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Abstract 
 

We conducted a meta-analysis of three endometrial cancer (EC) GWAS and two replication 

phases totaling 7,737 EC cases and 37,144 controls of European ancestry. Genome-wide 

imputation and meta-analysis identified five novel risk loci at genome-wide significance at 

likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 

(rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to 

MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1 near 

SIVA1). A second independent 8q24.21 signal (rs17232730) was found. Functional studies 

of the intergenic 13q22.1 locus showed that rs9600103 (pairwise r2=0.98 with rs11841589) 

is located in a region of active chromatin that interacts with the KLF5 promoter region. The 

rs9600103-T EC protective allele suppressed gene expression in vitro suggesting that the 

regulation of KLF5 expression, a gene linked to uterine development, is implicated in 

tumorigenesis. These findings provide enhanced insight into the genetic and biological basis 

of EC. 
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Endometrial cancer (EC) is the fourth most common cancer in women in the United States1 

and Europe2, and the most common cancer of the female reproductive system. The familial 

relative risk is ~23,4, but highly penetrant germline mutations in mismatch repair genes5, and 

DNA polymerases6,7 account for only a small proportion of the familial aggregation. Our 

previous GWAS and subsequent fine-mapping identified the only two reported genome-wide 

significant EC risk loci, tagged by rs11263763 in HNF1B intron 18 and rs727479 in CYP19A1 

intron 49.  

 

To identify additional EC risk loci, we re-analysed data from our previous GWAS (ANECS, 

SEARCH datasets10) and conducted a meta-analysis with two further studies 

(Supplementary Figure 1). The first was an independent GWAS; the National Study of 

Endometrial Cancer (NSECG), including 925 EC cases genotyped using the Illumina 660W 

array, 1,286 cancer-free controls from the CORGI/SP1 GWAS11,12 and 2,674 controls from 

the 1958 Birth Cohort13. The second study comprised 4,330 EC cases and 26,849 controls 

from Europe, the United States and Australia, genotyped using a custom array designed by 

the Collaborative Oncological Gene-environment Study (COGS) initiative14–17 

(Supplementary Table 1, Supplementary Note).  

 

We first performed genome-wide imputation using 1000 Genomes Project data, allowing us 

to assess up to 8.6 million variants with allele frequency 1% across the different studies. 

Per-allele odds ratios and P-values for all SNPs in the GWAS and iCOGS were obtained 

using a logistic regression model. There was little evidence of systematic overdispersion of 

the test statistic (ȜGC=1.002-1.038, Supplementary Figure 3). A fixed-effects meta-analysis 

was conducted for all 2.3 million typed and well-imputed SNPs (info score>0.90) in a total of 

6,542 EC cases and 36,393 controls.  The strongest associations were with SNPs in LD with 

previously identified EC risk SNPs in HNF1B10,8,18 and CYP19A19,19 (Figure 1, Table 1). For 

fourteen 1.5Mb regions containing at least one novel SNP with Pmeta<10−5, we performed 

regional imputation using an additional reference panel that comprised 196 high-coverage 

whole genome-sequenced UK individuals (Supplementary Table 2).  

 

Five novel regions containing at least one EC risk SNP with Pmeta<10−7 were identified and 

the most strongly associated SNP in each region was genotyped in an additional 1,195 

NSECG EC cases and 751 controls using competitive allele-specific PCR (KASPar, 

KBiosciences) and the Fluidigm BioMark System (Supplementary Table 3). Duplicate 

samples displayed concordance >98.5% between different genotyping platforms 

(Supplementary Table 4). All five SNPs were associated with EC at genome-wide 

significance (P<5×10−8, Table 1, Figure 2), and these associations remained highly 
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significant when analysis was restricted to cases with endometrioid subtype only. 

Endometrioid-only analysis did not reveal any additional risk loci.  eQTL analysis (Online 

Methods)  in normal uterine tissue,20 and EC tumour and adjacent normal tissue21 did not 

yield any SNPs robustly associated with the expression of nearby genes at the EC risk loci 

(Supplementary Table 7). However, for each risk locus, bioinformatic analysis including 

cell-type-specific expression and histone modification data identified correlated SNPs within 

500kb in likely enhancers and multiple potential regulatory targets (Supplementary Table 6, 

Supplementary Figure 5). The most compelling candidates for future functional analysis 

are described below. 

 

rs13328298 (OR=1.13, 95%CI:1.09–1.18, P=3.73×10−10) on 6q22.31 lies in the long non-

coding RNA LOC643623, 54kb upstream of HEY2 and 86kb upstream of NCOA7. HEY2 is a 

helix-loop-helix transcriptional repressor in the Notch pathway, which maintains stem cells, 

and dysregulation has been associated with different cancers22. NCOA7 modulates the 

activity of the estrogen receptor via direct binding23.  

 

The second locus (rs4733613, OR=0.84, 95%CI:0.80–0.89, P=3.09×10−9) is at 8q24.21. 

Stepwise conditional logistic regression identified another independent signal in this region, 

rs17232730 (pairwise r2=0.02, Pcond=1.29×10−5, Table 2). Both EC SNPs lie further from 

MYC (784-846kb telomeric) than most of the other cancer SNPs in the region, including 

those for cancers of the bladder24,25, breast26,16, colorectum11,27, ovary28 and prostate29,30. 

rs17232730 is in moderate LD with the ovarian cancer SNP rs10088218 (r2=0.43), with both 

cancers sharing the same risk allele, but rs4733613 is not in LD (r2≤0.02) with any other 

cancer SNP in the region (Supplementary Figure 5). A role in tumorigenesis is implicated 

for several miRNAs in the region31. Of these, miR-1207-5p is reported to repress TERT, a 

locus also implicated in EC risk32. 

 

The lead SNP at 15q15 (rs937213; OR=0.90, 95%CI:0.86–0.93, P=1.77×10−8) lies within an 

intron of EIF2AK4. EIF2AK4 encodes a kinase that phosphorylates EIF2Į and 

downregulates protein synthesis during cellular stress33. Another nearby gene, BMF, 

encodes an apoptotic regulator moderately to highly expressed in glandular endometrial 

tissue34.  

 

At 14q42, the lead SNP rs2498796 (OR=0.89, 95%CI:0.85–0.93, P=3.55×10−8) lies in intron 

3 of oncogene AKT1, which is highly expressed in the endometrium34. Several SNPs in LD 

with rs2498796 are bioinformatically linked with regulation of AKT1 and four other nearby 

genes (SIVA1, ZBTB42, ADSSL1 and INF2; Supplementary Table 6, Supplementary 
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Figure 5). AKT1 acts in the PI3K/AKT/MTOR intracellular signaling pathway, which affects 

cell survival and proliferation35 and is activated in endometrial tumors36, especially 

aggressive disease37,38,39. SIVA1 encodes an apoptosis regulatory protein that inhibits p53 

activity40,41 and enhances epithelial–mesenchymal transition to promote motility and 

invasiveness of epithelial cells42. INF2 expression is reported to act as a promigratory signal 

in gastric cancer cells treated with mycophenolic acid43.  

 

The final novel EC SNP was rs11841589 (OR=1.15, 95%CI:1.11–1.21, P=4.83×10−11) on 

chromosome 13q22.1, 163kb and 445kb downstream from Kruppel-like factors KLF5 and 

KLF12, respectively. KLF5 is a transcription factor associated with cell cycle regulation, and 

it plays a role in uterine development, homoeostasis and tumorigenesis44–47. Elevated KLF5 

levels are strongly correlated with activating KRAS mutations48 and KLF5 is targeted for 

degradation by the tumor suppressor FBXW7. Both FBXW7 and KRAS are commonly 

mutated in EC49. rs11841589 was one of a group of five highly correlated SNPs (r20.98) 

surpassing genome wide significance in a 3kb LD block bounded by rs9600103 

(P=8.70×10−11) and rs11841589 (Figure 4a). There was no residual association signal at 

this locus (Pcond >0.05) after conditioning for rs11841589.  Bioinformatic analysis suggested 

that the causal variant at the intergenic 13q22.1 locus may affect a regulatory element that 

modifies KLF5 expression (Supplementary Figure 5); rs9600103 overlaps a vertebrate 

conservation peak, and a DNaseI hypersensitivity site (DHS) in estrogen and tamoxifen-

treated ENCODE50 Ishikawa cells (Figure 4a). In addition, in a Hi-C chromatin capture 

experiment in Hela S3 cells51, an interaction loop was observed between a segment 

containing the KLF5 promoter and the rs11841589/rs9600103 locus (P=0.004, 

Supplementary Figure 6).  

 

We further investigated the epigenetic landscape of a 16kb region around rs11841589 and 

rs9600103 that contained the SNPs most strongly associated with EC, by analysis of three 

EC cell lines: Ishikawa is homozygous for the rs9600103-A and rs11841589-G high-risk 

alleles, and provided a comparison with the ENCODE data; ARK-2 is homozygous for the 

low-risk T alleles at both SNPs; and AN3CA is a non-KLF5 expressing line that is 

homozygous for the high-risk alleles (Supplementary Figure 7). We conducted 

formaldehyde-assisted identification of regulatory elements (FAIRE, to identify regions of 

open chromatin), and chromatin immunoprecipitation (ChIP) using antibodies against 

H3K4Me2 (marker of transcription factor binding52) and panH4Ac (marker of active 

chromatin). Although the anti-H4Ac ChIP did not display a consistent signal in the region, 

signals from FAIRE and anti-H3K4Me2 ChIP were specifically present in the KLF5-

expressing lines and were co-located with the conservation peak and DHS from the 
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ENCODE data at rs9600103, providing strong evidence for open chromatin and transcription 

factor binding here (Figure 4a).  We then conducted chromatin conformation capture 

experiments for the KLF5-expressing Ishikawa endometrial cancer cells and we found a 

significant interaction between the NcoI restriction fragment containing the 

rs11841589/rs9600103 risk loci SNPs and the promoter region of KLF5 (Figure 4b).  

 

The regulatory nature of the region around rs9600103 and rs11841589 was investigated 

using allele-specific luciferase enhancer reporter assays in Ishikawa cells (Figure 4c). 

Paired t-tests were used to compare the relationships between fragments containing the 

rs11841589 and rs9600103 alleles, and the pGL3-Promoter reporter vector (no insert) 

control (Supplementary Table 8). Fragments containing the rs9600103-T, rs11841589-T 

and rs11841589-G alleles had activity significantly lower than that of the pGL3-Promoter 

control (P≤0.014). In contrast, the construct containing the rs9600103-A risk allele had 

luciferase expression similar to the pGL3-Promoter control (P=0.23) and significantly higher 

than that of rs9600103-T (P=0.02), rs11841589-T (P=0.05) and rs11841589-G (P=0.04). 

These results suggest that the EC risk tagged by rs11841589 is at least partly due to a 

regulatory element containing rs9600103, which interacts with the KLF5 promoter region, 

and the risk rs9600103-A allele is likely associated with increased gene expression.  

In summary, this meta-analysis identified five novel EC risk loci at genome-wide 

significance, bringing the total number of common EC risk loci identified by GWAS to seven 

(Figure 1). Together with other risk SNPs reaching study-wide significance32,53,54, these 

explain ~1.6% of the EC familial relative risk. Novel EC risk SNPs lie in likely enhancers 

predicted to regulate genes or miRNAs with known or suspected roles in tumorigenesis, and 

we specifically showed that a functional SNP at 13q22.1 may sit within a transcriptional 

repressor of KLF5. Our findings further clarify the genetic etiology of EC, provide regions for 

functional follow-up, and add key information for future risk stratification models. 

 

 

 

Methods 

 

Methods and any associated references are available in the online version of the paper at 

http://www.nature.com/naturegenetics/. 
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Table 1: Risk loci associated with EC at P< 5×10−8 in the meta-analysis.  
 

Locus SNP Position 
Nearby 
gene(s) 

EA OA EAF 

All histologies Endometrioid histology 

Allelic OR 
(95%CI) 

P I
2
 

Allelic OR 
(95%CI) 

P I
2
 

Novel GWAS loci             

13q22.1 rs11841589 73,814,891 KLF5, KLF12 G T 0.74 1.15 (1.11-1.21) 4.83×10
−11

 0.19 1.16 (1.10-1.21) 6.01×10
−10

 0.00 

6q22.31 rs13328298 126,016,580 
HEY2, 
NCOA7 

G A 0.58 1.13 (1.09-1.18) 3.73×10
−10

 0.00 1.15 (1.11-1.20) 1.02×10
−11

 0.00 

8q24.21 rs4733613 129,599,278 MYC G C 0.87 0.84 (0.80-0.89) 3.09×10
−9

 0.00 0.84 (0.79-0.89) 7.70×10
−9

 0.09 

15q15.1 rs937213 40,322,124 
EIF2AK, 
BMF 

T C 0.58 0.90 (0.86-0.93) 1.77×10
−8

 0.36 0.90 (0.86-0.94) 2.22×10
−7

 0.30 

14q32.33 rs2498796 105,243,220 AKT1, SIVA1 G A 0.70 0.89 (0.85-0.93) 3.55×10
−8

 0.00 0.88 (0.85-0.92) 4.22×10
−8

 0.00 

Previously reported GWAS loci            

17q12 rs11263763 36,103,565 HNF1B A G 0.54 1.20 (1.15-1.25) 2.78×10
−19

 0.37 1.20 (1.15-1.25) 6.51×10
−17

 0.52 

15q21 rs2414098 51,537,806 CYP19A1 C T 0.62 1.17 (1.13-1.23) 4.51×10
−13

 0.00 1.18 (1.13-1.23) 2.48×10
−13

 0.00 

 
Positions in build 37; EA, Effect allele; OA, Other allele; EAF, effect allele frequency; I2, heterogeneity I2 statistic55.  For all novel loci, the lead 
SNP was either directly genotyped or imputed with an information score of more than 0.9. HNF1B and CYP19A1 have been previously reported 
by Painter et al.8 and Thompson et al9.  
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Table 2: Conditional analysis of 8q24 locus showing two independent association signals. 
 

SNP Position EA OA EAF 
Pairwise r

2 
with All histology meta-analysis Conditioning on rs4733613 Conditioning on rs17232730 

rs4733613 rs17232730 Allelic OR (95%CI) P Allelic OR (95%CI) P Allelic OR (95%CI) P 

rs4733613 129,599,278 G C 0.87 - 0.02 0.84 (0.79-0.89) 5.64 × 10
оϵ

 - - 0.86 (0.81-0.91) 2.32 × 10
оϳ

 

rs17232730 129,537,746 G C 0.88 0.02 - 1.17 (1.10-1.24) 4.46 × 10
оϳ

 1.14 (1.08-1.22) 1.29 × 10
оϱ

 - - 

rs10088218* 129,543,949 G A 0.87 0.02 0.43 1.14 (1.07-1.20) 1.65 × 10
оϱ

 1.12 (1.05-1.18) 2.92 × 10
оϰ

 1.01 (0.91-1.12) 0.818 

 
 
Positions in build 37; EA, Effect allele; OA, Other allele; EAF, effect allele frequency. 
*rs10088218 is associated with ovarian cancer (all subtypes), with the association being more significant for cancers of serous histology. 
rs10088218-G is the risk allele for both EC and ovarian cancer. 
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Figure legends 
 

Figure 1: EC meta-analysis Manhattan plot 

Manhattan plot of –log10-transformed P-values from meta-analysis of 22 autosomes. There 

are seven loci surpassing genome wide significance including two known loci: 15q21 

(CYP19A1) and 17q12 (HNF1B) and five novel loci: 6q22 (NCOA7, HEY2), 8q24 (MYC), 

13q22 (KLF5), 14q32 (AKT1, SIVA1), 15q15 (EIF2AK4, BMF).  

 

Figure 2: Forest plots of novel EC risk loci 

The odds ratio and 95% confidence intervals of each study of the meta-analysis are listed 

and shown in the adjacent plot. The I2 heterogeneity scores (all <0.4) suggest that there is 

no marked difference in effects between studies. The SNPs represented are: a) rs11841589 

(13q22), b) rs13328298 (6q22), c) rs4733613 (8q24), d) rs17232730 (8q24, pairwise r2 0.02 

with rs4733613), e) rs937213 (15q15) and f) rs2498796 (14q32).  

 

Figure 3: Regional association plots for the five novel loci associated with EC.  

The -log10 P-values from the meta-analysis and regional imputation for three GWAS and 

eight iCOGS groups are shown for SNPs at: a) 13q22.1, b) 6q22, c) & d) 8q24, e) 15q15 and 

f) 14q32.33. The SNP with the lowest P-value at each locus is labeled and marked as a 

purple diamond, and the dot color represents the LD with the top SNP. The blue line shows 

recombination rates in cM/Mb. All plotted SNPs are either genotyped or have an IMPUTE 

info score of more than 0.9 in all datasets. Supplementary Figure 4 displays similar 

regional association plots with a larger number of SNPs using a less stringent info score cut-

off.  

 

Figure 4: The 13q22.1 EC susceptibility locus 

a) Diagram showing the 16kb region (position 73,804,930- 73,820,618) around rs11841589, 

rs9600103 and correlated SNPs rs7981863, rs7988505 and rs7989799 (black marks). 

FAIRE and ChIP assays with anti-H3K4Me2 and anti-H4Ac antibodies for three EC cell lines 

ARK-2 (rs9600103-TT), Ishikawa (rs9600103-AA) and AN3CA (rs9600103-AA) are shown, 

with the y-axis displaying enrichment normalized to non-crosslinked genomic DNA/sonicated 

input DNA, relative to the Rhodopsin promoter as a negative control using the ǻǻCt method. 

DNaseI hypersensitivity site (DHS) density signal in ENCODE EC Ishikawa cells 

(Supplementary Note) are shown, from experiments with cell lines treated with estrogen 

and tamoxifen. 100 vertebrates conservation is also displayed. Vertical dotted line 

represents the position of rs9600103.  
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b) 3C experiment for KLF5-expressing Ishikawa cells. Relative interaction frequencies 

between an NcoI restriction fragment containing risk SNPs rs9600103 and rs11841589 (bait 

fragment) with NcoI fragments across the region were calculated using qPCR with 

normalization to the signal from a control BAC 3C library and a non-interacting chromosomal 

region, using the ǻǻCt method. The graph shows the frequencies plotted against the 

fragment position on chromosome 13. A significant interaction is seen with the fragment 

containing a KLF5 transcriptional start site in Ishikawa cells. 

c) Luciferase reporter assay to analyze the activity of 3kb fragments containing either 

rs9600103 or rs11841589 using the pGL3 promoter vector in Ishikawa cells. Green arrows 

represent the low-risk alleles, and red arrows the high-risk alleles. Error bars represent the 

standard error of the mean. Data were normalized by subtraction of background 

luminescence and normalized to pGL4 Renilla activity. Luciferase activity in the rs9600103-A 

risk allele was more than double than that of the rs9600103-T protective allele (P=0.018). 

Paired t-tests between the different fragments also showed that the rs9600103-A high-risk 

allele has significantly higher expression compared with both rs11841589 alleles (0.045, 

0.039) (Supplementary Table 8).  Schematic diagram displays position on chromosome 13 

of the fragment sequences and the arrows represents the position of the two SNPs. 

 


