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Abstract

Adaptive network models, in which node states and network topology co-

evolve, arise naturally in models of social dynamics that incorporate ho-

mophily and social influence. Homophily relates the similarity between pairs

of nodes’ states to their network coupling strength, whilst social influence

causes coupled nodes’ states to convergence. In this paper we propose a de-

terministic adaptive network model of attitude formation in social groups

that includes these effects, and in which the attitudinal dynamics are repre-

sented by an activator-inhibitor process. We illustrate that consensus, cor-

responding to all nodes adopting the same attitudinal state and being fully

connected, may destabilise via Turing instability, giving rise to aperiodic

dynamics with sensitive dependence on initial conditions. These aperiodic

dynamics correspond to the formation and dissolution of sub-groups that

adopt contrasting attitudes. We discuss our findings in the context of cul-

tural polarisation phenomena.
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1. Introduction

In an adaptive network, the evolution of the states of nodes in the network

coevolve with the network topology [1]. Adaptive network models have been

proposed to describe a range of phenomena, including synchronisation [2,

3, 4], epidemics [5, 6], cooperation [7, 8, 9] and opinion dynamics [10, 11,

12, 13, 14, 15, 16]. See Gross and Blasius [1] for a review. As with most

complex systems, the usual paradigm is to describe the model dynamics via

a stochastic process. In this paper we take an alternative approach, using an

adaptive network described by a deterministic continuous-time dynamical

system, which we use as a model for attitude formation in social groups.

Earlier studies of deterministic adaptive network models have focussed on

synchronisation in systems of coupled oscillators [17, 18], although discrete-

time models of opinion dynamics have also been proposed [19, 20]. Part of

our goal is to illustrate how techniques from nonlinear dynamics may be used

to study adaptive networks in a way that compliments the typical statistical

physics approach [21].

In this paper we consider a model of attitude formation in social groups,

where the attitude of each node, or agent, in the system is described by a

vector of states and the interaction patterns between agents are governed by

an evolving weighted network. Our model incorporates two key behavioural

mechanisms:
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1. Social influence. This reflects the fact that people tend to modify

their behaviour and attitudes in response to the opinions of others

[22, 23, 24, 25, 26]. We model social influence via diffusion: agents

adjust their state according to a weighted sum (dictated by the evolving

network) of the differences between their state and the states of their

neighbours.

2. Homophily. This relates the similarity of individuals’ states to their

frequency and strength of interaction [27]. Thus in our model, ho-

mophily drives the evolution of the weighted ‘social’ network.

A precise formulation of our model is given in Section 2. Social influence and

homophily underpin models of social dynamics [21], which cover a wide range

of sociological phenomena, including the diffusion of innovations [28, 29, 30,

31, 32], complex contagions [33, 34, 35, 36], collective action [37, 38, 39],

opinion dynamics [19, 20, 40, 10, 11, 13, 15, 41, 16], the emergence of social

norms [42, 43, 44], group stability [45], social differentiation [46] and, of

particular relevance here, cultural dissemination [47, 12, 48].

Combining the effects of social influence and homophily naturally gives

rise to an adaptive network, since social influence causes the states of agents

that are strongly connected to become more similar, while homophily strength-

ens connections between agents whose states are already similar1. It is sur-

prising then that the feedback between homophily and social influence does

not necessarily lead to consensus or ‘monoculture’ [47], where all nodes have

1Note, however, that differentiating between the effects of homophily and social influ-

ence in observational settings may be very difficult [49, 50].
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identical states and are fully connected. Instead, cultural polarisation may

occur: equilibria in which groups of nodes have identical states, but several

different groups exist. Typically, cultural polarisation arises from the cre-

ation of ‘structural holes’ [51], which at its extreme leads to fragmentation

of the network [15, 16]. However, cultural polarisation is not necessarily sta-

ble when there is ‘cultural drift’, i.e. small, random perturbations or noise,

which drive the system towards monoculture [52]. Since diversity and even

polarisation of opinions are observed in society [47, 48], there have been a

number of attempts to develop models with polarised states that are stable

in the presence cultural drift [12, 48], but this is still an open problem [21].

In this paper, we investigate whether a general class of activator-inhibitor

processes on an adaptive network can give rise to polarisation of attitudes.

While the resulting dynamics illustrate that such systems are interesting in

their own right, they are also perhaps a natural choice in the context of sub-

conscious attitude formation. Neuropsychological evidence suggests that the

activation of emotional responses and the regulation of inhibitions are as-

sociated with different parts of the brain [53]. This has led psychologists

to develop theories in which various personality traits (such as extroversion,

impulsivity, neuroticism and anxiety) form an independent set of dimen-

sions along which different types of behaviour may be excited or regulated

[54, 55, 56]. There is also substantial evidence that such automated and sub-

conscious processes play an important role in evaluations and judgements

[57]. Thus while it may be extremely difficult to perform empirical measure-

ments on which models of sub-conscious attitude formation may be based,

such processes almost certainly influence what we perceive to be conscious
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decision making.

One of the benefits of our dynamical systems formulation is that we are

able to analyse the stability of the consensus equilibrium, and in Section 2

we show that Turing instability can arise. Furthermore, in Section 3 we illus-

trate, via numerical simulations, that the tension between Turing instability

and the coevolution of the social network and attitudinal states gives rise to

aperiodic dynamics that have a sensitive dependence on initial conditions.

These dynamics correspond to the formation and dissolution of sub-groups

that adopt distinct, non-equilibrium, attitudinal states. In Section 4 we dis-

cuss the transient patterns we observe in the context of cultural polarisation

observed in other models.

2. A deterministic model of attitude formation

In this section we give a precise description of our adaptive network model

of sub-conscious attitude formation in social groups. This model consists

of two sets of coupled ordinary differential equations, one to describe the

dynamics of agents’ attitudinal states and the other to describe the evolution

of the coupling strengths between nodes.

Consider a population of N identical individuals (nodes/agents/actors),

each described by a set of M real attitude state variables that are continuous

functions of time t. Let xi(t) ∈ R
M denote the ith individual’s attitudinal

state. In the absence of any influence or communication between agents we

assume that each individual’s state obeys an autonomous rate equation of

the form

ẋi = f(xi), i = 1, ..., N, (1)
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where f is a given smooth field over R
M , such that f(x∗) = 0 for some x∗.

Thus (1) has a uniform population equilibrium xi = x∗, for i = 1, ..., N ,

which we shall assume is locally asymptotically stable. As discussed in the

introduction, we shall more specifically assume that (1) is drawn from a class

of activator-inhibitor systems [58, 59, 60].

Now suppose that the individuals are connected up by a dynamically

evolving weighted network. Let A(t) denote the N × N weighted adjacency

matrix for this network at time t, with the ijth term, Aij(t), representing the

instantaneous weight (frequency and/or tie strength) of the mutual influence

between individual i and individual j at time t. Throughout we assert that

A(t) is symmetric, contains values bounded in [0,1] and has a zero diagonal

(no self influence). We extend (1) and adopt a first order model for the

coupled system:

ẋi = f(xi) + D

N
∑

j=1

(xj − xi) Aij(t), i = 1, ..., N. (2)

Here D is a real, diagonal and non-negative matrix containing the maximal

transmission coefficients (diffusion rates) for the corresponding attitudinal

variables between neighbours. Thus some of the attitude variables may be

more easily or readily transmitted, and are therefore influenced to a greater

extent by (while simultaneously being more influential to) those of neigh-

bours. Note that xi = x∗, for i = 1, ..., N , is also a uniform population

equilibrium of the augmented system.

Let X(t) denote the M × N matrix with ith column given by xi(t), and

F(X) be the M ×N matrix with ith column given by f(xi(t)). Then (2) may
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be written as

Ẋ = F(X) − DX∆. (3)

Here ∆(t) denotes the weighted graph Laplacian for A(t), given by ∆(t) =

diag(k(t)) − A(t), where k(t) ∈ R
N is a vector containing the degrees of the

vertices (ki(t) =
∑N

j=1 Aij(t)). Equation (3) has a rest point at X = X∗,

where the ith column of X∗ is given by x∗ for all i = 1, ..., N .

To close the system, consider the evolution equation for the ijth edge,

Aij(t), given by

Ȧij = αAij(1 − Aij)(ε − φ(|xi − xj |)). (4)

Here α > 0 is a rate parameter; ε > 0 is a homophily scale parameter; |·| is

an appropriate norm or semi-norm; and φ : R → R is a real function that

incorporates homophily effects. We assume that φ(|xi−xj |) ≥ 0 and that φ is

monotonically increasing with φ(0) = 0. Note that the sign of the differences

held in ε − φ(|xi − xj|) controls the growth or decay of the corresponding

coupling strengths. The matrix A(t) is symmetric, so in practice we need

only calculate the super-diagonal terms. The nonlinear “logistic growth”-

like term implies that the weights remain in [0,1], while we refer to the term

ε − φ(|xi − xj|) as the switch term.

2.1. Stability analysis

By construction, there are equilibria at X = X∗ with either A = 0 or

A = 1, where 1 denotes the adjacency matrix of the fully weighted connected

graph (with all off-diagonal elements equal to one and all diagonal elements

equal to zero). To understand their stability, let us assume that α → 0 so

that A(t) evolves very slowly. We may then consider the stability of the
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uniform population, X∗, under the fast dynamic (3) for any fixed network A.

Assuming that A is constant, writing X(t) = X∗ + X̃(t) and Linearising (3)

about X∗, we obtain

˙̃
X = df(x∗)X̃− DX̃∆. (5)

Here df(x∗) is an M × M matrix given by the linearisation of f(x) at x∗.

Letting (λi,wi) ∈ [0,∞)×R
N , i = 1, ..., N , be the eigen-pairs of ∆, then we

may decompose uniquely [61]:

X̃(t) =
N

∑

i=1

ui(t)w
T
i ,

where each ui(t) ∈ R
M . The stability analysis of (5) is now trivial since

decomposition yields

u̇i = (df(x∗) − Dλi)ui.

Thus the uniform equilibrium, X∗, is asymptotically stable if and only if

all N matrices, (df(x∗) − Dλi), are simultaneously stability matrices; and

conversely is unstable in the ith mode of the graph Laplacian if (df(x∗)−Dλi)

has an eigenvalue with positive real part.

Consider the spectrum of (df(x∗) − Dλ) as a function of λ. If λ is small

then this is dominated by the stability of the autonomous system, df(x∗),

which we assumed to be stable. If λ is large then this is again a stability ma-

trix, since D is positive definite. The situation, dependent on some collusion

between choices of D and df(x∗), where there is a window of instability for an

intermediate range of λ, is know as a Turing instability. Turing instabilities

occur in a number of mathematical applications and are tied to the use of

activator-inhibitor systems (in the state space equations, such as (1) here),

where inhibitions diffuse faster than activational variables.
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Now we can see the possible tension between homophily and Turing insta-

bility in the attitude dynamics when the timescale of the evolving network, α,

is comparable to the changes in agents’ states. There are two distinct types of

dynamical behaviour at work. In one case, ∆(t) has presently no eigenvalues

within the window of instability and each individual’s states xi(t) approach

the mutual equilibrium, x∗; consequently all switch terms become positive

and the edge weights all grow towards unity, i.e. the fully weighted clique.

In the alternative case, unstable eigen-modes cause the individual states to

diverge from x∗, and subsequently some of the corresponding switch terms

become negative, causing those edges to begin losing weight and hence par-

titioning the network.

The eigenvalues of the Laplacian for the fully weighed clique, A = 1, are

at zero (simple) and at N (with multiplicity N − 1). So the interesting case

is where the system parameters are such that λ = N lies within the window

of instability. Then the steady state (X, A) = (X∗, 1) is unstable and thus

state variable patterns will form, echoing the structure of (one or many of)

the corresponding eigen-mode(s). This Turing driven symmetry loss may

be exacerbated by the switch terms (depending upon the choice of ε being

small enough), and then each sub-network will remain relatively well intra-

connected, while becoming less well connected to the other sub-networks.

Once relatively isolated, individuals within each of these sub-networks may

evolve back towards the global equilibrium at x∗, providing that A(t) is such

that the eigenvalues of ∆ have by that time left the window of instability.

Within such a less weightily connected network, all states will approach x∗,

the switch terms will become positive, and then the whole qualitative cycle
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can begin again.

Thus we expect aperiodic or pseudo-cyclic emergence and diminution of

patterns, representing transient variations in attitudes in the form of dif-

ferent norms adopted by distinct sub-populations. As we shall see though,

the trajectory of any individual may be sensitive and therefore effectively

unpredictable, while the dynamics of the global behaviour is qualitatively

predictable.

In the next section we introduce a specific case of the more general setting

described here.

3. Examples

We wish to consider activator-inhibitor systems as candidates for the atti-

tudinal dynamics in (1) and hence (3). The simplest such system has M = 2,

with a single inhibitory variable, x(t), and a single activational variable, y(t).

Let xi(t) = (xi(t), yi(t))
T in (2), and consider the Schnackenberg dynamics

[58, 59, 60] defined by the field

f(xi) = (p − xiy
2
i , q − yi + xiy

2
i )

T , (6)

where p > q ≥ 0 are constants. The equations have the required equilibrium

point at

x∗ =

(

p

(p + q)2
, p + q

)T

, (7)

and in order that df be a stability matrix, we must have

p − q < (p + q)3.

We employ φij = (xi − xj)
2 as the homophily function and we must have

D = diag(D1, D2) in (3).
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When M = 2, the presence of Turing instability depends on the sign of the

determinant of (df(x∗)−Dλ), which is quadratic in λ. For the Scnackenberg

dynamics defined above, the roots of this quadratic are given by

λ± =
(p − q) − D2

D1

(p + q)3 ±

√

[

(p − q) − D2

D1

(p + q)3
]2

− 4D2

D1

(p + q)4

2D2(p + q)
> 0.

It is straightforward to show that if

D2

D1
<

3p + q − 2
√

2p(p + q)

(p + q)3
:= σc, (8)

then λ± are real positive roots and hence (df(x∗)−Dλ) is a stability matrix

if and only if λ lies outside of the interval (λ−, λ+), the window of instability.

Inside there is always one positive and one negative eigenvalue, and the

equilibrium X∗ is unstable for any fixed network A. Note that, as is well

known, it is the ratio of the diffusion constants that determines whether

there is a window of instability.

3.1. Group dynamics

Now we present simulations of the Schnackenberg dynamics with N = 10.

Parameter values are p = 1.25, q = 0.1, α = 104, ε = 10−6, D1 ≈ 0.571 and

D2 ≈ 0.037. The ratio of the diffusion constants is D2/D1 := σ = 0.9σc,

and to ensure that the window of instability is centred on the fully coupled

system we have

D1 =
(p − q) − σ(p + q)3

2σN(p + q)
. (9)

The initial coupling strengths were chosen uniformly at random between 0.1

and 0.5. The initial values of x and y were chosen at equally spaced intervals

on a circle of radius 10−3 centred on the uniform equilibrium.
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Aij
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Figure 1: Trajectories of δij := xi − xj and Aij for all (i, j) pairs for unstable parameters

integrated until t ≈ 440. Parameter values and initial conditions are described in the

main text. In the light grey shaded region, δij < ε and the direction of trajectories are

indicated with arrows. The grey horizontal line indicates the scaled stability threshold

(unstable above, stable below).

In Figure 1 we illustrate the trajectories of δij := xi − xj and the cor-

responding coupling strengths Aij up to t ≈ 440. The shaded region corre-

sponds to δij < ε, within which the Aij increase and outside of which they

decrease, indicated by the dark grey arrows. The horizontal grey line marks

the scaled instability threshold λ−/N , which is indicative of the boundary

of instability, above being unstable and below being stable. Because agents

are only weakly coupled initially, their attitudes move towards the steady

state x∗, which causes the differences δij to decrease. The switch terms sub-

sequently become positive and hence the coupling strengths increase, along

with the eigenvalues of the Laplacian λi. When one or more of the λi are

within the window of instability, some of the differences δij begin to diverge.

However, this eventually causes their switch terms to become negative, reduc-
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ing the corresponding coupling strengths and hence some of the λi. This then

affects the differences δij, which start to decrease, completing the qualitative

cycle. As the system evolves beyond t > 440, this quasi-cyclic behaviour

becomes increasingly erratic.

Although the long term behaviour of any given agent is unpredictable,

the behaviour of the mean coupling strength of the system fluctuates around

the instability boundary λ−/N . In Figure 2(a), we plot the time series of

the mean coupling strength, Ā(t) = 1
N(N−1)

∑

ij Aij, between t1 = 5 × 103

and t2 = 104. The dashed line indicates the instability boundary λ−/N ≈

0.6372, which is very close to the time-averaged mean coupling strength

〈A〉 = 1
t2−t1

∫ t2

t1
Ā(t)dt ≈ 0.6343. Also plotted in Figure 2 are snapshots of

the network at six sequential times. To improve the visualisation of the net-

work, the positions of nodes have been rotated by approximately 72◦, since

the differences in diffusion rates mean that the unrotated coordinates, (x, y),

become contracted in one direction. The shading of the nodes corresponds to

their average coupling strength and the shading of the edges correspond to

their weight. In panel (b) the network is strongly coupled and node states are

similar in the vertical direction, but less similar in the horizontal direction.

In panels (c–e), two nodes disassociate from the group in opposite directions,

which reduces the strength of their coupling to other nodes. In panel (f)

the disassociated nodes start to move back towards the main group. This

continues in panel (g), whilst two other nodes begin to disassociate from the

group. This sequence illustrates the general scenario: agents’ trajectories cy-

cle around the origin with the network repeatedly contracting and expanding

as agents become more and less similar in attitude respectively.
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Figure 2: Panel (a): mean coupling strength, Ā(t), time series. Panels (b)–(g): network

snapshots at sequential time intervals. Node positions are plotted in the rotated coordi-

nates (x′, y′), shading illustrates coupling strength for edges and mean coupling strength

for nodes. Details of the dynamics are described in the main text.
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Figure 3: One parameter bifurcation diagram. The bifurcation parameter D1 is plotted

on the horizontal axis and the time averaged mean coupling strength 〈A〉 is plotted on the

vertical axis. Black markers indicate corresponding values calculated from 50 realisations

at each value of D1. The black line corresponds to the median of the 50 realisations at

each value of D1. The dashed grey line indicates where A = 1. Shading indicates the

scaled window of instability. Details of parameter values are described in the main text.

In Figure 3 we plot a one-parameter bifurcation diagram, based an en-

semble of 2000 simulations whose initial conditions have been sampled at

random using the method described in the example above. We use D1 as

a bifurcation parameter whilst keeping the ratio D2/D1 = 0.9σc held fixed.

We simulate 50 realisations at 40 different values of D1, with all remaining

parameters held fixed at the values described above. We integrate each simu-

lation until t2 = 1.5×105 and then compute the time-averaged mean coupling

strength 〈A〉 from t1 = 1 × 104 to discount the effects of early transients. In

Figure 3, at each value of D1 we plot the value of 〈A〉 calculated for each

realisation, indicated by black markers. The solid black line is the median of

the 50 realisations at each value of D1. The grey shaded region indicates the
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scaled window of instability, bounded by λ+/N and λ−/N . Thus the A = 1

equilibrium is unstable over an intermediate range of the D1 values used.

Figure 3 illustrates that at low values of D1, all realisations equilibrate at

A = 1. When the A = 1 equilibrium is unstable, the value of 〈A〉 calculated

for all simulations follows the λ−/N boundary closely. Interestingly, for a

range of larger values of D1 where the A = 1 equilibrium is stable, none of

the realisations approach this equilibrium at large times. At larger values of

D1, all realisations once again reach the A = 1 equilibrium asymptotically.

Thus, we have shown that when the A = 1 equilibrium is unstable, the aver-

age behaviour described by 〈A〉 is well approximated by λ−/N and that this

is not specific to a given set of parameters or initial conditions. In addition,

for a range of values of D1 the aperiodic dynamics have a significant basin

of attraction, even when the A = 1 equilibrium is stable. We interpret this

as evidence for the existence of a chaotic attractor.

3.2. Dyad dynamics

To probe the mechanism driving the aperiodic dynamics illustrated in

Section 3.1, we consider a simpler dynamical setting consisting of just two

agents. This reduces the coupling strength evolution (4) to a single equation,

and hence five equations in total,

ẋ1 = p − x1y
2
1 − D1a(x1 − x2), (10)

ẋ2 = p − x2y
2
2 + D1a(x1 − x2), (11)

ẏ1 = q − y1 + x1y
2
1 − D2a(y1 − y2), (12)

ẏ2 = q − y2 + x2y
2
2 + D2a(y1 − y2), (13)

ȧ = αa(1 − a)
[

ε − (x1 − x2)
2
]

, (14)

16



where a(t) = A12(t) = A21(t) is the coupling strength.

In Figure 4, we plot the trajectories for each of the two agents (black

and grey lines) in (x, y) space, and in (x, y, a) space in the upper-right inset.

The parameter values are p = 1.25, q = 0.1, α = 104, ε = 10−6, D1 ≈ 2.857

and D2 ≈ 0.184. Again, the diffusion constants have the ratio D2/D1 =

0.9σc and the window of instability is centred on the fully coupled system

via (9). The initial conditions are chosen near to the uniform equilibrium

x∗ = (x∗, y∗)T , specifically x1(0) = x∗ + 1.5 × 10−4, x2(0) = x∗ − 1.5 × 10−4,

y1(0) = y∗ − 1 × 10−6, y2(0) = y∗ + 1 × 10−6; the initial coupling strength is

a(0) = 0.1. This system is numerically stiff—on each cycle, trajectories get

very close to the invariant manifolds x = x∗, a = 0 and a = 1—thus very low

error tolerances are necessary in order to accurately resolve the trajectories.

The mechanisms driving the near cyclic behaviour illustrated in Figure 4

are qualitatively similar to those described in Section 2.1, but the present case

is much simpler since the coupling constant, a, is a scalar. If we consider a

as a parameter in the attitudinal dynamics (10–13), then Turing instability

occurs as a pitchfork bifurcation at some a = a∗, where 0 < a∗ < 1 for our

choice of parameters. The equilibria at (x, a) = (x∗, 0) and (x∗, 1) are both

saddle-foci, where the unstable manifolds are respectively parallel to the a-

axis and entirely within the attitudinal state space, x. Near to the (x∗, 1)

equilibrium, a given trajectory tracks the unstable manifold of (x∗, 1) in one

of two opposing directions, the choice of which is sensitively dependent on

its earlier position when a ≈ a∗. The combination of this sensitivity together

with the spiral dynamics around the unstable manifold of (x∗, 0), leads to

an orbit switching sides unpredictably on each near-pass of (x∗, 1) (c.f. the
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Figure 4: Main: Trajectories of dyadic system in (x, y) space with unstable parameters.

Upper-right inset: Trajectories in (x, y, a) space. Lower-left inset: zoom of boxed region

in the main plot. Parameters described in the main text.
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top-right inset of Figure 4). The mechanism by which this chaotic behaviour

arises is rather involved and warrants its own study, which we address in an

article currently in preparation.

4. Summary and discussion

To summarise, we have proposed an adaptive network model to describe

the evolution of sub-conscious attitudes within social groups. Our model

incorporates social influence via diffusion and homophily via an evolving

weighted network of coupling strengths. In addition, we have investigated

whether node dynamics described by an activator-inhibitor process could give

rise to polarisation of attitudes. While we have argued that such processes

are natural in the context of sub-conscious attitude formation, the resulting

dynamics illustrate that pattern formation mechanisms on adaptive networks

prove to be interesting in their own right. While we do not observe stationary

polarised states, in certain parameter regimes we do see aperiodic temporal

patterns, corresponding to convergence and divergence of attitudinal states

and, respectively, strengthening and weakening of the coupling network.

Now we discuss our model in the context of other models of attitudinal

dynamics and ‘cultural’ (meaning any attribute subject to social influence)

polarisation [47, 12, 48]. Interest in such models largely stems from the

work of Axelrod [47], who demonstrated that local convergence could lead

to cultural polarisation. However, such states typically do not persist when

there is noise, representing cultural drift [52]2. This does not seem surprising,

since in the absence of noise, the mechanisms employed by such cultural

2Polarised states that occur when the network becomes disconnected [11, 13, 16] may
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dissemination models typically reduce diversity. However, an approach that

allows diversity to increase via xenophobia has been suggested by Flache

and Macy [48]. The effects of cultural drift have not been investigated in

this model but monoculture is still an absorbing state.

In the model presented in this paper, diversity can increase as a conse-

quence of Turing instability. Furthermore, we can identify regions in which

global monoculture is unstable. For a fixed network, where A does not evolve,

this instability arises from a pitchfork bifurcation, which gives rise to stable

‘Turing patterns’ [61], where nodes adopt either of two stable states. Nodes

in these two stable states must necessarily have connections between them

for (2) to be in equilibrium. When the network is allowed to evolve, as in

our model, such states can only be stable if the network evolution equations

also reach a non-trivial stable equilibrium, meaning that all switch terms

are zero. However, we have seen no evidence of this occurring in numerical

simulations. Thus in its present form, sub-group formation and polarisation

appear to be transient phenomena in our model. Extensions to our model,

e.g. including heterogeneous agent behaviour, could however result in stable

polarised equilibria.

Our model, based on a deterministic dynamical system, has allowed us

to use standard stability analysis techniques to analyse consensus equilibria

and map out parameter regimes that give rise to aperiodic dynamics. More-

over, dynamical regimes and bifurcation phenomena may also be investigated

using numerical continuation, which we will address in future work. But in-

also be unstable when edges are occasionally rewired at random.
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terestingly, even though our model is deterministic and at the system level

its dynamics are qualitatively predictable (sub-group formation and disso-

lution whose average behaviour centres on the boundary of instability3), it

still gives rise to dynamics that at the level of individual agent journeys are

chaotic and entirely unpredictable. While somewhat of a leap, this raises

an interesting question: are the mechanisms that govern our behaviour the

cause of its volatility? We believe that studying simple mathematical models,

such as ours, may provide valuable insights into collective human behaviour

as well as interesting mathematics.
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