirements have to be met: firstlyǡ each electrodeǯs magnetisation has to lie along the wire length ȋorthogonal to the 
direction of charge transport), so that the relative magnetic configuration of the wires will be either Ǯparallelǯ ȋPȌǡ or Ǯanti-parallelǯ ȋAPȌǢ secondlyǡ the two wires need to have different 
coercive fields, so that the P and AP configurations are accessible with the external 

application of magnetic fields.  Here, the first requirement is met by the intrinsic shape 

anisotropy and near-zero magnetocrystalline anisotropy of the Ni80Fe20 nanowires [22]. 

The second requirement can be satisfied by using the nanowire shape to control the 

nucleation and propagation of domain walls. Although wider nanowires tend to have lower 
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coercivities [19], the reversal behaviour is dominated by our use of the large pad to 

support domain wall nucleation at low applied fields [23] and tapering the ends of the 

other wire to suppress reverse domain nucleation [24]. Before proceeding to OSV 

manufacture and electric characterisation, we carried out a detailed magnetic 

characterisation of the contact electrodes to confirm the above requirements were met and 

that there is no stray field interaction between the adjacent wires. 

  

Figure 2a shows the normalised magnetisation response (M/Ms) using MOKE 

magnetometry of individual wires and the region where the wires overlap, for the field 

direction parallel to the wire long axis. The wider wire switched at 3.6 mT and the 

narrower wire at 14.9 mT, establishing a large field region over which the AP configuration 

of the device can be selected. There is little change in the switching field in the overlap 

region, indicating that the nanowires switch independently within the region of the OSV 

channel, by injection and propagation of a magnetic domain wall. 

 

  

 

 

Figure 2. (a) Normalised magnetisation (M/Ms) hysteresis loop obtained using MOKE 

magnetometry, taken after positioning the laser spot over the narrow (500 nm) wire, wide 
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(1 µm) wire and over both wires in the overlap region forming the OSV channel.  (b) and 

(c) M-TXM images showing switching in (b) the wide wire at 10 mT and in (c) the narrow 

wire at 20 mT.  The images are normalised relative to saturation at -100 mT, such that 

magnetisation reversal appears as dark contrast, while magnetisation that is unchanged 

from saturation has the same contrast as the background. 

 

To confirm that switching occurred without any interaction between the wires, we  imaged 

the magnetisation directly using M-TXM (fig. 2b and c). The switching fields of the imaged 

wires differed from those probed using MOKE due to the different sample thickness and 

pad size used. Nevertheless, the M-TXM images confirm that the structure switches from 

the P to the AP configuration via the reversal of the wide wire (fig. 2b) and then, at higher 

fields, switches back from the AP state to the P configuration via the reversal of the narrow 

wire (fig. 2c). Furthermore, the abrupt switching shown in the images demonstrates that 

the domain walls mediating the reversal of the magnetisation in each wire are not pinned 

by the stray field from the adjacent wire end. This is in contrast to previous observations of 

domain wall pinning caused by adjacent elements arranged perpendicular to the nanowire 

[25] or domain walls in nearby nanowires [26,27].  

 

Electrical characterisation 

After magnetic characterisation of our magnetic contacts, we evaporated PTCDI-C13 to 

create the OSVs. Initial electric characterisation of resulting planar FM(1) : OSC : FM(2) spin 

valves was carried out in the absence of any magnetic fields, using a Keithley source- 

measure unit.  

 

 

 

Figure 3. I-V characteristic of wide Ni80Fe20 / PTCDI-C13 / narrow Ni80Fe20 planar OSV in 

the absence of external magnetic field. 
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The OSV shows ohmic I-V characteristics, without curvature, hysteresis, or asymmetry (Fig. 

3). This shows that there is reasonably efficient carrier injection at the Ni80Fe20 / PTCDI-C13 

junction, although this does not rule out a degree of spin scattering at injection. The 

resistance of the planar OSV was 12 kȳǡ significantly lower than eǤgǤ the device of Sun et al. 

[9]. 

  

Magnetoresistance (MR) was measured under constant-current conditions (500 nA) at 

ambient temperature and pressure by monitoring the voltage drop over the OSV while 

sweeping magnetic field induction from -25 mT to + 25 mT at 0.2 mT/sec and averaging 

data over ten field cycles. The observed MR loop (Fig. 4) has two distinct transitions in each 

field sweep direction, which correspond well to the P and AP magnetic configurations 

described earlier. The MR transitions are not as sharp as those measured by MOKE from 

individual wires (Fig. 2a). This is probably due to variations in the switching fields between 

wires in the five devices we characterise in parallel for MR. Quantitatively, we find MR of -

0.35 %.   

 

 

     Figure 4. Magnetoresistance loop of Ni80Fe20/PTCDI-C13 planar OSV. 
 

MR with negative sign is commonly observed for OSVs at ambient temperature [4-9]; we 

refer to the possible explanation given by Schulz et al. [7]. The modulus of ambient 

temperature MR observed here for a planar OSV is similar or higher than in typical vertical 

OSVs. For comparison, about -0.15% magnetoresistance was obtained at RT with a vertical 

SV of LSMO/Al2O3/Alq3/Co [28] while -0.1% was achieved with Co / Fe alloy  magnetic 

contacts using a vertical geometry of Co50Fe50/P3HT/Ni80Fe20 [6].  
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Conclusions 

We have demonstrated a planar organic spin valve architecture that avoids the problems of 

metal-on-organic interfaces. This configuration is, therefore, well suited for investigating 

spin-polarised electron transport in organic semiconductors with much less uncertainty 

about interface quality and separation than is the case with vertical spin valve 

arrangements. Pairs of coplanar Ni80Fe20 contact nanowires with narrow separations and 

differences in geometry allowed parallel and anti-parallel magnetic configurations in the 

contacts to be selected easily with an externally applied magnetic field. Spin valves 

fabricated by the subsequent evaporation of the electron-transporting organic 

semiconductor PTCDI-C13 allowed observation of -0.35% magnetoresistance at room 

temperature. The negative sign is commonly observed for organic MR and can be explained 

by the difference between extracted and bulk (or Fermi level) spin polarisation of the 

magnetic electrodes. The modulus of MR is comparatively large for room temperature 

organic MR, suggesting higher quality interfaces than is achieved in vertical spin valves.  

Acknowledgements 

HA would like to thank King Saud University for the sponsorship of his PhD studies. MPH 

thanks EPSRC for a DTA studentship. TJH acknowledges the support of EPSRC through 

EP/J002275/1. The operation of the x-ray microscope work was supported by the Director, 

Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering 

Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231.  

References 
1.      Naber, W.J.M., S. Faez, and W.G. van der Wiel, Organic spintronics. Journal of Physics D-
Applied Physics, 2007. 40(12): p. R205-R228. 

2       Dediu, V.A., et al., Spin routes in organic semiconductors. Nature Materials, 2009. 8(9): p. 
707-716. 
3.     Julliere, M., Tunneling between Ferromagnetic-Films. Physics Letters A, 1975. 54(3): p. 225-
226. 
4.      Majumdar, S., et al., Application of regioregular polythiophene in spintronic devices: Effect of 
interface. Applied Physics Letters, 2006. 89(12). 
5.      Dediu, V., et al., Room-temperature spintronic effects in Alq3-based hybrid devices. Physical 
Review B, 2008. 78(11). 
6.      Morley, N.A., et al., Room temperature organic spintronics. Journal of Applied Physics, 2008. 
103(7). 
7.      Schulz, L., et al., Engineering spin propagation across a hybrid organic/inorganic interface 
using a polar layer. Nature Materials, 2011. 10(1): p. 39-44. 

8.      Xiong, Z.H., et al., Giant magnetoresistance in organic spin-valves. Nature, 2004. 
427(6977): p. 821-824. 

9.      Sun, D.L., et al., Giant Magnetoresistance in Organic Spin Valves. Physical Review Letters, 



10 

2010. 104(23). 
10.       Barraud, C., et al., Unravelling the role of the interface for spin injection into organic 
semiconductors. Nature Physics, 2010. 6(8): p. 615-620. 
11.    Ohishi, M., et al., Spin injection into a graphene thin film at room temperature. Japanese 
Journal of Applied Physics Part 2-Letters & Express Letters, 2007. 46(25-28): p. L605-L607. 
12 Y Kawasugi, M Ara, H Ushirokita, T Kamiya, H Tada, Preparation of lateral spin-valve structure 
using doped conducting polymer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), Organic 
Electronics, 2013, 14, 1869 
13.    Tang, C.W. and S.A. van Slyke, Organic Electroluminescent Diodes. Applied Physics Letters, 
1987. 51(12): p. 913-915. 
14.    Tatemichi, S., et al., High mobility n-type thin-film transistors based on N,N '-ditridecyl perylene 
diimide with thermal treatments. Applied Physics Letters, 2006. 89(11). 
15.    Jones, B.A., et al., Tuning orbital energetics in arylene diimide semiconductors. Materials 
design for ambient stability of n-type charge transport. Journal of the American Chemical Society, 
2007. 129(49): p. 15259-15278. 

16.   Allwood, D.A., et al., Magneto-optical Kerr effect analysis of magnetic nanostructures. Journal 
of Physics D-Applied Physics, 2003,  36(18): p. 2175-2182. 

17.    Fischer, P., Viewing spin structures with soft X-ray microscopy, Materials Today, 2010, 13(9) 
14 

18.   Bryan, M.T., et al., Observation of field-induced domain wall propagation in magnetic 
nanowires by magnetic transmission X-ray microscopy, J. Appl. Phys., 2008, 103, 07D909 
19.   Kirk, K.J. , Nanomagnets for sensors and data storage. Contemporary Physics, 2000. 41(2): p. 
61-78. 
20.    Basu, S., et al., Control of the switching behavior of ferromagnetic nanowires using 
magnetostatic interactions. Journal of Applied Physics, 2009. 105(8). 
21.    Cowburn, R.P., et al., Domain wall injection and propagation in planar Permalloy nanowires. 
Journal of Applied Physics, 2002. 91(10): p. 6949-6951. 

22.    O'Handley, R.C., Modern magnetic materials : principles and applications. 2000, New York ; 
Chichester: Wiley. 
23.    Cowburn, R.P. et al., Magnetic domain wall propagation in nanowires under transverse 
magnetic fields. J. Appl. Phys., 2002, 91, 6949. 
24.    Schrefl, T., et al., Domain structures and switching mechanisms in patterned magnetic elements. 
J. Magn. Magn. Mater., 1997, 175, 193. 
25.    O’Brien, L., et al., Magnetic domain wall induced, localized nanowire reversal. Phys. Rev. Lett. 
2011, 106, 087204. 
26.    Hayward, T.J., et al., Pinning induced by inter-domain wall interactions in planar magnetic 
nanowires. Appl. Phys. Lett. 2010, 96, 052502. 
27.    Hayward, T.J., et al., Direct imaging of domain-wall interactions in Ni80Fe20 planar nanowires. 
PHYSICAL REVIEW B 2010, 81, 020410. 

28. Dediu, V. et al., Room-temperature spintronic effects in Alq3-based hybrid devices. Physical 
Review B, 2008, 78, 115203. 
 


