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Mean-field analysis is an important tool for understanding dynamics on complex networks. How-
ever, surprisingly little attention has been paid to the question of whether mean-field predictions
are accurate, and this is particularly true for real-world networks with clustering and modular struc-
ture. In this paper, we compare mean-field predictions to numerical simulation results for dynamical
processes running on 21 real-world networks and demonstrate that the accuracy of the theory de-
pends not only on the mean degree of the networks but also on the mean first-neighbor degree.
We show that mean-field theory can give (unexpectedly) accurate results for certain dynamics on
disassortative real-world networks even when the mean degree is as low as z = 4.

PACS numbers: 89.75.Hc, 64.60.aq, 89.75.Fb, 87.23.Ge

I. INTRODUCTION

Mean-field theories are the most common form of ana-
lytical approximation employed when studying dynamics
on complex networks [1]. Typically, mean-field theories
are derived under several assumptions:

(i) Absence of local clustering. When considering pos-
sible changes to the state of a node B1, it is assumed
that the states of the neighbors of node B1 are in-
dependent of each other. However, this assumption
that the network is “locally tree-like” does not hold
if the neighbors of B1 are also linked to each other—
i.e., if the network is clustered (exhibits transitiv-
ity).

(ii) Absence of modularity. It is also usually assumed
that all nodes of the same degree k are well-
described by the mean k-class state—i.e. by the
average over all nodes of degree k. However, this
might not be true if the network is modular, so
that the states of degree-k nodes are differently dis-
tributed in different communities.

(iii) Absence of dynamical correlations. Finally, it is
assumed that the states of each node B1 and those
of its neighbors can be treated as independent when
updating the state of node B1.

Importantly, the neglect of dynamical correlations (as
distinct from structural correlations such as degree-
degree correlations) between neighbors in assumption
(iii) can be addressed in improved theories that incorpo-
rate information on the joint distribution of node states
at the ends of a random edge in the network [2, 3] (cf.

theories that only specify the structures at the ends of
a random edge). The improved theories are often called
pair-approximations (PA) (examples are [4, 5]), and these
are inevitably more complicated to derive and study than
mean-field (MF) theories, so we mostly restrict our atten-
tion in the present paper to the more common MF-theory
situation [69].

The distinctions between assumptions (i)—(iii) can be
clarified by considering the theoretical approaches be-
yond the MF level that have been developed in certain
cases to deal with violations of (i), (ii), and (iii). The im-
pact of non-zero clustering on percolation problems on a
network has been examined in Refs. [6–10]. The ana-
lytical methods used in those papers explicitly account
for the dependence of neighbors’ states on each other—
i.e., for the violation of MF assumption (i). The role of
community or modular structures [see assumption (ii)]
on percolation requires a different extension of analyti-
cal methods [11, 12]. As noted above, PA theories can
account for dynamical correlations more accurately than
MF theory, thereby improving on assumption (iii).

The MF assumptions enumerated above are clearly vi-
olated for real-world networks, which are often highly
clustered and modular [2, 13]. It is therefore rather
surprising that MF theory often provides a reasonably
good approximation to the actual dynamics on many
real-world networks. This fact has been noted by several
authors [1, 3, 14–16], but to our knowledge no compre-
hensive explanation for this phenomenon has ever been
developed. In studying this phenomenon, we focus on a
specific question of obvious practical interest: Given a
real-world network and a dynamical process running on
it, is it possible to predict whether or not MF theory will
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FIG. 1: (Color online) Order parameter for synchronization
in the Kuramoto phase oscillator model running on (a) the
Facebook Oklahoma network [17] and (b) the US power grid
network [19] as a function of the coupling K. The order pa-
rameter r2 is defined in Eq. (2). The MF theory of [20] is
given by Eq. (3).

provide a good approximation to the actual dynamics on
this network? In this paper, we test multiple well-studied
dynamical processes on 21 undirected, unweighted real-
world networks. We enumerate and summarize various
properties of the networks in Table I. These networks are
characterized by a range of values for several standard
network diagnostics, which is important for this study.
We show that MF theory typically works well provided
d, the mean degree of first neighbors of a random node,
is sufficiently large. In contrast, we demonstrate that the
mean degree z of the network is not necessarily a good
indicator of MF accuracy.

The remainder of this paper is organized as follows. In
Section II, we introduce the dynamical processes that we
consider and compare numerical results with MF theory
for sample real-world networks. In Section III, we discuss
the implications of our results and propose an explana-
tory hypothesis. In Section IV, we compare our results
with earlier work in this area. We conclude in Section V.

II. EXAMPLES

We begin by showing examples for which MF theory
gives accurate results for dynamics on real-world net-
works, contrasting with examples in which MF theory
performs poorly.

A. Kuramoto Phase Oscillator Model

In Fig. 1, we show the results of running the Kuramoto
phase oscillator model [21] on the Facebook Oklahoma
network [17] and on the US Power Grid network [19].
Each node corresponds to an oscillator with an intrinsic
frequency drawn from a unit-variance Gaussian distribu-

tion. The phase θj(t) of the oscillator at node j obeys
the differential equation

dθj

dt
= ωj + K

N∑

ℓ=1

Ajℓ sin (θℓ − θj) , (1)

where ωj is the intrinsic frequency of node j, N is the
number of nodes, and A is the adjacency matrix of the
network. The coupling to network neighbors is measured
by the parameter K, and global synchrony of the oscil-
lators is expected to emerge for sufficiently large K [22].
Synchrony is quantified using the order parameter [20]

r2 =

∣∣∣
∑N

j=1 kje
iθj

∣∣∣
∑N

j=1 kj

, (2)

where kj is the degree of node j and i =
√
−1. The

MF theory of Ref. [20] (see also [23]) yields the following
implicit equation for r2:

∞∑

k=0

k2pke−K2k2r2

2
/4

[
I0

(
K2k2r2

2

4

)
+ I1

(
K2k2r2

2

4

)]

=
2
√

2z√
πK

,

(3)

where In is the modified Bessel function of the first
kind, pk is the degree distribution of the network, and
z = 〈k〉 ≡

∑
kpk is the mean degree. The agreement

in Fig. 1 between theory and simulation is very good for
the Facebook network but very poor for the Power Grid.
(See Fig. 4 for additional examples.)

The results of Fig. 1 are perhaps explained in part by
noting that the mean degree z of the Facebook network is
102, whereas z

.
= 2.67 for the Power Grid (see Table I).

It is arguable that nodes with many neighbors will ex-
perience something closer to a “mean field” than nodes
with few neighbors. In particular, it is plausible that
low-z networks might be more prone to errors in MF due
to neglecting the effects of clustering, modularity, and
dynamical correlations. This is attractively simple, but
as we show below, this naive explanation does not fully
capture certain subtleties of this question.

B. SIS Epidemic Model

In Fig. 2, we compare simulations for the susceptible-
infected-susceptible (SIS) epidemic model [24–26] with
the corresponding predictions of a well-known MF theory
[29, 30]. In the MF theory, the fraction ik(t) of degree-k
nodes that are infected at time t is given by the solution
of the equation

dik
dt

= −ik + β(1 − ik)kΘk , (4)
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FIG. 2: (Color online) Fraction of infected nodes in the steady
state of the SIS process on the (a) AS Internet [27] and (b)
Electronic Circuit (s838) [28] networks as a function of the
spreading rate β. The MF theory is from Refs. [29, 30]. Ob-
serve that uncorrelated and correlated MF theories are indis-
tinguishable in panel (b).

where β is the spreading rate, the recovery rate has been
set to unity by choice of timescale, and

Θk =
∑

k′

P (k′|k)ik′ (5)

is the probability that any given neighbor of a degree-k
node is infected. In Eq. (5), P (k′|k) is the probability
that an edge originating at a degree-k node has a degree-
k′ node at its other end. Because degree-degree corre-
lations are included, this version of the theory is called
a correlated MF theory (cMF). A further simplification
of the theory is possible if one assumes that the network
is uncorrelated and is thus completely described by its
degree distribution pk. In this case, which is termed un-
correlated MF (uMF), P (k′|k) in Eq. (5) is replaced by
k′pk′/z and Θk becomes independent of k. In Fig. 2, we
show predictions of both correlated and uncorrelated MF
theories for the steady-state endemic infected fraction

I = lim
t→∞

∑

k

pkik(t)

for the AS Internet network [27] and for the Electronic
circuit (s838) network [28]. The MF theory is very accu-
rate for the former, but it performs poorly for the latter.
The result for the AS Internet network is particularly sur-
prising in light of the fact that the mean degree of this
network is only 4. The aforementioned naive argument
that MF theory is accurate for high-degree nodes thus
cannot account for the good performance of the theory
in this low-z case, where 96% of the nodes in the network
have degree 10 or less (see Table I).

C. Voter Model

As a third example, we consider the survival proba-
bility of disordered-state trajectories in the voter model
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FIG. 3: (Color online) Survival probability for voter-model
trajectories in the disordered state as a function of time on (a)
C. elegans neural network [19] and (b) a synthetic clustered
network generated as described briefly in the main text and
in detail in Ref. [8] with γ(3, 3) = 1. Both networks contain
approximately N = 300 nodes. The theory curves are from
Refs. [4, 31].

[32] and compare it with the (uncorrelated) MF theory
of Ref. [31]. (For rigorous results for the voter model,
see Refs. [3, 33] and references therein.) At time t = 0,
each node is randomly assigned to one of two voter
states. In each time step (of size dt = 1/N), a randomly-
chosen node is updated by copying the state of one of its
randomly-chosen neighbors. On finite networks, the dy-
namics eventually drive a connected component to com-
plete order, in which all the nodes are in the same state.
The survival probability Ps(t) is defined as the fraction of
realizations that remain in the disordered state at time
t. The red dashed curves in Fig. 3 gives the survival
probability predicted by the MF theory of Ref. [31]:

Ps(t) ∼
3

2
exp

(
−2
〈
k2
〉

z2

t

N

)
as t → ∞ , (6)

and the black solid curve gives the results of the pair
approximation (PA) theory of Ref. [4]:

Ps(t) ∼
3

2
exp

(
−2(z − 2)

〈
k2
〉

(z − 1)z2

t

N

)
as t → ∞ . (7)

In Fig. 3(a), we show results for the C. elegans neural
network [19] (z

.
= 14.46), for which MF theory is very

accurate. In Fig. 3(b), we show results for a synthetic
clustered network described in Ref. [8]: Every node in
the network has degree 3 and is part of a single 3-clique.
Using the notation of Ref. [8], this is called a γ(3, 3) = 1
network. It can alternatively be described in the nota-
tion of Ref. [6] as having p1,1 = 1, as every node is part
of one triangle and has one single edge other than those
belonging to the triangle. Clustering has a strong effect
in this (low-z) network; because of this clustering and dy-
namical correlations, MF theory is very inaccurate. We
can make the clustering negligibly small while keeping
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the degree distribution unchanged (at pk = δk,3) by ran-
domly rewiring the network to give a random 3-regular
graph. However, even after this rewiring, the match to
MF theory is poor because dynamical correlations are
still neglected. The recent PA theory for the voter model
[4] (see also [5]) accounts for the dynamical correlations
and hence gives a good match to the survival probability
on the rewired network but not on the clustered original
network.

III. WHY IS MEAN-FIELD THEORY

ACCURATE?

Briefly summarizing our observations thus far, we have
seen (i) situations in which high-z networks exhibit good
matches to MF theory, but also (ii) some examples in
which low-z networks also have accurate MF theories.
For clarity, we have discussed only a few examples in de-
tail, but these are representative of behavior observed for
different dynamical processes on a variety of real-world
networks. In Fig. 4, we show additional examples for
each of the three dynamical processes (the Kuramoto,
SIS, and voter models) for each of the 6 networks used
in Figs. 1–3.

A. Mean-Field Accuracy for the SIS Model

Clearly, the success of MF theories for dynamical sys-
tems on networks cannot be explained purely in terms of
the mean degree z of the underlying network. Figure 2(a)
in particular gives an example in which MF theory works
well on a low-z network. To understand this seemingly
surprising accuracy, we focus on the SIS model and con-
sider how the state of a node is updated as compared to
the assumptions of MF theory. Suppose the state of the
degree-k node B1 is being updated. In both the true dy-
namics and in MF theory, the updating process depends
on the state of the neighbors of B1. Let’s take node B2 as
a representative neighbor of B1 and suppose that B2 has
degree k′. Under MF assumption (iii), the state of node
B2 is considered to be independent of the state of node
B1. This is why Eq. (5) involves the term ik′ , which is the
probability that degree-k′ nodes are in the infected state,
without any conditioning on the state of their neighbor
B1 [70].

In reality, however, the states of nodes B1 and B2 ex-
hibit dynamical correlations. For example, during an epi-
demic, an infected node is more likely to have infected
neighbors than a susceptible node. Such dynamical cor-
relations can be included explicitly in pair-approximation
theories [51–53], and their neglect can be a major source
of error in MF theories. This suggests an important ques-
tion: Under what circumstances might the MF assump-
tion of dynamical independence (iii) still give accurate
results for the update of node B1? One can argue that
if the degree k′ of node B2 is sufficiently large, then the

state of node B2 is influenced by many of its neighbors
other than node B1, so the error in neglecting the particu-
lar dynamical correlation between B2 and B1 is relatively
small for the purpose of updating node B1. Conversely, if
the degree k′ of node B2 is small, then node B1 has a rel-
atively strong influence on the state of node B2, and ne-
glecting dynamical correlations between B2 and B1 when
updating B1 will yield large errors. Hence, we expect MF
theory to give reasonably accurate updates for node B1 if
its neighbors have sufficiently high degrees. Importantly,
this argument relies only on the degree k′ of the nearest-
neighbor nodes being high and gives no restriction on the
degree k of the updating node itself. (We remark that the
use of networks with nearest-neighbor nodes of high de-
gree has also been mentioned in studies of the Kuramoto
model on networks [22, 23].)

In short, we argue that MF theory gives relatively
small error for nodes with high-degree neighbors. More
specifically, MF theory is likely to be inaccurate if many
nodes do not have high-degree neighbors. This can hap-
pen, for example, if low-degree nodes are connected pref-
erentially to other low-degree nodes (a sort of “poor-
club phenomenon”, akin to the rich-club phenomenon
of high-degree nodes connecting preferentially to other
high-degree nodes [40]). This suggests a simple but ef-
fective predictor of MF accuracy: If the mean degree of
first-neighbors d =

∑
k pk

∑
k′ k′P (k′|k) is high, then MF

theory can be expected to be accurate. As we show be-
low, this rule of thumb works well for SIS dynamics on
all of the networks that we have considered.

In Fig. 5 we present results from numerical simulations
of SIS dynamics and consider the final, steady-state frac-
tion I of infected nodes (for each network we average over
an ensemble of more than several hundred realizations,
in each of which 5% of the nodes are randomly chosen
to be infected at t = 0). Because the quality of the MF
approximation is known to depend on the number of in-
fected nodes [54], we further compare errors for different
networks by choosing the spreading rate β in each sim-
ulation so that the MF steady-state value Itheory equals
0.5. Letting

ES =
Itheory − Inumerical

Itheory
(8)

be the relative error between the theoretical predictions
of correlated MF theory (4)–(5) and the numerical re-
sults, we color each network’s symbol in Fig. 5 by the
value of ES (see Table I for the error values). The re-
sults in Fig. 5 show clearly that situations with low d
and low z correspond to inaccurate cMF predictions [see
Figs. 1(b), 2(b), and 3(b)] and that the high-d situations
(some of which also have small z) all have accurate cMF
predictions, supporting our claim that the fidelity of MF
theory can be evaluated using d.

In Section IV, we describe an alternative measure for
predicting MF accuracy that uses inter-vertex distances
[50]. One can also construct other, more complicated
measures (e.g., by computing the size of the connected
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FIG. 4: (Color online) Results for dynamics of Figs. 1–3 for all 6 networks used in those figures. Curves and symbols are as
in Figs. 1–3. For the voter model, black squares show the numerical results obtained by rewiring networks in a manner that
conserves both degree distribution and degree-degree correlations [50].
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1 of Table I. The colors indicate the magnitude of the rel-
ative error ES, defined in Eq. (8), between cMF theory and
numerical simulations for SIS dynamics with Itheory = 0.5.

cluster of low-degree nodes); however, the mean first-
neighbor degree d is appealing because it is simple to
calculate and understand, and it retains considerable ex-
planatory power. We note that similarly accurate results
have been found for real-world networks using MF theory
for a discrete-time version of the SIS model [54, 55].

B. Isolating the effect of dynamical correlations

using synthetic networks

We have argued above that the observed accuracy of
MF theory on some real-world networks is due to their
high d values ameliorating the neglect of dynamical cor-
relations [i.e., MF assumption (iii)]. However, real-world
networks typically have high values for clustering coeffi-
cients and significant modular structures, so MF theory
for such networks violates assumptions (i) and (ii) as well
as assumption (iii). It might therefore be argued that the
high-d effect seen in Fig. 5 could be due to an improve-
ment in the validity of assumptions (i) and/or (ii), which
could in principle have a larger impact than the high-d
improvement of assumption (iii). We investigate this by
now considering SIS dynamics on synthetic random net-
works (with N = 104 nodes) in which the transitivity
and community structure are both negligible. Thus, MF
assumptions (i) and (ii) are both valid for these networks,
and the error in MF theory can be due only to violations
of assumption (iii).

The first family of synthetic networks we use is de-
scribed in Ref. [56]: Each node is either of low degree
k1 [with probability pk1

= k2/(k1 + k2)] or of high de-
gree k2 [with probability pk2

= k1/(k1 + k2)]. In order
to create a network with a prescribed degree-degree cor-
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FIG. 6: Error (diamonds) of cMF theory in predicting steady-
state infected fraction for SIS dynamics as a function of Pear-
son correlation coefficient r in the synthetic networks (de-
scribed in the text) with (k1, k2) = (3, 12). Also shown are
the errors for the class of degree-3 nodes (crosses) and for
the class of degree-12 nodes (triangles): these are calculated
similar to Eq. (8), using ik(∞) (from Eq. (4)) for Itheory, and
the average infected fraction of k-degree nodes in simulations
for Inumerical. The solid line gives the mean nearest-neighbor
degree d.

relation coefficient r, we connect the nodes of each type
preferentially to nodes of either the same or of oppo-
site type. We show in Fig. 6 how the aggregate error
ES (diamonds) depends on the correlation coefficient r
for a specific case with (k1, k2) = (3, 12). Note that the
mean degree z of these networks is fixed (z

.
= 4.8), but

the mean first-neighbor degree d decreases as r increases.
Figure 6 illustrates that the highest error for the MF the-
ory occurs when d is lowest. This is the fully assortative
(r = 1) case in which low-degree nodes link only to other
low-degree nodes, creating a low-k connected cluster in
which MF theory is inaccurate. At the other extreme, the
disassortative (r = −1) case has every low-degree node
linked only to high-degree nodes, with a consequent re-
duction in the error of MF theory (and a high value of
d). The trends of the errors in each degree class also sup-
port our argument: high-degree neighbors correspond to
lower MF error.

The second family of synthetic networks is composed of
networks with negligible degree-degree correlations, and
is generated using the configuration model [57]. In these
networks, d =

〈
k2
〉
/z, so the mean first-neighbor degree

increases with the second moment of the degree distribu-
tion if the mean degree z is fixed. For example, one can
construct networks with z = 5 with the degree probabil-
ities

p3 =
15

17
(1 − α), p5 = α, p20 =

2

17
(1 − α) , (9)

and pk = 0 for all other k. Such a network has a fraction
α of nodes with degree 5, and the remaining nodes have
degrees 3 and 20. The mean first-neighbor degree for
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such networks is d = 11 − 6α, so it decreases linearly
with α. By comparing numerical simulations for the SIS
model with MF theory (not shown), we find that the error
magnitude |ES | increases monotonically with α. It takes
the value 0.07 at α = 0 (with d = 11) and the value 0.16
at α = 1 (with d = 5). Similar to the correlated synthetic
networks of Fig. 6, the higher values of d thus correspond
to lower values of the error.

Because both families of synthetic random networks
obey MF assumptions (i) and (ii) by construction, we
conclude that the high-d effect that we have observed
can be due only to its impact on dynamical correlations
[i.e., assumption (iii)]. In real-world networks, d can pre-
sumably affect the validity of all three MF assumptions.
Further work is required to understand which assump-
tion(s) have the strongest impact on MF accuracy in such
situations.

C. Mean-Field Accuracy for Other Dynamical

Processes

The argument that we have given above for the useful-
ness of d as a measure of MF accuracy is specific to SIS
dynamics, where the quantity of interest is the (ensemble-
averaged) infected fraction of nodes. We now consider
error measures on the (z, d) plane for the other dynamics
studied here, the Kuramoto and voter models. For the
Kuramoto model, we define an error measure in terms of
the r2 order parameter from Eq. (2) as

EK =
r2 theory − r2 numerical

r2 theory
, (10)

which we evaluate at the value of K for which r2 theory =
0.6. Similarly, a measure of relative error for the voter
model is given by

EV =
log10 (Ps theory) − log10 (Ps numerical)

log10 (Ps theory)
, (11)

where Ps theory and Ps numerical are the survival proba-
bilities given by Eq. (6) and by numerical simulations,
respectively. We evaluate these quantities at the time
t that corresponds to a survival probability of one per-
cent (in MF theory): Ps theory(t) = 10−2. This definition
reflects the vertical difference between the dashed curve
and the symbols in Fig. 3 at a specific value of t.

We give the measured values for EV and EK for all
real-world networks in Table I, and Figures 7(a) and 7(b)
show how these values depend on the mean degree z and
mean first-neighbor degree d of the networks. The Ku-
ramoto model exhibits a similar pattern to SIS (compare
Fig. 7(a) to Fig. 5): high-d networks have lower errors
than low-d networks. However, the high-d effect does
not seem to impact the voter model [see Fig. 7(b)] in
the same way. We can understand this by contrasting
the predicted quantities for SIS and for the voter model.
For SIS, the error is low when MF theory accurately pre-
dicts the fraction I(t) of infected nodes. In the voter
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FIG. 7: (Color online) As in Fig. 5, except that color indicates
the magnitude of the relative error, which is determined by
comparing numerical simulation results to: (a) MF theory for
the Kuramoto order parameter r2 (with r2 theory = 0.6), from
Eq. (10); (b) MF theory for the voter model survival probabil-
ity Ps(t) at the time t (with Ps theory = 10−2) from Eq. (11);
and (c) PA theory for the voter model survival probability.
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model, the quantity corresponding to I(t) is the fraction
of nodes in one of the two voter states, which we denote
by IV (t). When initial states are randomly assigned, MF
theory predicts that IV (t) is conserved, which implies
that IV (t) = 1/2 for all t. Numerical simulations on real-
world networks also give IV (t) = 1/2, but only when one
averages over an ensemble of realizations. In any single
realization on a network of finite size, fluctuations eventu-
ally lead to the entire network becoming ordered—i.e., all
nodes eventually share the same opinion. (In half of the
realizations, this shared opinion is one voter state; in the
other half it is the other state.) It is this single-realization
ordering process that is measured by the survival proba-
bility Ps(t). In this respect, the voter model is different
from both the SIS and Kuramoto models, in which the
trajectory of a typical realization is qualitatively similar
to an ensemble-average of all trajectories.

In order to better capture quantities of higher-order
than IV (t), such as Ps(t), it is necessary to approximate
the dynamical correlations between nodes using, for ex-
ample, a pair-approximation method. In Fig. 7(c), we
show the magnitude of the PA error for the voter model;
we still measure the error using Eq. (11), but we use the
PA theory of Eq. (7) instead of the MF theory of Eq. (6).
Observe the improvement in accuracy over the MF theory
of Fig. 7(b), particularly for high-d networks. Similar to
MF for SIS (see Fig. 5) and for Kuramoto [see Fig. 7(a)],
only networks with both low z and low d have relative
errors that significantly exceed 5%.

IV. COMPARISON WITH AN ALTERNATIVE

MEASURE

Using numerous examples of real-world and synthetic
networks, we have illustrated that the mean degree of
first-neighbors d is a good indicator of the accuracy of
MF theories for a variety of dynamical processes on net-
works. One can also construct more complicated ac-
curacy measures, which may in general depend on the
dynamics under scrutiny. In Ref. [50], for example, we
examined (among other dynamics) the accuracy of the
bond percolation theory of [58] by comparing its pre-
dictions with numerical calculations of the sizes of the
largest connected component for several real-world net-
works. We showed that a good measure of the error is
given by the quantity

q =
ℓ − ℓ1

z
, (12)

where ℓ is the mean inter-vertex distance in the orig-
inal (clustered) network, ℓ1 is the corresponding mean
distance in a rewired version of the network (using a
rewiring process that preserves degree-degree correlations
but reduces clustering), and z is the mean degree. Not-
ing that the bond percolation theory of Ref. [58] is of
pair-approximation (PA) type, in contrast to the mean
field theories on which we focus in this paper, it is never-
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FIG. 8: (Color online) Location of real-world networks in the
(q, d) parameter plane, where q is the error measure (12),
which was shown in Ref. [50] to be correlated with the error
of PA theory for bond percolation. We use the same symbols
as in Fig. 5.

theless of interest to examine the relation between q and
the mean first-neighbor degree d that we have identified
in this paper as an indicator of MF theory accuracy for
several dynamical processes.

In the (q, d) parameter plane of Fig. 8, we show the
positions of those real-world networks from Fig. 5 which
were also examined in Ref. [50]. The expected relation-
ship between q and d is revealed: Networks with high d
have low q (and hence, according to Ref. [50], have low
error for bond percolation PA theory), while low d val-
ues correspond to high q and hence to large errors. Thus,
despite its simplicity, d performs well when compared to
other more involved measures. As noted above, there is
scope for further work on developing more complicated
diagnostics (such as q) for predicting MF accuracy for
various dynamics, but the use of the d value is appealing
because it is simple to calculate and aids in understand-
ing the underlying causes of MF inaccuracies.

V. CONCLUSIONS

In summary, we have shown that MF theory works best
for networks in which low-degree nodes (if present) are
connected to high-degree nodes (i.e., for networks that
are either disassortative by degree or have high mean de-
gree z). Remarkably, it is not necessary that the mean de-
gree of the network be large for MF theory to work well—
at least for ensemble-averaged quantities [see Figs. 5 and
7(a)]. In addition to the 21 real-world networks that we
have studied, we have presented evidence from synthetic
networks to support our hypothesis. We stress that our
error measures focus on behavior far from critical points;
the accuracy of MF for the calculation of phase tran-
sition points (such as the value of K for the onset of
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synchronization in the Kuramoto model [59, 60] or the
SIS epidemic threshold [3, 61, 62]) is a topic for future
work.

Based on our results for the voter model in Sec. III, we
expect that similar conclusions should hold for the ap-
plicability of pair-approximation theories (such as those
in refs. [5, 52]) for dynamics on real-world networks. Al-
though PA theories account for the dynamical correla-
tions that plague MF theories, they remain vulnerable
to the effects of network clustering and modularity when
d is low. For example, Fig. 3(b) gives an example in
which PA theory works well only on the rewired (and
hence unclustered) version of a (low-d) network. This
suggests that PA theory (like MF theory) is most accu-
rate for real-world networks with either high mean degree
or high mean first-neighbor degree.
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035101(R) (2010).
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[60] J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys.

Rev. E, 75, 066106 (2007).
[61] C. Castellano and R. Pastor-Satorras, Phys. Rev. Lett.,

105, 218701 (2010).
[62] R. Parshani, S. Carmi, and S. Havlin, Phys. Rev. Lett.,

104, 258701 (2010).
[63] R. Alberich, et al., arXiv:cond-mat/0202174 (2002).
[64] J. C. Johnson and L. Krempel, J. Soc. Str. 5, 1 (2004).
[65] K. Norlen, et al., Proceedings of International Telecom-

munications Society 14th Biennial Conference (ITS2002)
(2002).

[66] L. A. Adamic and N. Glance, LinkKDD ’05: Proceedings
of the 3rd international workshop on link discovery, 36
(2005).

[67] R. Milo, et al., Science 298, 824 (2002).
[68] S. Mangan and U. Alon, Proc. Nat. Acad. Sci. U.S.A.

100, 11980 (2003).
[69] One should not think of PA theories as theories that only

add information about degree-degree correlations. Each
particular PA or MF theory can either neglect degree-
degree correlations (or other structural correlations, that
specify connections between nodes), or take them into
account. The difference is that MF theories are derived
under assumption (iii) of the absence of dynamical corre-
lations while PA theories take the dynamical correlations
into consideration.

[70] Assumption (i) also appears in Eq. (5) through the sum-
mation of ik′ . This supposes that the neighbors’ states
are independent of each other—i.e., that pairs of neigh-
bors do not form part of a triangle with node B1.



1
1

# Network N z d frac(k ≤ 10) C C̃ r EK ES EV EPA
V Ref(s)

1 Word adjacency: Spanish 11558 7.45 942.58 0.91 0.38 0.02 −0.2819 −0.03 0.01 0.21 0.04 [28]

2 Word adjacency: English 7377 11.98 666.03 0.81 0.41 0.04 −0.2366 −0.03 0.01 0.12 0.03 [28]

3 AS Internet 28311 4.00 473.65 0.96 0.21 0.01 −0.2000 0.08 0.03 0.44 0.08 [27]

4 Word adjacency: French 8308 5.74 376.22 0.93 0.21 0.01 −0.2330 −0.02 0.03 0.23 0.003 [28]

5 Marvel comics 6449 52.17 338.16 0.25 0.78 0.19 −0.1647 −0.03 0.02 0.03 0.008 [63]

6 Reuters 9/11 news 13308 22.25 236.17 0.70 0.37 0.11 −0.1090 −0.01 0.01 0.04 -0.009 [64]

7 Word adjacency: Japanese 2698 5.93 199.99 0.92 0.22 0.03 −0.2590 −0.02 0.02 0.24 0.01 [28]

8 Facebook Oklahoma 17420 102.47 186.04 0.11 0.23 0.16 0.0737 0.03 0.01 0.02 0.01 [17, 18]

9 Corporate ownership (EVA) 4475 2.08 113.85 0.98 0.01 0.00 −0.1851 0.80 0.06 1.00 0.65 [65]

10 Political blogs 1222 27.36 100.07 0.45 0.32 0.23 −0.2213 0.04 0.01 0.05 0.009 [66]

11 Facebook Caltech 762 43.70 74.65 0.20 0.41 0.29 −0.0662 0.004 0.01 0.04 0.009 [17, 18]

12 Airports500 500 11.92 59.50 0.76 0.62 0.35 −0.2679 −0.002 0.06 0.29 0.19 [35, 36]

13 C. Elegans Metabolic 453 8.94 51.57 0.86 0.65 0.12 −0.2258 0.03 0.04 0.18 0.04 [37, 38]

14 Interacting Proteins 4713 6.30 32.92 0.84 0.09 0.06 −0.1360 0.14 0.04 0.19 -0.03 [39–41]

15 C. Elegans Neural 297 14.46 32.00 0.41 0.29 0.18 −0.1632 0.10 0.03 0.09 0.006 [19, 42]

16 Transcription yeast 662 3.21 22.31 0.95 0.05 0.02 −0.4098 0.64 0.08 0.70 0.36 [67]

17 Coauthorships 39577 8.88 20.17 0.77 0.65 0.25 0.1863 0.22 0.08 0.14 0.01 [43, 44]

18 Transcription E. coli 328 2.78 17.88 0.96 0.11 0.02 −0.2648 0.48 0.09 0.79 0.43 [68]

19 PGP Network 10680 4.55 13.46 0.90 0.27 0.38 0.2382 0.50 0.16 0.45 0.17 [45–47]

20 Electronic Circuit (s838) 512 3.20 4.01 1.00 0.05 0.05 −0.0300 0.78 0.23 0.62 0.23 [28]

21 Power Grid 4941 2.67 3.97 0.99 0.08 0.10 0.0035 0.93 0.29 0.90 0.65 [19, 48]

22 γ-theory [γ(3, 3) = 1] 1002 3 3 1.00 1/3 1/3 N/A 0.91 0.89 0.78 0.47 [8]

23 γ-theory [γ(3, 3) = 1] 10002 3 3 1.00 1/3 1/3 N/A 0.97 0.88 0.79 0.49 [8]

TABLE I: Basic diagnostics and error measures for the networks used in this paper. All real-world data have been treated in the form of undirected, unweighted
networks. We only consider the largest connected component of each network, for which we enumerate the following properties: total number of nodes N ; mean degree

z; mean first-neighbor degree d; fraction of nodes of degree 10 or less; clustering coefficients C and C̃ (defined, respectively, in Eqs. (3.6) and (3.4) of Ref. [49]); and
Pearson degree correlation coefficient r. The quantities ES, EK and EV are the relative MF errors for the SIS, Kuramoto, and voter models, EPA

V is the relative PA
error for the voter model. The last column gives the citation for the network in this paper’s bibliography and/or the URL of a data file.


