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ABSTRACT: 

 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that results in 

loss of the upper and lower motor neurons from motor cortex, brainstem and spinal cord. Whilst 

the majority of cases are sporadic, around 10% show familial inheritance. ALS is usually inherited 

in an autosomal dominant manner, though autosomal recessive and X-linked inheritance do 

occur. To date, 24 of the genes at 26 loci have been identified; these include loci linked to ALS as 

well as to FTD-ALS, where family pedigrees contain individuals with frontotemporal dementia 

with/without ALS. The most commonly established genetic causes of FALS to date are the 

presence of a hexanucleotide repeat expansion in the C9ORF72 gene (39.3% FALS) and 

mutation of SOD1, TARDBP and FUS, with frequencies of 12-23.5%, 5% and 4.1% respectively. 

However, with the increasing use of next generation sequencing of small family pedigrees, this 

has led to an increasing number of genes associated with ALS. This review provides a 

comprehensive review on the genetics of ALS and an update of the pathogenic mechanisms 

associated with these genes. Commonly implicated pathways have been established, including 

RNA processing, the protein degradation pathways of autophagy and ubiquitin-proteasome-

system as well as protein trafficking and cytoskeletal function. Elucidating the role genetics plays 

in both FALS and SALS is essential for understanding the subsequent cellular dysregulation that 

leads to motor neuron loss, in order to develop future effective therapeutic strategies.   
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INTRODUCTION 

 

Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder with an incidence of 2-

3 per 100,000 and a lifetime risk of 1 per 400 individuals1. Usually with an adult onset, initial 

clinical symptoms such as loss of dexterity in the fingers or a mild limp in limb onset ALS, or 

slurring of speech in bulbar onset ALS, are caused by loss of the upper motor neurones in the 

motor cortex and brainstem and lower motor neurones in the spinal cord. Overtime, the 

progressive nature of the disease is associated with further muscle wasting, weight loss, 

fasciculations and eventually death due to respiratory failure, 32 months following symptom 

onset. During disease progression, cognitive impairment may develop in up to 40% of patients 

and approximately 5% will go on to develop frontotemporal dementia (FTD). 

 

Whilst the majority of cases are sporadic (SALS) with no familial history of disease, around 10% 

of cases are familial (FALS) and are clinically indistinguishable from SALS cases. Generally, in 

adult onset ALS, the disease is inherited as an autosomal dominant (AD) trait, though rare cases 

of juvenile ALS are more commonly associated with autosomal recessive (AR) inheritance. 

However, there are also instances of AR inheritance of AD genes in specific populations (SOD1 

in Scandinavia and FUS in Cape Verde). In addition, there is evidence of reduced penetrance of 

disease associated mutations (including p.I114T SOD1 and G4C2 C9ORF72) as well as 

oligogenic inheritance2, illustrating that ALS is a highly complex genetic disorder. 

 

The first genetic cause of ALS was identified in 1993 through linkage analysis to the Chr21 

marker DS21S223. Subsequent analysis of the nearby gene, SOD1, identified multiple 

pathogenic mutations in these FALS families. Over the following 16 years, linkage analysis and 
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candidate gene sequencing of ALS families have identified further genes associated with 

autosomal dominant or autosomal recessive ALS and one instance of X-linked inheritance (Table 

1). With the advent of next generation sequencing (NGS), whole exome sequencing (WES) has 

allowed an exponential increase in the identification of disease associated genes (Figure 1). 

Following the first use of WES to identify that the VCP gene was associated with disease, WES 

has been used on many FALS samples and assisted in identifying seven further genes in the last 

three years.  

 

To date, over 22 ALS and 4 ALS+FTD (FTDALS) loci have been established, with the causative 

genes identified in the majority of cases. This review will firstly summarise the current insights 

that have been gained from the four most common causes of FALS: SOD1, TARDBP, FUS and 

C9ORF72. These genes have highlighted the roles of oxidative stress and RNA processing as 

contributory pathogenic mechanisms in ALS. In addition, rarer genetic variants have implicated 

additional biological pathways such as the ubiquitin-proteasome system (UPS), protein trafficking 

and impaired cytoskeletal function.  

 

[Please note, for the purposes of this review, we have used the numbering of loci as described in 

the Online Mendelian Inheritance in Man (OMIM) Phenotypic Series for ALS (PS105400) and 

FTDALS (PS105550).] 

 

ALS1: Cu-Zn Superoxide Dismutase (SOD1) 

 

Mutation of Cu-Zn superoxide dismutase 1 (SOD1) was the first described genetic cause for 

familial ALS3. The majority of SOD1 mutations are AD, with a highly penetrant pattern of 
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inheritance, and are primarily associated with limb onset ALS. An exception to this rule is the 

D90A mutation, predominantly found in Scandinavian populations, where it is inherited in an AR 

manner. Frequency of SOD1 mutations varies depending on populations, from 23.5% in 

Scandinavia to 12% in Germany; mutations have also been identified in apparently sporadic 

cases4. The ALSoD database (http://alsod.iop.kcl.ac.uk)5 reports that there are 183 mutations in 

SOD1 associated with disease (accessed Nov 2015), the majority of which are point mutations. 

Given that SOD1 encodes a 153 amino acid protein, this number is remarkable, with the 

mutations distributed throughout the gene and impacting upon a variety of domains within the 

protein. This is in contrast to some of the other ALS-associated mutations, which are more often 

located within a particular motif of the protein product, particularly as it is unclear whether all of 

the reported SOD1 “mutations” are indeed pathogenic6,7.  

 

The multiple mutations throughout the protein have also resulted in challenges determining how 

they are responsible for the disease phenotype. SOD1 is a ubiquitously expressed antioxidant 

protein, which catalyses free radical superoxide to hydrogen peroxide and oxygen. As the 

majority of mutant proteins retain this enzymatic function, the pathogenicity is proposed to act 

through a toxic gain of function, although the precise nature of this toxicity remains to be 

determined. Many mutually compatible pathogenic mechanisms have been proposed including 

oxidative stress, excitotoxicity, protein aggregation, neuroinflammation, apoptosis, mitochondrial 

dysfunction, axonal transport dysregulation, endoplasmic reticulum (ER) stress8. Mutant SOD1 

proteins (mtSOD1) show variable states of metallation and disulphide bond formation, which 

leads to the ability of the demetalled and unfolded apoform to enter the intermembrane space of 

the mitochondrion thereby causing mitochondrial dysfunction9. In addition, demetallation leads to 

increased instability and mtSOD1 shows a higher aggregation propensity than wild type SOD1 

http://alsod.iop.kcl.ac.uk/
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(wtSOD1). More recently, mtSOD1, along with misfolded wtSOD1 has been shown to move from 

cell to cell and initiate a prion-like seeded aggregation of SOD110,11. Whilst initial work 

demonstrated the propagation of misfolded protein in cell culture models, spinal homogenates 

from paralysed mutant G93A SOD1 mice injected into 6mth old G85R-SOD1:YFP mice (who 

don’t usually get disease till 20mths) produced a progressive motor neuron disease within 

3mths12. 

 

Normally, misfolded proteins are removed from the cell via the UPS. However in SOD1-ALS, and 

also in SALS, the UPS has been shown to be impaired13,14. In addition, mahogunin ring finger 1, 

an E3 ubiquitin ligase, which catalyses monoubiquitination of proteins and marks them for 

degradation via a UPS-independent mechanism, has been shown to be decreased in the G93A 

mouse model. Interestingly, however, overexpression of this protein reduced SOD1 toxicity by 

suppressing the aggregation of SOD1. Thus, therapeutic strategies for ALS include increasing 

clearance of misfolded SOD1 and the heat-shock protein inducer, arimoclomol, is one such drug 

currently under investigation15.  

 

Whilst initially oxidative stress was thought to be one of the primary mechanisms of mutant 

SOD1, the continued research on SOD1 pathogenic mechanisms has implicated UPS, protein 

aggregation and degradation, as well as other aspects of protein trafficking. These pathways are 

also implicated by the discovery of additional FALS genes (see “Protein Trafficking and 

Degradation Related Genes”).  

 

ALS10: TAR DNA Binding Protein (TARDBP) 
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The transactive response DNA-binding protein 43 (TDP-43) is encoded by TARDBP gene on 

chr1p36.2216. TARDBP is responsible for 4-5% of FALS and nearly 1% of SALS17. Mutations in 

TARDBP are inherited in an AD manner and are associated with a classic ALS clinical 

phenotype. TARDBP encodes several isoforms of which TDP-43 is considered the most 

prevalent. TDP-43 is a heterogeneous nuclear ribonucleoprotein (hnRNP) with a nuclear 

localisation signal (NLS) and nuclear export signal (NES) which allows shuttling of the protein 

between the nucleus and cytoplasm. The TDP-43 protein contains three further domains, two 

RNA recognition motifs (RRM1 and RRM2), involved in RNA and DNA binding, and a glycine rich 

domain (GRD), which is essential for interactions with other proteins and is the location of the 

majority of mutations18,19. 

 

TDP-43 was initially identified as a transcription repressor that binds to TAR DNA in human 

immunodeficiency virus-1 (HIV-1)20. Subsequently, TDP-43 has been shown to play a role in RNA 

metabolism, including: RNA transcription, alternative splicing, pre-miRNA processing, RNA 

transport and mRNA stability21. TDP-43 has the ability to auto-regulate its own gene expression 

by binding to the 3’ untranslated region (3’UTR) of its mRNA, leading to instability and decay22. 

TDP-43 also binds to UG rich sequences in multiple mRNA sequences to regulate splicing23-25. In 

addition, a novel function has recently been described, with TDP-43 able to repress the splicing of 

non-conserved exons known as cryptic exons26. Removal of TDP-43 allowed these cryptic exons 

to be incorporated into mRNA sequences, which subsequently disrupted translation and induced 

nonsense mediated decay (NMD). Finally, TDP-43 is also known to be a component of stress 

granules (SGs), although it is unclear whether this role contributes to neurodegeneration27. 
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TDP-43 is a prominent protein in the characteristic ubiquitinated cytoplasmic inclusions found in 

ALS and FTD patients28. Approximately 97% of FALS and SALS patients are positive for TDP-43 

inclusions in the motor cortex and spinal cord, thereby establishing TDP-43 as a major protein 

signature for disease, not just those carrying TARDBP mutations16,29. The loss of TDP-43 nuclear 

localization in ALS is well documented and resulting splicing deficits in ALS cellular and animal 

models as well as in patient samples have been reported26,30,31. In addition to a loss of nuclear 

function, a cytoplasmic gain of function may also contribute to neurodegeneration. A mouse 

model with a mutation in the NLS of human TARDBP, thereby limiting TDP-43 to the cytoplasm, 

showed increased expression of transcription related and chromatin assembly genes as well as 

histone 3’ UTR processing genes32. Importantly, these transcriptional changes were not seen 

when an antisense oligomer was added to knockdown TDP-43 expression, thereby supporting a 

cytoplasmic toxic gain of function. Finally, similar to the prion-like propagation of disease 

described in SOD-ALS, there is also evidence that wtTDP-43 oligomers can spread horizontally 

from cell to cell via microvesicles, including from ALS patient brain lysates, as well as vertically 

along axons33. Thus, reducing the aggregation of these mutant proteins is becoming a more 

widely applicable therapeutic strategy. 

 

ALS6: Fused in Sarcoma (FUS) 

 

The FUS gene on chr16p11.2 was first identified as a fusion oncogene in liposarcoma. FUS 

belongs to the FET protein family and has been shown to be an hnRNP due to its involvement in 

transcription process, transport, trafficking, alternative splicing and miRNA processing. Similar to 

TDP-43, it is also present in SGs. Structurally, FUS is comprised of 526 amino acids which form 

an N- terminal domain rich in glutamine-glycine-serine-tyrosine (QGSY), three arginine-glycine-
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glycine (RGG) rich domains, an RRM and a zinc finger motif as well as NES and NLS which 

enables nucleocytoplasmic shuttling of the protein34.  

 

Mutations in the FUS gene were initially identified in an AR Cape Verde family35, although 

subsequent screening established FUS to be causative also in AD ALS 35,36. FUS mutations 

account for about 4% FALS and 1% of SALS, with the majority of mutations located either within 

exons 3-6, encoding the QGSY-rich and first RGG region, or in exons 12-15, which encode zinc 

finger domain, the other 2 RGG domains and NLS34. Whilst these in the C-terminal have been 

shown to be functional, those in exons 3-6 are more commonly found in SALS or do not always 

segregate with disease, suggesting incomplete penetrance or non-pathogenic variations.  

 

Previously, depletion of RNA polymerase II (RNAP II) from the nucleus had been shown to lead 

to an increase of cytoplasmic FUS, suggesting FUS had a role in transcription37. It has 

subsequently been shown that FUS mediates the interaction between RNAP II and the splicing 

factor U1 snRNP, thereby coupling transcription to splicing38. Mutations in FUS lead to 

mislocalisation of both FUS and U1 snRNP to the cytoplasm39, and other RNA binding proteins, 

including SMN1, hnRNP A1 and A2 also co-localise in mtFUS aggregates40. The consequence of 

these mtFUS interactions includes dysregulated splicing and an increased binding of FUS with 

SMN, leading to a reduction in Gem bodies, thereby representing both a loss and gain of function 

by the mtFUS41.  

 

FUS mutations may also confer pathogenicity via additional interactions. FUS has been shown to 

bind mRNAs and facilitate their transport down dendrites42 and subsequently has been shown to 

bind to the polyA tail of AMPA receptor GluA1, regulating its stability, with the loss of FUS leading 
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to a reduction of GluA143. FUS has also been shown to translocate to the mitochondria through 

interaction with the mitochondrial chaperone heat shock protein 60 (HSP60) leading to 

mitochondrial damage44. Finally, mtFUS interacts with Pur-alpha in SGs and increases 

phosphorylation of the elongation initiation factor 2-alpha (eIF2-alpha), consequently inhibiting 

protein synthesis45. However, the contribution of each of these interactions on disease 

pathogenesis remains to be determined. 

 

FTD-ALS1: C9ORF72 (C9ORF72) 

 

The most common cause of FALS to date is the expansion of an intronic GGGGCC repeat in 

C9ORF72. The region was originally identified through genome wide association studies of SALS 

cases, as well as within the Finnish ALS population46,47; whilst initially sequencing of the gene 

failed to identify any point mutations, targeted NGSof the region established an intronic repeat 

region between the non-coding exons 1a and 1b48,49. Whilst healthy controls most commonly 

have less than 10 hexanucleotide repeats, individuals with ALS usually carry 400-2000 repeats. 

The repeat expansion has been identified in 37.6% of FALS and 6.3% of SALS, as well as in up 

to 25.1% of familial FTD cases50. Therefore, it is not surprising that the most significant clinical 

phenotype associated with this genetic subtype is an increased incidence of a family history of 

FTD. In addition, there is evidence that there are more bulbar-onset cases associated with 

C9ORF72-related ALS (up to 44%, compared to 25-26% in non-C9ORF72 ALS), with some 

studies also reporting an earlier age of onset (by 1.8-5.0yrs) and shorter disease duration (by 5.7-

12.0mths)51.  
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The function of the C9ORF72 gene is currently being determined, though structural analysis has 

established there is similarity to “differentially expressed in normal and neoplasic (DENN)-like 

proteins, which are GDP/GTP exchange factors regulating Rab-GTPases involved in vesicular 

trafficking52. Further work demonstrated how C9ORF72 colocalised with Rab proteins involved in 

autophagy and endosomal trafficking53. Whilst the function is being established, several 

hypotheses have been proposed to explain how the intronic hexanucleotide repeat may cause 

neurodegeneration: 1) Haploinsufficiency, 2) RNA toxicity and 3) Dipeptide repeat (DPR) protein 

toxicity.  

 

Haploinsufficiency: Lower levels of C9ORF72 transcript were seen in patients with the repeat 

expansion compared to controls and the haploinsufficiency hypothesis was supported when 

knockdown of the C9orf72 homolog in zebrafish caused an axonal degeneration54. In contrast, in 

a conditional C9orf72 knockout mouse, where C9orf72 was specifically ablated in neuronal cells, 

there was no evidence of a neurodegenerative phenotype55. However, a systematic investigation 

of the expression levels of the three C9ORF72 transcripts (variant 1 = exon 1a, 2-5; variant 2 = 

exon 1b, 2-11; variant 3 = exon 1a, 2-11) demonstrated significantly reduced expression of 

variants 1 and 2 in cerebellum and frontal cortex of C9ORF72 expansion carriers, with a 

correlation between a higher level of expression of variant 1 and survival56.This suggests that 

antisense oligomer strategies should avoid reducing C9ORF72 expression levels. 

 

RNA Toxicity: RNA foci were identified located primarily in the nucleus and occasionally in the 

cytoplasm of motor neurons and were found to be composed of both sense and antisense RNA57. 

The presence of antisense RNA foci have been shown to be correlated with TDP-43 

mislocalisation58, but not DPRs57. The repeat sequence is thought to form G-quadruplex 
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structures within the cell. Many RNA binding proteins co-localise with the RNA foci, potentially 

sequestering them from the cell and disrupting their RNA processing functions59,60. This may 

underlie the significant dysregulation of RNA splicing that is seen in the presence of the 

expansion, where greater disruption is present in patients with a shorter survival61,62. RNA foci 

have, however, been observed in fibroblasts from asymptomatic patients59,63 and in BAC 

transgenic mice containing an expanded allele, whilst RNA foci and DPRs recapitulate the 

neuropathology of ALS, there is no evidence of neurodegeneration64,65. This is in contrast to a 

mouse expressing a 66-repeat G4C2 expansion specifically in the CNS, which exhibited 

neuropathological, behavioural and motor deficits at 6mths66. 

 

DPR Proteins: Finally, it was demonstrated that the GGGGCC repeat expansion was subject to 

repeat-associated non-ATG (RAN) translation67. Both the sense and antisense RNA are 

translated, forming DPR proteins comprised of poly-GA, -GP, -GR, -PA and –PR (with poly-GP 

generated from both antisense and sense RNA)57,68. These DPR proteins are found aggregated 

within the neuronal cytoplasmic inclusions and neuronal intranuclear inclusions in the motor 

cortex, cerebellum, hippocampus and spinal cord, which also stain positive for ubiquitin and p62. 

Recently, antibodies raised against each of the DPR proteins have demonstrated that there is 

little correlation between DPR distribution/burden and clinical phenotype69,70, which the authors 

suggest is evidence against DPR aggregation being a major pathogenic mechanism. This is in 

contrast to work using a Drosophila model, in which DPR expression caused neurodegeneration 

in the fly eye71.  

 

In summary, there appears to be growing evidence supporting some form of RNA dysregulation 

as a contributing mechanism to C9ORF72-ALS. However, whilst different cellular and animal 
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models using different constructs are generating conflicting results on the contribution of each of 

the three hypotheses, the precise mechanism(s) still remain to be fully elucidated. Disruption of 

C9ORF72 protein function in endosomal trafficking may also be a contributory factor. 

 

OTHER RNA PROCESSING GENES ASSOCIATED WITH ALS 

 

Prior to the identification of TARDBP and FUS as ALS-associated genes, several RNA 

processing genes had been already been implicated in ALS: angiogenin (ANG) and senataxin 

(SETX). Subsequently, mutations in hnRNPA1 and matrin 3 (MATR3) have been identified 

through WES and ataxin 2 (ATXN2) was identified as a risk factor. 

 

ALS9: Angiogenin (ANG): Following the identification of the ANG single nucleotide 

polymorphism (SNP) rs11701 as over-represented in ALS cases from Scotland and Ireland, 

screening of ANG identified 7 missense mutations in 15 ALS cases, of which 4 were FALS 

(1.54%) and 11 were SALS (0.80%)72. ANG is a member of the pancreatic ribonuclease 

superfamily and is neuroprotective, whilst in mtANG this ability is impaired73. Whilst multiple 

mutations have been identified, p.K17I has not always shown disease segregation. However, a 

meta-analysis has demonstrated that Caucasian individuals carrying this allele have a 1.65 

greater risk of ALS, which is increased to 10-fold in FALS74. ANG has also been shown to induce 

the assembly of SGs75. Interestingly, this induction is inhibited by G-quadruplex structures, which 

are formed by the G4C2 C9ORF72 expanded repeat, thereby establishing a link between 

C9ORF72 and ANG. 
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ALS4: Senataxin (SETX): Mutations in SETX are associated with the juvenile onset of ALS with 

distal muscle weakness and absence of bulbar or sensory symptoms. Patients typically have a 

long and slow disease progression with a relatively normal life span76,77. Rare, AD mutations in 

SETX occur in ALS, while recessive SETX mutations are associated with ataxia-oculomotor 

apraxia-2 (AOA2)77. The mechanisms by which SETX variants lead to ALS is unknown; however, 

SETX encodes a DNA/RNA helicase protein proposed to play a role in DNA repair in response to 

oxidative stress. SETX also interacts with RNA processing proteins regulating transcription and 

pre-mRNA processing suggesting the cause of motor neuron degeneration through SETX 

mutations is as a result of abnormal RNA processing78. 

 

ALS13: Ataxin 2 (ATXN2): More than 36 repeats of CAG within ATXN2 causes spinocerebellar 

ataxia 2; however, intermediate repeats of 27-33 were found to strongly associate with ALS 

having established that ATXN2 modifies TDP-43 toxicity in yeast79. ATXN2 is an RNA binding 

protein that is involved in RNA processing and localised to the ER, Golgi apparatus and SGs; 

ATXN2 also interacts with FUS and intermediate expansions exacerbate the FUS mutant 

phenotype in cellular models80. A recent meta-analysis of over 6000 ALS and 7000 controls has 

identified that repeat lengths of 25-28 were actually protective, whereas the significant risk was 

associated with CAG repeats of 31-3381. This finding is supported by an Italian study, where 

additionally, <31 repeats were associated with spinal onset ALS and a shorter survival82.  

 

ALS20: Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1): Following the identification 

of hnRNPA1 and hnRNPA2B1 mutations as causative in multisystem proteinopathy families using 

exome sequencing, these genes were specifically analysed in 212 FALS for which exome 

sequencing was available83. A single case was identified with a mutation in hnRNPA1. 
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Interestingly, hnRNPA1 and A2/B1 are known interacting partners of TDP-43 and hnRNPA1 also 

interacts with ubiquilin-284. In ALS motor neurons, there is a loss of intense hnRNPA1 nuclear 

staining, which also correlates with nuclear loss of TDP-43, although hnRNPA1 was not seen to 

co-localise with TDP-43 in the skein-like inclusions85. However, screening of 113 Italian FALS as 

well as 135 Dutch FALS and 1084 Dutch SALS failed to find any hnRNPA1 mutations, suggesting 

this is a very rare cause of FALS. 

 

ALS21: Matrin 3 (MATR3): Exome sequencing of a large pedigree identified a mutation in the 

MATR3 gene; a previous family carrying a mutation in MATR3, originally diagnosed with AD 

distal, asymmetrical myopathy with vocal cord paralysis were re-assessed and re-diagnosed as 

having ALS86. Further screening of Italian and British ALS cases identified a further 2 mutations; 

one FALS and one SALS. MATR3 is an RNA/DNA binding protein that interacts with TDP-43; 

whilst the p.S85C mutation enhances this interaction, two other mutations, p.F115C and p.T22A, 

do not. However, this difference may underlie the slow progression of the disease in the family 

carrying the p.S85C mutation. Whilst no further mutations were found in 372 FALS cases from 

France, Taiwan, Australia and French Canada, 4 mutations were found in apparent SALS cases 

(3 in French-Canadians and in 1 Taiwanese)87-90. 

 

FET Family Genes: The TATA box-binding protein-associated factor 15 (TAF15) and Ewing 

sarcoma breakpoint region 1 (EWSR1) are RNA binding proteins and form the FET family of 

proteins along with FUS. All three contain prion-like domains, a feature used to rank potential 

RNA binding proteins as being involved in ALS following a functional yeast screen91. Screening of 

TAF15 identified 5 missense variants in 1262 ALS cases, whilst screening EWSR1 identified 2 

potential mutations among 817 ALS cases92. Whilst these variants were absent from controls, 
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they were identified in SALS patients, so segregation could not be demonstrated. However, both 

TAF15 and EWSR1 proteins show cytoplasmic mislocalisation in SALS. Recently, whole genome 

sequencing identified an EWSR1 mutation in a set of monozygote twins disconcordant for ALS, 

suggesting additional factors may influence disease93. 

 

PROTEIN TRAFFICKING AND DEGRADATION RELATED GENES 

 

From the identification of the first gene for AR ALS, ALS2, combined with the presence of 

characteristic ubiquitinated inclusions in ALS motor neurons, dysregulation of protein trafficking 

and protein degradation have been implicated in the disease process. Mutations in genes 

involved in endosomal transport include alsin (ALS2), vesicle associated membrane protein 

[VAMP] associated protein B (VAPB), chromatin modifying protein 2B (CHMP2B) and 

phosphoinositide 5-phosphatase (FIG4), those involved in the UPS include ubiquilin 2 (UBQLN2), 

sequestosome 1 (SQSTM1) and sigma non-opioid intracellular receptor 1 (SIGMAR1) and 

autophagy is primarily implicated by mutations in optineurin (OPTN), valosin containing protein 

(VCP) and tank-binding kinase 1 (TBK1). There is some overlap between these three biological 

pathways, which have also been implicated in SOD1 and C9ORF72-related ALS. 

 

ALS2: Alsin (ALS2): The ALS2 gene was originally identified through linkage analysis in 

consanguineous families from Tunisia and Saudi Arabia94,95. The majority of the mutations lead to 

protein truncations, leading to a proposed loss of function. Alsin is thought to play a role activating 

Rab5 GTPases. Rab5 is essential for endosomal trafficking and in alsin knockout mice, neurons 

showed increased endosomal fusion and degradation but reduced mobility96. One of the 
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endosome components is the AMPA receptor GluR2, levels of which are reduced in alsin 

knockout mice97.  

 

ALS8: Vesicle associated membrane protein [VAMP] associated protein B (VAPB): Linkage 

analysis of a large Brazilian family first established VAPB as a causative gene for ALS 98 and the 

p.P56S mutation has been identified in multiple Brazillian pedigrees, indicative of a common 

founder 99. Additional mutations have been reported, though not all of the variations found 

segregated with disease100-103. VAPB is a type II integral ER membrane protein, involved in 

intracellular trafficking and the unfolded protein response (UPR)104 as well as regulating ER- 

mitochondria interactions105. However, the p.P56S mutant protein is unable to initiate the UPR, 

altered calcium uptake into the mitochondria and disrupted anterograde axonal transport of 

mitochondria106-108. 

  

ALS17: Chromatin modifying protein 2B (CHMP2B): Mutations in CHMP2B were initially 

identified in two probable FALS and a further 3 SALS cases; the majority had a predominant 

lower motor neuron phenotype109,110. CHMP2B is a component of the ESCRT-III endosomal 

trafficking system, sorting cargos into multivesicular bodies (MVBs). More recently 4 novel 

mutations were identified in apparently sporadic ALS cases, and these were located in the 

domain required to form the MVBs2. In cellular models, mutant CHMP2B led to the formation of 

large vacuoles, and an increase in autophagy marker LC3-II, implicating dysregulation of 

autophagy as a mechanism in ALS. 

 

ALS11: Phosphoinositide 5-phosphatase (FIG4): Mutations in FIG4 were originally identified 

as causative in Charcot-Marie-Tooth disease type 4J, though one family had a clinical phenotype 
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resembling ALS. Screening of FALS and SALS cases identified 9 variants, with 6 showing 

impaired function in yeast111. FIG4, also known as SAC3, regulates PI(3,5)P2 levels, and thereby 

controls retrograde trafficking of endosomal vesicles to the Golgi. The mutant proteins showed 

loss of phosphatase activity, mislocalisation and inability to bind to the PI(3,5)P2 complex. Further 

screening in Italian and Taiwanese populations failed to find any novel variants, though only 80 

SALS and 15 FALS were screened in each study112,113. No pathological assessment was 

available on the mutation carriers, however, FIG4 was not shown to be mislocalized in SALS114. 

 

ALS15: Ubiquilin 2 (UBQLN2): UBQLN2 was identified by linkage analysis in a large 

multigenerational family. Screening of additional FALS cases with no male to male transmission 

found 4 further mutations; these were all located within the PXX repeat region of the protein115. 

Additional screening identified further variants adjacent or within the PXX repeat region116,117. 

Mutations have been shown to disrupt the protein degradation pathway through defective binding 

to the proteasome118 and causing mislocalisation of OPTN from Rab-11 positive endosomal 

vesicles119, as well as potentially impairing RNA metabolism, through loss of binding of UBQLN2 

to hnRNP proteins, including hnRNPA184. 

 

FTDALS3: Sequestosome 1 (SQSTM1): SQSTM1 or p62 is a ubiquitin binding protein that plays 

a role in protein degradation via the proteasome and autophagy, and is found within the 

characteristic ubiquitinated inclusions in ALS patients. Screening of this gene found multiple 

mutations in both FALS and SALS cases120. Further mutations were found in ALS patients, some 

in association with Paget disease of bone, which is also known to be caused by SQSTM1 

mutations121,122. In a zebrafish model, where endogenous SQSTM1 was knocked-down, the fish 

showed behavioural and axonal abnormalities, as well as disrupted autophagy, as demonstrated 
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by increased mTOR levels123. Human SQSTM1 was able to rescue the phenotype, but the 

frequently found mutation, p.P392L, was unable to do so. 

 

ALS16: Sigma non-opoid intracellular receptor 1 (SIGMAR1):  Initially 3’UTR variants were 

identified within several AD FTD-ALS or FTD families and suggested pathogenicity occurred 

through alteration of mRNA stability124. However, using homozygosity mapping, a missense 

mutation in SIGMAR1 was subsequently found to segregate in a large consanguineous family 

with AR juvenile ALS125. SIGMAR1 is an ER chaperone, a subunit of the ligand-regulated 

potassium channel and enables mitochondrial calcium transport via the IP3 receptor; mutation of 

SIGMAR1 causes the formation of cytoplasmic aggregations, a reduction in ATP production and 

subsequent decrease in proteasome activity126. However, whether SIGMAR1 contributes to AD 

ALS is yet to be fully elucidated. 

 

ALS12: Optineurin (OPTN): Mutations in OPTN were originally identified through homozygosity 

mapping of consanguineous Japanese AR ALS families, which identified a homozygous exonic 

deletion and a homozygous nonsense mutation127. Further screening of FALS cases identified 

two AD families heterozygous for a missense mutation. OPTN mediates it’s function through 

protein-protein interactions; it binds to ubiquitin and UBQLN2, is an autophagy receptor 

(facilitating the recruitment of cargos to autophagosomes), is required for Golgi organisation (as 

demonstrated by the Golgi fragmentation seen in post-mortem spinal motor neurons128) and also 

regulates NFkB signalling129. Subsequent screening has identified additional heterozygote 

mutations, including in SALS cases130, as well as in AR ALS cases131,132. 
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ALS14: Valosin containing protein (VCP): Exome sequencing of a four-generation Italian 

family initially suggested mutation of VCP as causative in ALS133. Subsequently, a further 4 

variants were identified in FALS cases, thereby providing further evidence that VCP is associated 

with ALS. VCP is an AAA+-ATPase involved in a variety of cellular functions including mediating 

the proteasomal degradation of ubiquitinated protein in multimeric complexes and the targeting of 

substrates to autophagosomes134. Whilst screening failed to find any VCP mutations in some 

populations135-137, potential mutations were found in others and also in SALS cases138,139. VCP 

mutations are also associated with IBMPFD and patient fibroblasts have shown mitochondrial 

uncoupling and a reduction in ATP production140, a feature also seen with SIGMAR1 mutations. 

 

FTDALS4: TANK-binding kinase (TBK1): Mutations in TBK1 were initially identified through 

exome sequencing 2874 ALS cases; dominant variants were found in 1.097% of cases and loss 

of function mutations in 0.382%141. This was shortly followed by a second paper in which 

sequencing of 252 FALS cases identified 9 loss of function and 4 missense mutations142. 

Mutations have subsequently been found in both ALS, FTD-ALS and FTD cases143,144. TBK1 has 

a role in both innate immunity, NFkB signalling, as well as in autophagy. TBK1 binds and 

phosphorylates ALS-related proteins OPTN and SQSTM1, whereas TBK1 mutants have been 

shown to no longer bind OPTN142. 

 

IMPAIRED AXONAL TRANSPORT AND CYTOSKELETAL DYSFUNCTION 

 

Neurons are extremely large cells which require transport of organelles, proteins and RNA from 

the cell body down the axons.  Molecular motors such as kinesins and dynein guide these cargos 

to microtubules to mediate anterograde and retrograde transport, respectively. Whilst mutation of 
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the p150 dynactin subunit in mice generated a neurodegenerative phenotype, mutations in this 

gene were not found in human ALS145,146. However, exome sequencing has identified several 

cytoskeletal genes with mutations reported to be causative in ALS. 

 

ALS5: Spatacsin (SPG11): WES of two affected siblings from a non-consanguineous family 

diagnosed with autosomal recessive juvenile onset ALS (ARJALS) identified only one gene, 

SPG11, in which variants were found in a compound heterozygous state147. The involvement of 

the hereditary spastic paraparesis gene, normally associated with HSP with thin corpus callosum, 

had previously been implicated by a candidate gene screening of SPG11, in which mutations in 

10 families with ARJALS were identified148. Whilst the exact function of the protein is unknown, 

iPSC-derived neuronal cells with SPG11 mutations demonstrated the protein co-localised with the 

cytoskeleton, and mutations caused axonal instability and impaired axonal transport149.  

 

ALS18: Profilin 1 (PFN1): Two multi-generational ALS families were determined to carry 

mutations in the PFN1 gene following WES150. Extending the screen to additional FALS cases, 

identified a further 3 mutations in 5 FALS cases as well as a p.E117G variant, that was identified 

at very low frequency in controls. Further screening of ALS cases identified additional mutations 

as well as the variant151-154. A meta-analysis subsequently determined that the p.E117G was 

associated with ALS and proposed this variant as a risk factor155. The function of PFN1 is to 

convert monomeric actin to filamentous actin and it is also found localised to SGs156. It has been 

demonstrated that PFN1 mutations destabilise the protein, thereby leading to a loss of function, 

whilst the mutant protein is misfolded, thereby leading to a gain of function through aberrant 

protein interactions157. However, the effect of the mutant protein on actin formation and SG 

dynamics is yet to be elucidated.  
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ALS22: Tubulin alpha 4A (TUBA4A): WES of 363 FALS index cases followed by rare variant 

burden identified 5 ALS cases with rare variants in TUBA4A; these included 4 missense 

mutations and 1 nonsense mutation, all of which were encoded in exon 4, in highly conserved 

amino acids, and absent from 4300 EVS controls158. Whilst further sequencing of ALS cases only 

identified one further variant, functional studies demonstrated that the p.W407X nonsense mutant 

failed to localise to the microtubules, instead forming cytoplasmic inclusions, leading to disrupted 

microtubule assembly and stability, through a dominant-negative mechanism. Subsequent 

screening in the Chinese ALS population, failed to identify any variants159; data from other 

populations will undoubtedly emerge as further WES experiments are completed.  

 

Intermediate Filament Variants: Cytoskeletal dysfunction is further implicated in the 

pathogenesis of ALS through rare variants being identified in intermediate filament genes. 

Neurofilaments (light, medium and heavy) are major structural components of the neuronal 

cytoskeleton and are present within the characteristic ubiquitinated protein inclusions. Candidate 

gene screening identified rare insertion/deletion variants in the KSP repeat domains of 

neurofilament heavy (NEFH) gene in SALS cases160-162, whilst a single frameshift mutation has 

been identified in peripherin (PRPH1)163. However, the absence of mutations in known familial 

cases and ability to show segregation with disease has reduced the creditability of these genes 

as ALS loci. 

 

ADDITIONAL LOCI 
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Several additional ALS loci have been identified. Two loci are yet to have their associated genes 

identified: ALS3 on chr18q21 and ALS7 on chr20q13164,165. A further two genes have been 

identified in FALS pedigrees, though their functional effects are currently predicted to disrupt 

neuronal development and mitochondrial function. 

 

ALS19: Erb-b2 receptor tyrosine kinase 4 (ERBB4): Whole genome sequencing (WGS) of a 

Japanese AD ALS family identified a missense mutation in ERBB4166. Additional screening 

identified the same mutation in an unrelated Canadian family and a further mutation in a SALS 

case. ERBB4 is a receptor tyrosine kinase which is activated by neuregulin, resulting in 

autophosphorylation of the C-terminal. Mutations in ERBB4 reduced the level of 

autophosphorylation. ERBB4 was found to localise to C-boutons, arising from interneurons, which 

synapse with spinal motor neurons167. Interestingly, C-boutons are not found in oculomotor 

neurons, which are spared in ALS, whilst increases in neuregulin levels in C-boutons increase 

during disease progression of the SOD1 G93A transgenic mice.  

 

FTDALS2: Coiled-coil helix coiled-coil helix domain containing protein 10 (CHCHD10): 

CHCHD10 was initially associated with ALS through WES of a family exhibiting clinical features 

including ALS, FTD, cerebellar ataxia and myopathy168. This led to ALS and ALS-FTD families 

being screened. Several additional mutations were found169,170, though it became evident that the 

p.P34S mutation was non-pathogenic, as it was also found at similar frequencies in controls171. 

The function of CHCHD10 is unknown, it localises to the mitochondria. Fibroblasts from family 

members of the original pedigree showed multiple mitochondrial DNA deletions, respiratory chain 

defects and structurally abnormal mitochondria, suggesting CHCHD10 may have a role in the 

respiratory chain and/or in mitochondrial genome stability168. This has been supported by 
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additional work by Genin and colleagues, which not only found loss of cristae and mitochondrial 

genome repair in patient fibroblasts, but a failure of apoptosis, due to an inability to release 

cytochrome C172.  

 

CONCLUSION 

 

ALS genetics is having a significant impact on our understanding of the disease and the 

mechanisms implicated in neurodegeneration. The majority of genes encode proteins involved in 

RNA processing and the protein degradation pathways, UPS and autophagy. However, neither of 

these or the other pathways implicated work in isolation, but impact on other cellular processes. 

The proposed mechanisms are mutually compatible and it is most likely that multiple 

dysregulated pathways contribute to the loss of motor neurons. This is clearly demonstrated by 

TDP-43, an RNA binding protein which is mislocalised from the nucleus, thereby causing loss of 

nuclear function, and which is the aggregated in the cytoplasm as a component of the 

characteristic ubiquitinated inclusions.   

 

Along with multiple genetic causes, it is clear that these genes are also implicated in additional 

disorders, not only other neurodegenerative disorders such as FTD, HSP and ataxia, but also 

myopathies, Paget disease of bone and glaucoma (Table 2). The use of WES or WGS, in 

projects such as the 100,000 Genomes Project in the UK (www.genomicsengland.co.uk), or 

Project Mine among the International ALS community (www.projectmine.com), will potentially 

enable a greater understanding of why mutations in a gene in one family present with a specific 

clinical phenotype, whilst another family shows a different disease.  
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WES and WGS will also further our understanding of the impact of oligogenic inheritance in ALS. 

Whilst family pedigrees clearly show inheritance in an AD manner for classical ALS, the move 

away from analysing a single gene at a time has highlighted evidence of mutations in multiple 

ALS genes in some patients2. Screening of a large ALS cohort demonstrated that 14% of FALS 

and 2.6% of SALS cases had more than one potential pathogenic mutation in a known ALS gene, 

and these cases had a significantly earlier onset of disease173. This also highlights the fact that 

apparent SALS cases also carry genetic mutations, as has been evidenced by the identification of 

de novo mutations in SALS cases following WES of case and unaffected parents trios174,175. 

Whilst in some cases, these may actually be rare AR mutations, additional WES and WGS 

sequencing of cases will allow the genetic contribution in SALS, estimated to be 61%176, to be 

elucidated. 

 

 

REFERENCES 

 

1. Cooper-Knock, J, Jenkins, T & Shaw, PJ. Clinical and Molecular Aspects of Motor 

Neuron Disease. Colloquium Series on Genomic and Molecular Medicine 2013;2:1-60. 

2. van Blitterswijk, M, van Es, MA, Hennekam, EA, et al. Evidence for an oligogenic basis of 

amyotrophic lateral sclerosis. Hum Mol Genet 2012;21:3776-3784. 

3. Rosen, DR, Siddique, T, Patterson, D, et al. Mutations in Cu/Zn superoxide dismutase 

gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362:59-62. 

4. Andersen, PM. Amyotrophic lateral sclerosis associated with mutations in the CuZn 

superoxide dismutase gene. Curr Neurol Neurosci Rep 2006;6:37-46. 



26 

 

5. Abel, O, Powell, JF, Andersen, PM & Al-Chalabi, A. ALSoD: A user-friendly online 

bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat 2012;33:1345-

1351. 

6. Felbecker, A, Camu, W, Valdmanis, PN, et al. Four familial ALS pedigrees discordant for 

two SOD1 mutations: are all SOD1 mutations pathogenic? J Neurol Neurosurg 

Psychiatry 2010;81:572-577. 

7. Marangi, G & Traynor, BJ. Genetic causes of amyotrophic lateral sclerosis: new genetic 

analysis methodologies entailing new opportunities and challenges. Brain Res 

2015;1607:75-93. 

8. Kaur, SJ, McKeown, S & Rashid, S. Mutant SOD1 mediated pathogenesis of 

amyotrophic lateral sclerosis. Gene 2015. 

9. Sheng, Y, Chattopadhyay, M, Whitelegge, J & Valentine, JS. SOD1 aggregation and 

ALS: role of metallation states and disulfide status. Curr Top Med Chem 2012;12:2560-

2572. 

10. Grad, LI, Pokrishevsky, E, Silverman, JM & Cashman, NR. Exosome-dependent and 

independent mechanisms are involved in prion-like transmission of propagated Cu/Zn 

superoxide dismutase misfolding. Prion 2014;8:331-335. 

11. Munch, C & Bertolotti, A. Self-propagation and transmission of misfolded mutant SOD1: 

prion or prion-like phenomenon? Cell Cycle 2011;10:1711. 

12. Ayers, JI, Fromholt, SE, O'Neal, VM, Diamond, JH & Borchelt, DR. Prion-like propagation 

of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical 

pathways. Acta Neuropathol 2015. 

13. Kabashi, E, Agar, JN, Strong, MJ & Durham, HD. Impaired proteasome function in 

sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2012;13:367-371. 



27 

 

14. Kabashi, E & Durham, HD. Failure of protein quality control in amyotrophic lateral 

sclerosis. Biochim Biophys Acta 2006;1762:1038-1050. 

15. Kalmar, B, Lu, CH & Greensmith, L. The role of heat shock proteins in Amyotrophic 

Lateral Sclerosis: The therapeutic potential of Arimoclomol. Pharmacol Ther 

2014;141:40-54. 

16. Sreedharan, J, Blair, IP, Tripathi, VB, et al. TDP-43 mutations in familial and sporadic 

amyotrophic lateral sclerosis. Science 2008;319:1668-1672. 

17. Millecamps, S, Salachas, F, Cazeneuve, C, et al. SOD1, ANG, VAPB, TARDBP, and 

FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. 

J Med Genet 2010;47:554-560. 

18. Baralle, M, Buratti, E & Baralle, FE. The role of TDP-43 in the pathogenesis of ALS and 

FTLD. Biochem Soc Trans 2013;41:1536-1540. 

19. Lagier-Tourenne, C, Polymenidou, M & Cleveland, DW. TDP-43 and FUS/TLS: emerging 

roles in RNA processing and neurodegeneration. Hum Mol Genet 2010;19:R46-64. 

20. Ignatius, SH, Wu, F, Harrich, D, Garciamartinez, LF & Gaynor, RB. Cloning and 

Characterization of a Novel Cellular Protein, Tdp-43, That Binds to Human-

Immunodeficiency-Virus Type-1 Tar DNA-Sequence Motifs. Journal of Virology 

1995;69:3584-3596. 

21. Scotter, EL, Chen, HJ & Shaw, CE. TDP-43 Proteinopathy and ALS: Insights into 

Disease Mechanisms and Therapeutic Targets (vol 12, pg 352, 2015). Neurotherapeutics 

2015;12:515-518. 

22. Ayala, YM, De Conti, L, Avendano-Vazquez, SE, et al. TDP-43 regulates its mRNA levels 

through a negative feedback loop. Embo Journal 2011;30:277-288. 



28 

 

23. Polymenidou, M, Lagier-Tourenne, C, Hutt, KR, et al. Long pre-mRNA depletion and 

RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 

2011;14:459-468. 

24. Sephton, CF, Cenik, C, Kucukural, A, et al. Identification of Neuronal RNA Targets of 

TDP-43-containing Ribonucleoprotein Complexes. J Biol Chem 2011;286:1204-1215. 

25. Xiao, S, Sanelli, T, Dib, S, et al. RNA targets of TDP-43 identified by UV-CLIP are 

deregulated in ALS. Mol Cell Neurosci 2011;47:167-180. 

26. Ling, JP, Pletnikova, O, Troncoso, JC & Wong, PC. TDP-43 repression of nonconserved 

cryptic exons is compromised in ALS-FTD. Science 2015;349:650-655. 

27. Aulas, A & Vande Velde, C. Alterations in stress granule dynamics driven by TDP-43 and 

FUS: a link to pathological inclusions in ALS? Front Cell Neurosci 2015;9:423. 

28. Neumann, M, Sampathu, DM, Kwong, LK, et al. Ubiquitinated TDP-43 in frontotemporal 

lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314:130-133. 

29. Qin, H, Lim, LZ, Wei, Y & Song, J. TDP-43 N terminus encodes a novel ubiquitin-like fold 

and its unfolded form in equilibrium that can be shifted by binding to ssDNA. Proc Natl 

Acad Sci U S A 2014;111:18619-18624. 

30. Highley, JR, Kirby, J, Jansweijer, JA, et al. Loss of nuclear TDP-43 in amyotrophic lateral 

sclerosis (ALS) causes altered expression of splicing machinery and widespread 

dysregulation of RNA splicing in motor neurones. Neuropathol Appl Neurobiol 

2014;40:670-685. 

31. De Conti, L, Akinyi, MV, Mendoza-Maldonado, R, Romano, M, Baralle, M & Buratti, E. 

TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic 

and mitotic cellular pathways. Nucleic Acids Res 2015;43:8990-9005. 



29 

 

32. Amlie-Wolf, A, Ryvkin, P, Tong, R, et al. Transcriptomic Changes Due to Cytoplasmic 

TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. 

PLoS ONE 2015;10:e0141836. 

33. Feiler, MS, Strobel, B, Freischmidt, A, et al. TDP-43 is intercellularly transmitted across 

axon terminals. J Cell Biol 2015;211:897-911. 

34. Deng, H, Gao, K & Jankovic, J. The role of FUS gene variants in neurodegenerative 

diseases. Nat Rev Neurol 2014;10:337-348. 

35. Kwiatkowski, TJ, Jr., Bosco, DA, Leclerc, AL, et al. Mutations in the FUS/TLS gene on 

chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009;323:1205-

1208. 

36. Vance, C, Rogelj, B, Hortobagyi, T, et al. Mutations in FUS, an RNA processing protein, 

cause familial amyotrophic lateral sclerosis type 6. Science 2009;323:1208-1211. 

37. Zinszner, H, Sok, J, Immanuel, D, Yin, Y & Ron, D. TLS (FUS) binds RNA in vivo and 

engages in nucleo-cytoplasmic shuttling. J Cell Sci 1997;110 ( Pt 15):1741-1750. 

38. Yu, Y & Reed, R. FUS functions in coupling transcription to splicing by mediating an 

interaction between RNAP II and U1 snRNP. Proc Natl Acad Sci U S A 2015;112:8608-

8613. 

39. Yu, Y, Chi, B, Xia, W, et al. U1 snRNP is mislocalized in ALS patient fibroblasts bearing 

NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish. Nucleic 

Acids Res 2015;43:3208-3218. 

40. Takanashi, K & Yamaguchi, A. Aggregation of ALS-linked FUS mutant sequesters RNA 

binding proteins and impairs RNA granules formation. Biochem Biophys Res Commun 

2014;452:600-607. 



30 

 

41. Sun, S, Ling, SC, Qiu, J, et al. ALS-causative mutations in FUS/TLS confer gain and loss 

of function by altered association with SMN and U1-snRNP. Nat Commun 2015;6:6171. 

42. Fujii, R & Takumi, T. TLS facilitates transport of mRNA encoding an actin-stabilizing 

protein to dendritic spines. J Cell Sci 2005;118:5755-5765. 

43. Udagawa, T, Fujioka, Y, Tanaka, M, et al. FUS regulates AMPA receptor function and 

FTLD/ALS-associated behaviour via GluA1 mRNA stabilization. Nat Commun 

2015;6:7098. 

44. Deng, J, Yang, M, Chen, Y, et al. FUS Interacts with HSP60 to Promote Mitochondrial 

Damage. PLoS Genet 2015;11:e1005357. 

45. Di Salvio, M, Piccinni, V, Gerbino, V, et al. Pur-alpha functionally interacts with FUS 

carrying ALS-associated mutations. Cell Death Dis 2015;6:e1943. 

46. Shatunov, A, Mok, K, Newhouse, S, et al. Chromosome 9p21 in sporadic amyotrophic 

lateral sclerosis in the UK and seven other countries: a genome-wide association study. 

Lancet Neurol 2010;9:986-994. 

47. Laaksovirta, H, Peuralinna, T, Schymick, JC, et al. Chromosome 9p21 in amyotrophic 

lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol 2010;9:978-

985. 

48. Renton, AE, Majounie, E, Waite, A, et al. A hexanucleotide repeat expansion in 

C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72:257-268. 

49. DeJesus-Hernandez, M, Mackenzie, IR, Boeve, BF, et al. Expanded GGGGCC 

hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked 

FTD and ALS. Neuron 2011;72:245-256. 



31 

 

50. Majounie, E, Renton, AE, Mok, K, et al. Frequency of the C9orf72 hexanucleotide repeat 

expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a 

cross-sectional study. Lancet Neurol 2012;11:323-330. 

51. Cooper-Knock, J, Kirby, J, Highley, R & Shaw, PJ. The Spectrum of C9orf72-mediated 

Neurodegeneration and Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015;12:326-

339. 

52. Levine, TP, Daniels, RD, Gatta, AT, Wong, LH & Hayes, MJ. The product of C9orf72, a 

gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-

GEFs. Bioinformatics 2013;29:499-503. 

53. Farg, MA, Sundaramoorthy, V, Sultana, JM, et al. C9ORF72, implicated in amytrophic 

lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol 

Genet 2014;23:3579-3595. 

54. Ciura, S, Lattante, S, Le Ber, I, et al. Loss of function of C9orf72 causes motor deficits in 

a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol 2013;74:180-187. 

55. Koppers, M, Blokhuis, AM, Westeneng, HJ, et al. C9orf72 ablation in mice does not 

cause motor neuron degeneration or motor deficits. Ann Neurol 2015;78:426-438. 

56. van Blitterswijk, M, Gendron, TF, Baker, MC, et al. Novel clinical associations with 

specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta 

Neuropathol 2015;130:863-876. 

57. Gendron, TF, Bieniek, KF, Zhang, YJ, et al. Antisense transcripts of the expanded 

C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated 

non-ATG translation in c9FTD/ALS. Acta Neuropathol 2013;126:829-844. 



32 

 

58. Cooper-Knock, J, Higginbottom, A, Stopford, MJ, et al. Antisense RNA foci in the motor 

neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta 

Neuropathol 2015;130:63-75. 

59. Cooper-Knock, J, Walsh, MJ, Higginbottom, A, et al. Sequestration of multiple RNA 

recognition motif-containing proteins by C9orf72 repeat expansions. Brain 

2014;137:2040-2051. 

60. Lee, YB, Chen, HJ, Peres, JN, et al. Hexanucleotide repeats in ALS/FTD form length-

dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 

2013;5:1178-1186. 

61. Cooper-Knock, J, Bury, JJ, Heath, PR, et al. C9ORF72 GGGGCC Expanded Repeats 

Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic 

Lateral Sclerosis. PLoS ONE 2015;10:e0127376. 

62. Prudencio, M, Belzil, VV, Batra, R, et al. Distinct brain transcriptome profiles in C9orf72-

associated and sporadic ALS. Nat Neurosci 2015;18:1175-1182. 

63. Lagier-Tourenne, C, Baughn, M, Rigo, F, et al. Targeted degradation of sense and 

antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc 

Natl Acad Sci U S A 2013;110:E4530-4539. 

64. Peters, OM, Cabrera, GT, Tran, H, et al. Human C9ORF72 Hexanucleotide Expansion 

Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in 

BAC Transgenic Mice. Neuron 2015;88:902-909. 

65. O'Rourke, JG, Bogdanik, L, Muhammad, AK, et al. C9orf72 BAC Transgenic Mice 

Display Typical Pathologic Features of ALS/FTD. Neuron 2015;88:892-901. 



33 

 

66. Chew, J, Gendron, TF, Prudencio, M, et al. Neurodegeneration. C9ORF72 repeat 

expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. 

Science 2015;348:1151-1154. 

67. Mori, K, Weng, SM, Arzberger, T, et al. The C9orf72 GGGGCC repeat is translated into 

aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013;339:1335-1338. 

68. Mori, K, Arzberger, T, Grasser, FA, et al. Bidirectional transcripts of the expanded 

C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. 

Acta Neuropathol 2013;126:881-893. 

69. Mackenzie, IR, Frick, P, Grasser, FA, et al. Quantitative analysis and clinico-pathological 

correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation 

carriers. Acta Neuropathol 2015;130:845-861. 

70. Davidson, Y, Robinson, AC, Liu, X, et al. Neurodegeneration in Frontotemporal Lobar 

Degeneration and Motor Neurone Disease associated with expansions in C9orf72 is 

linked to TDP-43 pathology and not associated with aggregated forms of dipeptide repeat 

proteins. Neuropathol Appl Neurobiol 2015. 

71. Mizielinska, S, Gronke, S, Niccoli, T, et al. C9orf72 repeat expansions cause 

neurodegeneration in Drosophila through arginine-rich proteins. Science 2014;345:1192-

1194. 

72. Greenway, MJ, Andersen, PM, Russ, C, et al. ANG mutations segregate with familial and 

'sporadic' amyotrophic lateral sclerosis. Nat Genet 2006;38:411-413. 

73. Subramanian, V, Crabtree, B & Acharya, KR. Human angiogenin is a neuroprotective 

factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite 

extension/pathfinding and survival of motor neurons. Hum Mol Genet 2008;17:130-149. 



34 

 

74. Pan, L, Deng, X, Ding, D, Leng, H, Zhu, X & Wang, Z. Association between the 

Angiogenin (ANG) K17I variant and amyotrophic lateral sclerosis risk in Caucasian: a 

meta-analysis. Neurol Sci 2015. 

75. Ivanov, P, O'Day, E, Emara, MM, Wagner, G, Lieberman, J & Anderson, P. G-quadruplex 

structures contribute to the neuroprotective effects of angiogenin-induced tRNA 

fragments. Proc Natl Acad Sci U S A 2014;111:18201-18206. 

76. Chen, YZ, Bennett, CL, Huynh, HM, et al. DNA/RNA helicase gene mutations in a form of 

juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004;74:1128-1135. 

77. Hirano, M, Quinzii, CM, Mitsumoto, H, et al. Senataxin mutations and amyotrophic lateral 

sclerosis. Amyotroph Lateral Scler 2011;12:223-227. 

78. Skourti-Stathaki, K, Proudfoot, NJ & Gromak, N. Human senataxin resolves RNA/DNA 

hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol 

Cell 2011;42:794-805. 

79. Elden, AC, Kim, HJ, Hart, MP, et al. Ataxin-2 intermediate-length polyglutamine 

expansions are associated with increased risk for ALS. Nature 2010;466:1069-1075. 

80. Farg, MA, Soo, KY, Warraich, ST, Sundaramoorthy, V, Blair, IP & Atkin, JD. Ataxin-2 

interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-

related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 2013;22:717-728. 

81. Neuenschwander, AG, Thai, KK, Figueroa, KP & Pulst, SM. Amyotrophic lateral sclerosis 

risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA 

Neurol 2014;71:1529-1534. 

82. Borghero, G, Pugliatti, M, Marrosu, F, et al. ATXN2 is a modifier of phenotype in ALS 

patients of Sardinian ancestry. Neurobiol Aging 2015;36:2906 e2901-2905. 



35 

 

83. Kim, HJ, Kim, NC, Wang, YD, et al. Mutations in prion-like domains in hnRNPA2B1 and 

hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013;495:467-473. 

84. Gilpin, KM, Chang, L & Monteiro, MJ. ALS-linked mutations in ubiquilin-2 or hnRNPA1 

reduce interaction between ubiquilin-2 and hnRNPA1. Hum Mol Genet 2015;24:2565-

2577. 

85. Honda, H, Hamasaki, H, Wakamiya, T, et al. Loss of hnRNPA1 in ALS spinal cord motor 

neurons with TDP-43-positive inclusions. Neuropathology 2015;35:37-43. 

86. Johnson, JO, Pioro, EP, Boehringer, A, et al. Mutations in the Matrin 3 gene cause 

familial amyotrophic lateral sclerosis. Nat Neurosci 2014;17:664-666. 

87. Fifita, JA, Williams, KL, McCann, EP, et al. Mutation analysis of MATR3 in Australian 

familial amyotrophic lateral sclerosis. Neurobiol Aging 2015;36:1602 e1601-1602. 

88. Lin, KP, Tsai, PC, Liao, YC, et al. Mutational analysis of MATR3 in Taiwanese patients 

with amyotrophic lateral sclerosis. Neurobiol Aging 2015;36:2005 e2001-2004. 

89. Leblond, CS, Gan-Or, Z, Spiegelman, D, et al. Replication study of MATR3 in familial and 

sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2016;37:209 e217-221. 

90. Millecamps, S, De Septenville, A, Teyssou, E, et al. Genetic analysis of matrin 3 gene in 

French amyotrophic lateral sclerosis patients and frontotemporal lobar degeneration with 

amyotrophic lateral sclerosis patients. Neurobiol Aging 2014;35:2882 e2813-2885. 

91. Couthouis, J, Hart, MP, Shorter, J, et al. A yeast functional screen predicts new 

candidate ALS disease genes. Proc Natl Acad Sci U S A 2011;108:20881-20890. 

92. Couthouis, J, Hart, MP, Erion, R, et al. Evaluating the role of the FUS/TLS-related gene 

EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 2012;21:2899-2911. 

93. Meltz Steinberg, K, Nicholas, TJ, Koboldt, DC, Yu, B, Mardis, E & Pamphlett, R. Whole 

genome analyses reveal no pathogenetic single nucleotide or structural differences 



36 

 

between monozygotic twins discordant for amyotrophic lateral sclerosis. Amyotroph 

Lateral Scler Frontotemporal Degener 2015;16:385-392. 

94. Hadano, S, Hand, CK, Osuga, H, et al. A gene encoding a putative GTPase regulator is 

mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 2001;29:166-173. 

95. Yang, Y, Hentati, A, Deng, HX, et al. The gene encoding alsin, a protein with three 

guanine-nucleotide exchange factor domains, is mutated in a form of recessive 

amyotrophic lateral sclerosis. Nat Genet 2001;29:160-165. 

96. Lai, C, Xie, C, Shim, H, Chandran, J, Howell, BW & Cai, H. Regulation of endosomal 

motility and degradation by amyotrophic lateral sclerosis 2/alsin. Mol Brain 2009;2:23. 

97. Lai, C, Xie, C, McCormack, SG, et al. Amyotrophic lateral sclerosis 2-deficiency leads to 

neuronal degeneration in amyotrophic lateral sclerosis through altered AMPA receptor 

trafficking. J Neurosci 2006;26:11798-11806. 

98. Nishimura, AL, Mitne-Neto, M, Silva, HC, et al. A mutation in the vesicle-trafficking 

protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral 

sclerosis. Am J Hum Genet 2004;75:822-831. 

99. Nishimura, AL, Al-Chalabi, A & Zatz, M. A common founder for amyotrophic lateral 

sclerosis type 8 (ALS8) in the Brazilian population. Hum Genet 2005;118:499-500. 

100. Chen, HJ, Anagnostou, G, Chai, A, et al. Characterization of the properties of a novel 

mutation in VAPB in familial amyotrophic lateral sclerosis. J Biol Chem 2010;285:40266-

40281. 

101. Kabashi, E, El Oussini, H, Bercier, V, et al. Investigating the contribution of VAPB/ALS8 

loss of function in amyotrophic lateral sclerosis. Hum Mol Genet 2013;22:2350-2360. 



37 

 

102. Ingre, C, Pinto, S, Birve, A, et al. No association between VAPB mutations and familial or 

sporadic ALS in Sweden, Portugal and Iceland. Amyotroph Lateral Scler Frontotemporal 

Degener 2013;14:620-627. 

103. van Blitterswijk, M, van Es, MA, Koppers, M, et al. VAPB and C9orf72 mutations in 1 

familial amyotrophic lateral sclerosis patient. Neurobiol Aging 2012;33:2950 e2951-2954. 

104. Lev, S, Ben Halevy, D, Peretti, D & Dahan, N. The VAP protein family: from cellular 

functions to motor neuron disease. Trends Cell Biol 2008;18:282-290. 

105. Stoica, R, De Vos, KJ, Paillusson, S, et al. ER-mitochondria associations are regulated 

by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. 

Nat Commun 2014;5:3996. 

106. De Vos, KJ, Morotz, GM, Stoica, R, et al. VAPB interacts with the mitochondrial protein 

PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 2012;21:1299-1311. 

107. Morotz, GM, De Vos, KJ, Vagnoni, A, Ackerley, S, Shaw, CE & Miller, CC. Amyotrophic 

lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt 

axonal transport of mitochondria. Hum Mol Genet 2012;21:1979-1988. 

108. Kanekura, K, Nishimoto, I, Aiso, S & Matsuoka, M. Characterization of amyotrophic 

lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-

associated protein B (VAPB/ALS8). J Biol Chem 2006;281:30223-30233. 

109. Parkinson, N, Ince, PG, Smith, MO, et al. ALS phenotypes with mutations in CHMP2B 

(charged multivesicular body protein 2B). Neurology 2006;67:1074-1077. 

110. Cox, LE, Ferraiuolo, L, Goodall, EF, et al. Mutations in CHMP2B in lower motor neuron 

predominant amyotrophic lateral sclerosis (ALS). PLoS ONE 2010;5:e9872. 

111. Chow, CY, Landers, JE, Bergren, SK, et al. Deleterious variants of FIG4, a 

phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 2009;84:85-88. 



38 

 

112. Tsai, CP, Soong, BW, Lin, KP, Tu, PH, Lin, JL & Lee, YC. FUS, TARDBP, and SOD1 

mutations in a Taiwanese cohort with familial ALS. Neurobiol Aging 2011;32:553 e513-

521. 

113. Verdiani, S, Origone, P, Geroldi, A, et al. The FIG4 gene does not play a major role in 

causing ALS in Italian patients. Amyotroph Lateral Scler Frontotemporal Degener 

2013;14:228-229. 

114. Kon, T, Mori, F, Tanji, K, et al. ALS-associated protein FIG4 is localized in Pick and Lewy 

bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion 

body diseases. Neuropathology 2014;34:19-26. 

115. Deng, HX, Chen, W, Hong, ST, et al. Mutations in UBQLN2 cause dominant X-linked 

juvenile and adult-onset ALS and ALS/dementia. Nature 2011. 

116. Williams, KL, Warraich, ST, Yang, S, et al. UBQLN2/ubiquilin 2 mutation and pathology in 

familial amyotrophic lateral sclerosis. Neurobiol Aging 2012;33:2527 e2523-2510. 

117. Gellera, C, Tiloca, C, Del Bo, R, et al. Ubiquilin 2 mutations in Italian patients with 

amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Neurosurg 

Psychiatry 2013;84:183-187. 

118. Chang, L & Monteiro, MJ. Defective Proteasome Delivery of Polyubiquitinated Proteins 

by Ubiquilin-2 Proteins Containing ALS Mutations. PLoS ONE 2015;10:e0130162. 

119. Osaka, M, Ito, D, Yagi, T, Nihei, Y & Suzuki, N. Evidence of a link between ubiquilin 2 

and optineurin in amyotrophic lateral sclerosis. Hum Mol Genet 2015;24:1617-1629. 

120. Fecto, F, Yan, J, Vemula, SP, et al. SQSTM1 mutations in familial and sporadic 

amyotrophic lateral sclerosis. Arch Neurol 2011;68:1440-1446. 



39 

 

121. Teyssou, E, Takeda, T, Lebon, V, et al. Mutations in SQSTM1 encoding p62 in 

amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol 

2013;125:511-522. 

122. Kwok, CT, Morris, A & de Belleroche, JS. Sequestosome-1 (SQSTM1) sequence variants 

in ALS cases in the UK: prevalence and coexistence of SQSTM1 mutations in ALS 

kindred with PDB. Eur J Hum Genet 2014;22:492-496. 

123. Lattante, S, de Calbiac, H, Le Ber, I, Brice, A, Ciura, S & Kabashi, E. Sqstm1 knock-

down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of 

ALS/FTLD. Hum Mol Genet 2015;24:1682-1690. 

124. Luty, AA, Kwok, JB, Dobson-Stone, C, et al. Sigma nonopioid intracellular receptor 1 

mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 

2010;68:639-649. 

125. Al-Saif, A, Al-Mohanna, F & Bohlega, S. A mutation in sigma-1 receptor causes juvenile 

amyotrophic lateral sclerosis. Ann Neurol 2011;70:913-919. 

126. Fukunaga, K, Shinoda, Y & Tagashira, H. The role of SIGMAR1 gene mutation and 

mitochondrial dysfunction in amyotrophic lateral sclerosis. J Pharmacol Sci 2015;127:36-

41. 

127. Maruyama, H, Morino, H, Ito, H, et al. Mutations of optineurin in amyotrophic lateral 

sclerosis. Nature 2010;465:223-226. 

128. Kamada, M, Izumi, Y, Ayaki, T, et al. Clinicopathologic features of autosomal recessive 

amyotrophic lateral sclerosis associated with optineurin mutation. Neuropathology 

2014;34:64-70. 

129. Bansal, M, Swarup, G & Balasubramanian, D. Functional analysis of optineurin and some 

of its disease-associated mutants. IUBMB Life 2015;67:120-128. 



40 

 

130. van Blitterswijk, M, van Vught, PW, van Es, MA, et al. Novel optineurin mutations in 

sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging 2012;33:1016 e1011-

1017. 

131. Beeldman, E, van der Kooi, AJ, de Visser, M, van Maarle, MC, van Ruissen, F & Baas, F. 

A Dutch family with autosomal recessively inherited lower motor neuron predominant 

motor neuron disease due to optineurin mutations. Amyotroph Lateral Scler 

Frontotemporal Degener 2015;16:410-411. 

132. Goldstein, O, Nayshool, O, Nefussy, B, et al. OPTN 691_692insAG is a founder mutation 

causing recessive ALS and increased risk in heterozygotes. Neurology 2016. 

133. Johnson, JO, Mandrioli, J, Benatar, M, et al. Exome sequencing reveals VCP mutations 

as a cause of familial ALS. Neuron 2010;68:857-864. 

134. Meyer, H & Weihl, CC. The VCP/p97 system at a glance: connecting cellular function to 

disease pathogenesis. J Cell Sci 2014;127:3877-3883. 

135. Miller, JW, Smith, BN, Topp, SD, Al-Chalabi, A, Shaw, CE & Vance, C. Mutation analysis 

of VCP in British familial and sporadic amyotrophic lateral sclerosis patients. Neurobiol 

Aging 2012;33:2721 e2721-2722. 

136. Williams, KL, Solski, JA, Nicholson, GA & Blair, IP. Mutation analysis of VCP in familial 

and sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2012;33:1488 e1415-1486. 

137. Tiloca, C, Ratti, A, Pensato, V, et al. Mutational analysis of VCP gene in familial 

amyotrophic lateral sclerosis. Neurobiol Aging 2012;33:630 e631-632. 

138. Koppers, M, van Blitterswijk, MM, Vlam, L, et al. VCP mutations in familial and sporadic 

amyotrophic lateral sclerosis. Neurobiol Aging 2012;33:837 e837-813. 



41 

 

139. Abramzon, Y, Johnson, JO, Scholz, SW, et al. Valosin-containing protein (VCP) 

mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2012;33:2231 

e2231-2231 e2236. 

140. Bartolome, F, Wu, HC, Burchell, VS, et al. Pathogenic VCP mutations induce 

mitochondrial uncoupling and reduced ATP levels. Neuron 2013;78:57-64. 

141. Cirulli, ET, Lasseigne, BN, Petrovski, S, et al. Exome sequencing in amyotrophic lateral 

sclerosis identifies risk genes and pathways. Science 2015;347:1436-1441. 

142. Freischmidt, A, Wieland, T, Richter, B, et al. Haploinsufficiency of TBK1 causes familial 

ALS and fronto-temporal dementia. Nat Neurosci 2015;18:631-636. 

143. Gijselinck, I, Van Mossevelde, S, van der Zee, J, et al. Loss of TBK1 is a frequent cause 

of frontotemporal dementia in a Belgian cohort. Neurology 2015;85:2116-2125. 

144. Le Ber, I, De Septenville, A, Millecamps, S, et al. TBK1 mutation frequencies in French 

frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiol Aging 

2015;36:3116 e3115-3118. 

145. Ahmad-Annuar, A, Shah, P, Hafezparast, M, et al. No association with common 

Caucasian genotypes in exons 8, 13 and 14 of the human cytoplasmic dynein heavy 

chain gene (DNCHC1) and familial motor neuron disorders. Amyotroph Lateral Scler 

Other Motor Neuron Disord 2003;4:150-157. 

146. Vilarino-Guell, C, Wider, C, Soto-Ortolaza, AI, et al. Characterization of DCTN1 genetic 

variability in neurodegeneration. Neurology 2009;72:2024-2028. 

147. Daoud, H, Zhou, S, Noreau, A, et al. Exome sequencing reveals SPG11 mutations 

causing juvenile ALS. Neurobiol Aging 2012;33:839 e835-839. 

148. Orlacchio, A, Babalini, C, Borreca, A, et al. SPATACSIN mutations cause autosomal 

recessive juvenile amyotrophic lateral sclerosis. Brain 2010;133:591-598. 



42 

 

149. Perez-Branguli, F, Mishra, HK, Prots, I, et al. Dysfunction of spatacsin leads to axonal 

pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet 2014;23:4859-

4874. 

150. Wu, CH, Fallini, C, Ticozzi, N, et al. Mutations in the profilin 1 gene cause familial 

amyotrophic lateral sclerosis. Nature 2012;488:499-503. 

151. Smith, BN, Vance, C, Scotter, EL, et al. Novel mutations support a role for Profilin 1 in 

the pathogenesis of ALS. Neurobiol Aging 2015;36:1602 e1617-1627. 

152. Ingre, C, Landers, JE, Rizik, N, et al. A novel phosphorylation site mutation in profilin 1 

revealed in a large screen of US, Nordic, and German amyotrophic lateral 

sclerosis/frontotemporal dementia cohorts. Neurobiol Aging 2013;34:1708 e1701-1706. 

153. Tiloca, C, Ticozzi, N, Pensato, V, et al. Screening of the PFN1 gene in sporadic 

amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiol Aging 

2013;34:1517 e1519-1510. 

154. van Blitterswijk, M, Baker, MC, Bieniek, KF, et al. Profilin-1 mutations are rare in patients 

with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotroph Lateral Scler 

Frontotemporal Degener 2013;14:463-469. 

155. Fratta, P, Charnock, J, Collins, T, et al. Profilin1 E117G is a moderate risk factor for 

amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2014;85:506-508. 

156. Figley, MD, Bieri, G, Kolaitis, RM, Taylor, JP & Gitler, AD. Profilin 1 associates with 

stress granules and ALS-linked mutations alter stress granule dynamics. J Neurosci 

2014;34:8083-8097. 

157. Boopathy, S, Silvas, TV, Tischbein, M, et al. Structural basis for mutation-induced 

destabilization of profilin 1 in ALS. Proc Natl Acad Sci U S A 2015;112:7984-7989. 



43 

 

158. Smith, BN, Ticozzi, N, Fallini, C, et al. Exome-wide rare variant analysis identifies 

TUBA4A mutations associated with familial ALS. Neuron 2014;84:324-331. 

159. Li, J, He, J, Tang, L, et al. TUBA4A may not be a significant genetic factor in Chinese 

ALS patients. Amyotroph Lateral Scler Frontotemporal Degener 2015;1-3. 

160. Figlewicz, DA, Krizus, A, Martinoli, MG, et al. Variants of the heavy neurofilament subunit 

are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet 

1994;3:1757-1761. 

161. Al-Chalabi, A, Andersen, PM, Nilsson, P, et al. Deletions of the heavy neurofilament 

subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet 1999;8:157-164. 

162. Tomkins, J, Usher, P, Slade, JY, et al. Novel insertion in the KSP region of the 

neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 

1998;9:3967-3970. 

163. Gros-Louis, F, Lariviere, R, Gowing, G, et al. A frameshift deletion in peripherin gene 

associated with amyotrophic lateral sclerosis. J Biol Chem 2004;279:45951-45956. 

164. Hand, CK, Khoris, J, Salachas, F, et al. A novel locus for familial amyotrophic lateral 

sclerosis, on chromosome 18q. Am J Hum Genet 2002;70:251-256. 

165. Sapp, PC, Hosler, BA, McKenna-Yasek, D, et al. Identification of two novel loci for 

dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet 

2003;73:397-403. 

166. Takahashi, Y, Fukuda, Y, Yoshimura, J, et al. ERBB4 mutations that disrupt the 

neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. Am J Hum Genet 

2013;93:900-905. 



44 

 

167. Gallart-Palau, X, Tarabal, O, Casanovas, A, et al. Neuregulin-1 is concentrated in the 

postsynaptic subsurface cistern of C-bouton inputs to alpha-motoneurons and altered 

during motoneuron diseases. Faseb J 2014;28:3618-3632. 

168. Bannwarth, S, Ait-El-Mkadem, S, Chaussenot, A, et al. A mitochondrial origin for 

frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 

involvement. Brain 2014;137:2329-2345. 

169. Dols-Icardo, O, Nebot, I, Gorostidi, A, et al. Analysis of the CHCHD10 gene in patients 

with frontotemporal dementia and amyotrophic lateral sclerosis from Spain. Brain 

2015;138:e400. 

170. Johnson, JO, Glynn, SM, Gibbs, JR, et al. Mutations in the CHCHD10 gene are a 

common cause of familial amyotrophic lateral sclerosis. Brain 2014;137:e311. 

171. Marroquin, N, Stranz, S, Muller, K, et al. Screening for CHCHD10 mutations in a large 

cohort of sporadic ALS patients: no evidence for pathogenicity of the p.P34S variant. 

Brain 2015. 

172. Genin, EC, Plutino, M, Bannwarth, S, et al. CHCHD10 mutations promote loss of 

mitochondrial cristae junctions with impaired mitochondrial genome maintenance and 

inhibition of apoptosis. EMBO Mol Med 2015;8:58-72. 

173. Cady, J, Allred, P, Bali, T, et al. Amyotrophic lateral sclerosis onset is influenced by the 

burden of rare variants in known amyotrophic lateral sclerosis genes. Ann Neurol 

2015;77:100-113. 

174. Steinberg, KM, Yu, B, Koboldt, DC, Mardis, ER & Pamphlett, R. Exome sequencing of 

case-unaffected-parents trios reveals recessive and de novo genetic variants in sporadic 

ALS. Sci Rep 2015;5:9124. 



45 

 

175. Chesi, A, Staahl, BT, Jovicic, A, et al. Exome sequencing to identify de novo mutations in 

sporadic ALS trios. Nat Neurosci 2013;16:851-855. 

176. Al-Chalabi, A, Fang, F, Hanby, MF, et al. An estimate of amyotrophic lateral sclerosis 

heritability using twin data. J Neurol Neurosurg Psychiatry 2010;81:1324-1326. 

 

 

  



46 

 

FIGURE LEGEND 

 

Figure 1: Gene Frequencies in ALS. Each gene is plotted against the year it was found; size of 

circles signifies the frequency of mutations in FALS (ALS) as listed on Table 1. Where gene 

frequencies were not available, for illustrative purposes, these have been given circle size 

equivalent to 1%. 
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