
RESEARCH ARTICLE

Adsorption of Amorphous Silica
Nanoparticles onto Hydroxyapatite Surfaces
Differentially Alters Surfaces Properties and
Adhesion of Human Osteoblast Cells
Priya Kalia1¤*, Roger A. Brooks1, Stephen D. Kinrade2, David J. Morgan3, Andrew
P. Brown4, Neil Rushton1, Ravin Jugdaohsingh5

1 Division of Trauma & Orthopaedic Surgery, University of Cambridge, Cambridge, United Kingdom,
2 Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada, 3 Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Cardiff, United Kingdom, 4 School of Chemical and
Process Engineering, University of Leeds, Leeds, United Kingdom, 5 MRCHuman Nutrition Research, Elsie
Widdowson Laboratory, Cambridge, Cambridge, United Kingdom

¤ Current address: Life Sciences Division, Instinctif Partners, London, United Kingdom
* priyakalia@gmail.com

Abstract
Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue

health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lat-

tice structure and was developed to improve attachment to bone and increase new bone for-

mation. Here we investigated the direct adsorption of silicate species onto an HA coated

surface as a cost effective method of incorporating silicon on to HA surfaces for improved

implant osseointegration, and determined changes in surface characteristics and osteoblast

cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dis-

persions of different concentrations (0–42 mM Si), at neutral pH for 12 h. Adsorbed Si was

confirmed by XPS analysis and quantified by ICP-OES analysis following release from the

HA surface. Changes in surface characteristics were determined by AFM and measurement

of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining.

Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica

dispersion and decreased progressively with higher silica concentrations, while no adsorp-

tion was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that

produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis,

revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diame-

ter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions.
29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar

in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter

were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a

HA-coated disc surface increased the surface’s water contact angle by 53°, whereas that

adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating

increased and decreased hydrophobicity, respectively. AFM showed an increase in surface
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roughness of the 6 mM Si treated surface, which correlated well with an increase in number

of vinculin plaques. These findings suggest that NSP of the right size (relative to charge)

adsorb readily to the HA surface, changing the surface characteristics and, thus, improving

osteoblast cell adhesion. This treatment provides a simple way to modify plasma-coated

HA surfaces that may enable improved osseointegration of bone implants.

Introduction
Silicon is reported to be an important micronutrient for bone and connective tissue health [1–
5]. In bone, Si is present at the growth front, where it is involved in early stages of bone calcifi-
cation/mineralisation [1]. In vitro studies have also demonstrated a (direct) stimulatory effect
of Si on bone-forming osteoblasts [6–8]. The beneficial effect of silicon on bone and on osteo-
blast cells led to the development of Si-substituted calcium phosphates as an improved bone
substitute material [9–14], with the first, phase-pure, Si-substituted hydroxyapatite (Si-HA)
reported by Gibson et al. in 1999. Indeed, in vivo studies have shown Si-HA to significantly
increase new bone formation, compared to unsubstituted hydroxyapatite (HA) [15, 16], while
in vitro studies have reported stimulatory effects of Si-HA on bone forming and bone resorbing
cells [16, 17]. Currently, porous Si-HA granules are available commercially for clinical applica-
tions (Actifuse™, Baxter, UK). The application of Si-HA has also been extended to metal
implants with the demonstration of Si-HA plasma-sprayed coatings [9].

Silicon substituted HA materials have silicate ions incorporated into the lattice structure
[18], and it is suggested that these materials function as a long-term Si delivery system, but
exactly how dissolved silica interacts with HA and cells to produce its documented osteogenic
effect is still poorly understood. There is evidence that the dissolved silica is re-adsorbed on to
the Si-HA surface [10] and may act as a nucleation site for new bone formation/bone attach-
ment, and some research groups are currently investigating methods of depositing layers of sil-
ica onto implant surfaces for enhanced bone attachment [11, 12]. We wished to investigate the
adsorption of silica species onto the surface of plasma-sprayed HA coating on a biocompatible
metal and its effect on cells for two reasons: (1) to provide insight into how silicon may interact
with cells after its release from SiHA and (2) to show that it could be a cost-effective method
for modifying the surface of HA-coated implants to improve their osseointegration. Here we
demonstrate the direct adsorption of silica on a plasma-sprayed HA coating, which may pro-
vide the benefits of silica without altering the lattice structure of HA. Changes to surface char-
acteristics (wettability and topography), dissolution and cell adhesion were investigated. This
study improves our knowledge of Si-calcium phosphate (bone) interactions with HA and may
provide an economical method of incorporating silicon to HA-coated surfaces.

Materials and Methods

Materials
Sodium silicate concentrate (7 M, pH 14), HCl and NaOH, were all obtained from Sigma-
Aldrich UK. High purity (HP) water (18 MO cm-2) was obtained from a MilliQ water purifica-
tion system (Millipore, UK). Polypropylene tubes (13 mL) were purchased from Sarstedt Ltd.
(Basingstoke, UK). McCoy’s 5A media was from Bioconcept (Allschwil, CH), and fetal bovine
serum (FBS) and penicillin/streptomycin/glutamine were from Invitrogen (Paisley, UK). Simu-
lated body fluid (SBF) was prepared according to Kukubo et al. [13]. For cell isolation and cul-
ture, see S1 Methods.
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Aqueous silica dispersions
Silica dispersions (0–42 mM Si) were prepared at room temperature by dilution of the sodium
silicate concentrate in HP water and then immediately neutralising to pH 7.3 using HCl and
NaOH (tested for low Si content). The dispersions were used within 12 h of preparation. To
enable 29Si NMR analysis (see below), 6 and 42 mM dispersions were similarly prepared from a
silicate concentrate which contained 1.5 M 29SiO2 (99.96 atom% 29Si; Isonics) and 1.5 M KOH
(99.99%, Sigma Aldrich).

Nuclear magnetic resonance spectroscopy (29Si-NMR)
Nuclear magnetic resonance spectroscopy of 29Si (29Si-NMR was used to analyse 6 and 42 mM
29Si-enriched silica dispersions. 6 h after each dispersion had been prepared, it was loaded into
a Si-free 10 mm O.D. Kel-F NMR tube and analysed (99.35 MHz) at 25°C on a Bruker
AMX500 spectrometer with a Si-free probe head, employing 5930 π/2 observe pulses and a 53 s
inter-pulse period (total acquisition = 87 h). ‘Snapshot’ spectra were recorded at the beginning,
middle and end of the longer acquisition to ensure that the species distribution of the disper-
sion had not significantly changed.

Molybdic acid assay
The dissolved Si fraction (“monomeric silica”) in the dispersions was assayed as described else-
where [19, 20], relying on the formation of a yellow coloured silicomolybdate complex that can
be detected spectrophotometrically at 410 nm.

Ultra-filtration
Silica dispersions containing 0, 6 or 42 mM Si were freshly prepared in triplicate. After 12 h,
aliquots were loaded into Vivaspin-6 centrifugal concentrators (Sartorius Stedim Biotech) con-
taining 10, 50, 100 or 1000 kDa MWCO polyethersulfone ultrafilter membranes, which have
nominal pore sizes (measured by EM) equal to 2.5, 4, 10 or 100 nm, respectively [14]. They
were then centrifuged at 3,800 RPM at room temperature for 10 min and analysed for total Si
concentration by ICP-OES (below).

Transmission Electron Microscopy (TEM)
Transmission electron microscopy was employed to image particles formed in silica disper-
sions. Ultrafiltered solutions were drop-cast as suspensions onto holey carbon support films on
copper grids (Agar Scientific Ltd.) and allowed to air dry before imaging on a FEI CM200 field
emission gun microscope. For elemental mapping of silica nanoparticle (NSP), energy-filtered
TEM (EF-TEM) Si L2,3 images were recorded with an 8.4 mrad objective aperture and a 10 eV
slit centred at 82, 92 and 119 eV energy loss. Measurement of particle sizes in both ultrafiltered
6 mM and 42 mM silica dispersions (n = 13) was carried out using ImageJ (National Institutes
of Health, USA).

Stainless steel (316L) discs
Stainless steel discs 1 mm in thickness and 10 mm in diameter were fabricated by Precision
Medical Engineering (Cambridge, UK) and HA coatings were plasma-sprayed with HA by
Plasma Biotal (Buxton, UK). Uncoated discs were prepared by removing the HA with 0.5 M
HCl. Discs were washed/sterilised in an ultrasonic bath with successive treatments of HP
water, 70% industrial methylated spirit (IMS) and 100% IMS.
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X-ray diffraction (XRD) of plasma-sprayed HA coatings
The crystallinity of the HA coatings was measured relative to the unsintered powder used for
spraying. After plasma-spraying, the coating was removed from the substrate, ground to less than
38 μm particle size (as determined by sieving), and then packed 10 mm x 20 mm x 1 mm thick
into a powder sample holder for x-ray diffraction analysis with a PANalytical X-ray diffractometer
(Cambridge, UK) and were compared to Joint Committee on Powder Diffraction Standard HA
(009–0432), tricalcium phosphate (009–0169) and calcium oxide phosphate (025–1137).

Silica-treated stainless steel discs
Silica-treated stainless steel discs (HA-coated and uncoated) were individually prepared by
soaking in 3 mL of a freshly prepared silica dispersion for 12 h at 25°C in 13 mL polypropylene
tubes, and were then dipped in three changes of HP water to remove non-adsorbed Si. The
amount of silica adsorbed on a disc was determined by soaking it in 3 mL 0.5 M NaOH for 24
h at 25°C and using ICP-OES (below) to analyse the resulting solution.

Inductively coupled plasma optical emission spectroscopy (ICP-OES)
Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to determine
the total Si content of aqueous silica dispersions and other solutions, following dilution 1:1
with 2.5% nitric acid. Analysis was carried out at 251.611 nm on a Jobin Yvon JY2000-2
ICP-OES spectrophotometer using 3 mL sample portions, 1 mL/min flow rate, 0.08 nM peak
profile window, 21 increments per profile, 0.5 s integration per increment, and appropriately
prepared matrix-matched standards.

X-ray photoelectron spectroscopy (XPS)
Surface concentrations of Si, calcium (Ca) and phosphorus (P) on silica treated discs were mea-
sured by X-ray photoelectron microscopy (XPS) using a Kratos Axis Ultra-DLD XPS spec-
trometer with 1486.6 eV monochromatic Al Kα radiation and 40 eV pass energy. Charge
correction was performed using the Kratos 'snorkel' lens system. Spectra were referenced to the
C(1s) line at 284.7 eV, and processed with CasaXPS software (v. 2.3.15, using sensitivity factors
supplied by the manufacturer) after correction for transmission function, angle and escape-
depth dependence.

Water contact angle
Water contact angle was measured for HA-coated discs using a KSV Instruments KSVCAM
200 optical contact angle camera (v. 4.0 software) and 0.1 mL water drop size.

Atomic force microscopy (AFM)
Atomic force microscopy (AFM) of HA-coated discs was carried out using a Veeco Multimode
AFM with a contact mode alumina tip. The treated surfaces were both hard and consolidated
enough to withstand the force exerted at the tip. Surface roughness was measured using a sili-
con nitride tip. All AFM image and surface roughness analysis was performed using WSxM
software [21].

Silica release in simulated body fluid
Silica treated HA-coated discs were washed, placed in 24-well culture plates, air-dried in a lam-
inar flow hood for 24 h and then incubated for periods ranging from 1 min to 168 h under
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standard cell culture conditions (37°C, 5% CO2) in either (a) simulated body fluid (SBF) at pH
7.25, (b) McCoy’s 5A medium supplemented with 10% FBS, 30 μg/mL L-ascorbic acid 2-phos-
phate and 1% penicillin/streptomycin/glutamine, or (c) the same cell culture medium
described in (b), but also with primary human osteoblasts (HOB) cultured on the surface (104

cells/disc, primary osteoblast isolation and culture are described in S1 Methods). SBF has an
ion content similar to that of human blood plasma [13], and was used here to mimic the imme-
diate environment around an implant post-implantation. Thereafter, the discs were removed
and the solutions analysed for total Si content by ICP-OES.

Vinculin plaque analysis
Human osteoblast (HOB) cells were seeded onto silica treated HA-coated discs (0, 6 or 42 mM
Si; n = 3) at a density of 104 cells / disc / well in 24-well TCP plates, and cultured in McCoy’s
medium, as above for 24 h or 48 h. Human osteoblasts were then stained for vinculin, a protein
associated with focal adhesion complexes [22], and were detected and visualised for quantifica-
tion by immunofluorescent staining. Briefly, cells were fixed in 4% fresh paraformaldehyde,
treated twice with permeabilisation buffer with a 10.3% sucrose solution containing 0.3%
NaCl, 0.6% MgCl2, 4.8% HEPES and 0.5% Triton-X at 4°C for 5 min, and blocked with 1%
bovine serum albumin (BSA)-PBS for 10 min at room temperature. Cells were then treated
with primary FITC-conjugated vinculin antibody (1:50 dilution 1% w/v BSA in PBS) for 2 h at
room temperature and washed three times with 0.05% Tween-20 in PBS. Cells were visualised
using a Leica DM RXA2 microscope and photographed in a 5 x 4 grid using a Q Imaging Retiga
EXi camera and Surveyor Workspace Viewer (version 5.5.5.37, Objective Imaging) at 20x mag-
nification. Four discs were used per silica treatment and the number of vinculin plaques in
each cell was counted in six randomly selected squares from the grid chosen using a web-based
algorithm[23]. Plaques were characterised in accordance with their morphology [19] and loca-
tion (nuclear, peripheral or cytoplasmic). The mean number of vinculin plaques per cell, for
each silica treatment, was used for statistical analysis. In addition the mean number of cells on
each surface over time (4 h to 14 days) was quantified using the CyQuant cell proliferation
assay (see S1 Methods).

Statistical analyses
Statistical analyses were performed in SPSS 17.0 for MSWindows. The Kruskal-Wallis test was
performed to compare more than two groups, with P� 0.05 being considered significant. Post-
hoc tests were then performed if differences were found (P� 0.05) using the MannWhitney U
test.

Results and Discussion

Plasma sprayed HA coating
XRD analysis of the plasma-sprayed HA coating suggested a limited glassy phase (Fig 1),
slightly lower than the primary powders that were used/plasma sprayed (data not shown). This
indicates that the process of plasma spraying, which utilises high temperature and rapid cool-
ing, resulted in the loss of HA crystallinity previously been reported by others [9, 24].

Characterisation of silica dispersions
Silica dispersions which had been freshly prepared to contain up to 42 mM Si were completely
transparent and showed no signs of precipitation. 29Si-NMR spectroscopy revealed that they
were each saturated in orthosilicic acid (H4SiO4) and disilicic acid (H6Si2O7), accounting for
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approximately 3 mM of the total Si content (Fig 2). The remainder existed as nanoscale silica
particles (NSP; Table 1). The NSP in each dispersion exhibited a similar extent of polymeriza-
tion, containing 82% fully-condensed SiO4 tetrahedra (Q

4) and 18% partially-condensed tetra-
hedra (Q2 and Q3). However, their average particle size increased with the Si concentration of
the dispersion. Since roughly 96% of the total Si content in a 6 mM dispersion could pass
through even a 10 kDa MWCO filter membrane (Fig 3A), 92% of the solid silica occurred as
NSP with diameters< 2.5 nm. This was confirmed by TEM image-based analysis of particle
size in the filtrate of the 6 mM dispersion, which revealed monodisperse spherical particles that
were ~ 1.5 nm (1.48 ± 0.22 nm) in diameter (Fig 3B). By contrast, few NSP (< 10%) in the 42
mM dispersion could pass through a 1000 kDa MWCO filter membrane, suggesting that the
majority of the NSP were on the order of 100 nm or larger in diameter. Again, TEM image-
based analysis of the filtrate revealed (i) low levels of NSP and (ii) NSP of ~ 20 nm (19.5 ± 3.61
nm) in diameter (Fig 3B), although it is not known how much the drying of the specimen for
TEMmight have affected the particle size. EF-TEM confirmed that these larger particles were
Si-rich (Fig 3B). The fact that particle size, but not extent of polymerization, increased with Si
concentration would suggest that the particles grow through aggregation of the primary ca. 1.5
nm particles detected in the 6 mM dispersion. This conclusion is supported by the observation
that variously concentrated silica dispersions exhibited nearly identical rates of particle dissolu-
tion at pH 7.2 following dilution to 1 mM, i.e., to below the silica saturation level (S1 Fig).

Adsorption of silica dispersion to HA-coated surface and changes in
surface characteristics
The amount of silica that was adsorbed onto stainless steel discs was determined by soaking
the treated discs in 5 M sodium hydroxide, and the Si released quantified by ICP-OES. In the
case of uncoated discs, negligible adsorption of Si was detected from any of the silica

Fig 1. XRD analysis showing phase purity of HA coating after plasma-spraying on to stainless steel
discs. In this sample, crystallinity of the HA was 99.6% following plasma-spraying. The brown line shows the
experimental XRD scan of the sample and the vertical blue lines indicate the match with Joint Committee on
Powder Diffraction Standards reference HA. Standard tricalcium phosphate (red) and calcium oxide
phosphate (green) are also shown.

doi:10.1371/journal.pone.0144780.g001
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dispersions (data not shown). HA-coated discs only took up Si from silica dispersions
containing> 4 mM Si (Fig 4A). HA-coated discs exhibited the greatest level of adsorption
when treated with a 6 mM silica dispersion, despite this being the least concentrated of all the
NSP-containing treatments that were tested (Fig 4B). As described above, this treatment con-
tained the smallest (ca. 1.5 nm) silica particles. As the silica concentration of the treatments
was increased up to 10 mM, the extent of adsorption decreased monotonically to about half
that observed for the 6 mM treatment. Further increases in silica concentration (up to 42 mM)
yielded no additional adsorption (Fig 4A). XPS measurements of the silica treated HA-coated
discs confirmed that the 6 mM treatment yielded the highest amount of silica adsorption

Fig 2. 29Si NMR spectra (99.35 MHz) at 25°C of a) 6 and b) 42 mM silica dispersions.Qn represents a Si
atom with n coordinated -OSi groups.

doi:10.1371/journal.pone.0144780.g002
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(Table 2). Although a range of silica concentrations were studied initially, the concentrations
which showed maximal and minimal adsorption to the HA surface was selected for further
investigation (6 mM and 42 mM Si).

Water contact angles were measured to determine differences between the surface wettabil-
ity of HA-coated discs treated with silica dispersions containing 0, 6 or 42 mM Si (Table 2).
The 42 mM silica treatment yielded a lower water contact angle than the 0 mM control treat-
ment (19 and 37°, respectively), implying that the treated surface was slightly more hydrophilic.
By contrast, and surprisingly, treatment with the 6 mM silica dispersion yielded a higher con-
tact angle (90°), suggesting a substantial decrease in hydrophilicity. AFM analysis of the 6 mM
silica treated HA surface suggested an increase in surface roughness (Fig 5C and 5D) com-
pared to the untreated surface (Fig 5A and 5B, Table 2).The 42 mM silica treatment also
yielded an increase in surface roughness, but less than the 6 mM silica treatment (Fig 5E and
5F).

Dissolution of the silica adsorbed from the HA coated surface
Next, the release (or solubility) of the adsorbed silica, from the silica-treated HA surfaces was
determined under circum-neutral pH and at 37°C in SBF (Fig 6A) and in primary human oste-
oblast cell culture medium (Fig 6B). Comparison with Fig 4 revealed that silica adsorbed from
the 6 mM dispersion was completely released in SBF by 12 h and in the osteoblast culture
medium by 24 h. Similarly, the comparatively small amount of silica that was adsorbed from
the 42 mM treatment was completely released between 4 and 8 h. Interestingly, when primary
human osteoblast cells were cultured on the silica-treated surfaces the proportion of Si released
into cell culture media, or potentially absorbed by cells, was drastically reduced (Fig 6C).

Cell adhesion on the silica adsorbed HA coated surface
Although at 24 h there were no significant differences in the number or distribution of vinculin
plaques between treatments (data not shown), at 48 h the differences were pronounced (Fig 7).
Examples of the different types of vinculin plaque morphologies are illustrated in S2 Fig The
42 mM Si treatment yielded significantly fewer plaques compared to the control treatment (P
<0.05; Fig 7A) and this was mainly due to a significant drop in the number of peripherally
located plaques (P< 0.05; Fig 7B). In contrast, with the 6 mM Si treatment, there was no sig-
nificant difference in the total number of plaques or distribution in plaque shape. However,
there was a change in the distribution of plaque location, with significantly more peripherally
located plaques compared to the control treatment (P< 0.05; Fig 7B). A preliminary cell pro-
liferation study using the CyQuant assay showed an increase in proliferation on the silica-
treated HA-surfaces with time until 7 days after cell seeding (S3 Fig).

In summary, we have demonstrated the adsorption of amorphous silica nanoparticles onto
plasma-sprayed HA-coated stainless steel surfaces. The lack of adsorption of silica species

Table 1. Distribution of silicon content in freshly prepared silica dispersions.a

Silica dispersion(mM Si) Si distribution (%) NSP composition b (%)

H4SiO4 H6Si2O7 NSP Q2 + Q3 Q4

6 47.0 ± 2.5 2.3 ± 1.7 50.7 ± 2.5 17 ± 3 83 ± 2

42 5.7 ± 0.3 0.38 ± 0.03 93.7 ± 1.4 18 ± 2 82 ± 1

a Determined by 29Si NMR spectroscopy.
b Qn represents a Si atom with n coordinated -OSi groups. NSP = nanoscale silica particles

doi:10.1371/journal.pone.0144780.t001

Adsorption of Amorphous Silica Nanoparticles onto HA Surfaces

PLOS ONE | DOI:10.1371/journal.pone.0144780 February 10, 2016 8 / 15



below 4 mM Si would suggest that negatively charged polymeric (colloidal) silica species have
higher affinity for the HA surface than neutral dissolved species at ca. pH 7 (Table 1 and Fig 2).
The divergent results obtained for the 6 and 42 mM silica treatments would further suggest
that smaller NSP may have a more optimal size to charge ratio for the plasma-sprayed HA

Fig 3. (A) Percentage of total silica in 6 and 42 mM silica dispersions that passed through 10, 50 100 and
1000 kDa MWCO (molecular weight cut-off) membranes. (B) TEM analysis of the filtrates. i) TEM of
amorphous nanoscale silica particles (NSP) in the filtrate of the 10 kDa MWCO filtered 6 mM silica dispersion;
ii) TEM showing larger (< 20 nm) NSP in the filtrate of the filtered 42 mM silica dispersion; iii) Bright field, zero
loss filtered TEM image of NSP in the filtrate of the filtered 42 mM dispersion and iv) EF-TEM Si L2,3
elemental map image of NSP shown in (iii). The bright regions indicate Si-rich areas.

doi:10.1371/journal.pone.0144780.g003
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surface. Adsorption of NSP altered the wettability of the HA surface, as well as surface rough-
ness and cell adhesion. Indeed, cells grown on the HA surfaces appear to prefer the rougher
and less hydrophilic surface of the 6 mM silica treated HA surface. Generally, cells prefer
hydrophilic surfaces [20, 25]. Interestingly, culture of osteoblast cells onto the Si-adsorbed sur-
faces reduced the dissolution of Si from the surface into the cell culture media. Whether this is
due to osteoblast attachment preventing silica release from HA surfaces, or attributable to the
uptake of silica into cells is not known and should be investigated in future studies by measur-
ing the Si content of cells. However, the increase in osteoblast cell adhesion on the 6 mM silica

Fig 4. Silicon adsorbed onto HA-coated stainless steel discs following incubation in silica
dispersions containing (A) 1 to 42 mM Si and (B) 6 to 12 mMSi. Data were corrected for adsorbed Si from
the control (0 mM Si) solution. Data are means ± SD of n = 4 discs per treatment.

doi:10.1371/journal.pone.0144780.g004
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Table 2. Surface characteristics of HA-coated stainless steel discs following nanoscale silica particle (NSP) treatment.

Silica dispersion(mM Si) Surface atomic ratioaSi: Ca: P Water contact angleb/deg Surface roughness c (nm)

0 0.31: 1.5: 1 37 ± 9 9.7 ± 0.5

6 11.3: 1.7: 1 90 ± 6 44 ± 1

42 1.9: 1.5: 1 19 ± 4 22 ± 2

a By XPS, in the first 10 nm; n = 2 discs per treatment.
b n = 3 discs per treatment.
c By AFM; n = 4 images per treatment.

doi:10.1371/journal.pone.0144780.t002

Fig 5. Representative images of atomic force microscopy (AFM) carried on out plasma-sprayed HA
surfaces following incubation in 0 (A, B), 6 (C, D) and 42mM (E, F) Si dispersions for 12 h and air-
dried. Actual roughness measurements are presented in Table 2.

doi:10.1371/journal.pone.0144780.g005
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treated HA surface would suggest that it has a more favourable surface than HA alone and may
benefit osteoblast cell growth and new bone formation.

Fig 6. Release of Si from silica-treated HA-coated stainless steel discs as a function of time: A) into SBF at
pH 7.2 and 25°C; B) into McCoy’s 5A supplemented medium at pH 7.4, 37°C and 5% CO2; and C) in McCoy’s
5A medium at pH 7.4, 37°C and 5%CO2 in the presence of primary human osteoblasts (inset shows an
increased y-scale). Data are means ± SD of n = 3 discs per time point, and were corrected for adsorbed Si
from the control (0 mM Si) solution.

doi:10.1371/journal.pone.0144780.g006
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Supporting Information
S1 Fig. Increase in the monomeric silica content (by molybdic acid assay) of several differ-
ent silica dispersions following dilution at pH 7.2 to 1 mM Si.
(DOCX)

S2 Fig. Examples of the different types of vinculin plaque morphologies. A) After 24 hours’
culture on glass coverslips, short linear plaques are indicated with white arrows and long linear

Fig 7. Number of vinculin plaques per human osteoblast cell after 48 h growth on HA-coated discs
treated with 0, 6 or 42 mM silica dispersion. Plaques were sorted A) by shape (long, short or punctuate)
and B) by cell location (peripheral, nuclear or cytoplasmic). Significant differences (P� 0.05) between silica
treatment and control (0 mM Si) are represented by an asterisk.

doi:10.1371/journal.pone.0144780.g007
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plaques with white asterisks (�). B) After 48 hours’ culture on HA surface (0 mM Si), short lin-
ear plaques are indicated with white arrows and punctate plaques with white asterisks (�).
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S3 Fig. Cell proliferation as measured by the CyQuant assay of primary human osteoblasts
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S1 Methods. Description of methods for primary human osteoblast (HOB) isolation and
culture, and the CyQuant cell proliferation assay.
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