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ABSTRACT

The Wright-Fisher model is an important model in evolutionary biology
and population genetics. It has been applied in numerous analyses of finite
populations with discrete generations. It is recognised that real populations
can behave, in some key aspects, as though their size that is not the census
size, N, but rather a smaller size, namely the effective population size, N.
However, in the Wright-Fisher model, there is no distinction between the
effective and census population sizes. Equivalently, we can say that in this
model, N, coincides with N. The Wright-Fisher model therefore lacks an im-
portant aspect of biological realism. Here, we present a method that allows
N, to be directly incorporated into the Wright-Fisher model. The modified
model involves matrices whose size is determined by N.. Thus apart from
increased biological realism, the modified model also has reduced computa-
tional complexity, particularly so when N, < N. For complex problems, it
may be hard or impossible to numerically analyse the most commonly-used
approximation of the Wright-Fisher model that incorporates N, namely the
diffusion approximation. An alternative approach is simulation. However,
the simulations need to be sufficiently detailed that they yield an effective
size that is different to the census size. Simulations may also be time con-
suming and have attendant statistical errors. The method presented in this
work may then be the only alternative to simulations, when N, differs from
N. We illustrate the straightforward application of the method to some
problems involving allele fixation and the determination of the equilibrium
site frequency spectrum. We then apply the method to the problem of fixa-
tion when three alleles are segregating in a population. This latter problem

is significantly more complex than a two allele problem and since the dif-



fusion equation cannot be numerically solved, the only other way N, can
be incorporated into the analysis is by simulation. We have achieved good
accuracy in all cases considered. In summary, the present work extends the
realism and tractability of an important model of evolutionary biology and

population genetics.
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1 Introduction

The Wright-Fisher model (WFM) was introduced to describe the random
genetic drift of the frequency of an allele in a finite population (Fisher 1922;
Wright 1931). The model applies for populations with discrete generations,
and can incorporate essentially deterministic evolutionary forces such as se-
lection, migration and recurrent mutation (Ewens 2004). The WFM remains
of current interest, with numerous applications in the recent literature in-
volving genomic data that, to mention just two, are its use in estimating
the effective population size (Hui and Burt 2015) and its use in tracking
selection (Thépot et al. 2015). While the WFM is an extremely important
model and has often been employed, it suffers from two drawbacks, which
detract from its usefulness, and which the present work goes some way to
resolve.

The first drawback is that the WFM explicitly depends on only one
population size, namely the number of adults present in the population. This
is a quantity we term the census size, and denote by N. Following Wright
and many subsequent authors, it is recognised that biological populations
can behave, in important aspects, as though their size is not the actual
number of adults, N, but rather a different, typically smaller value, N,
that is termed the effective population size (Wright, 1931). The effective
size usually arises from a population deviating, in one or more ways, from
being ‘ideal’, such as when individuals do not have a Poisson distributed
number of offspring, or related individuals interbreed, or when populations
show age, stage and spatial structures (Charlesworth 2009). A possible way

to account for a population behaving as if its size is N, appears to be to



simply replace N by N, in, for example, the WFM'. However, this does not
directly work, as we show below.

The second drawback of the WFM is that its mathematical descrip-
tion can involve large matrices which, in the simplest problems (such as a
single locus with two alleles), involve of the order of N? elements. More
complicated problems (e.g., one locus with > 2 alleles, or multiple loci, or
structured populations, or ...) can lead to matrices involving of the order
of N elements with o > 4 (Waxman 2009). Thus even for a modest pop-
ulation sizes, such as N = 1000, this can lead to substantial computational
issues.

In this work, we provide a method of incorporating the effective popula-
tion size, N, into the WFM. We demonstrate that the method works in a
variety of different circumstances, to the extent that we view the method as
a useful working principle. The method leads to N being replaced by N, in
the WFM, but in an appropriate and non trivial way, and, as we shall see,
this resolves the first drawback noted above. Furthermore, if N, is small
compared with N then replacement of N by N. goes some way to reducing
the computational complexity of calculations (with a considerable reduction
in computational complexity if No < N), and hence reducing the severity
of the second drawback.

The reason we cannot simply replace the census size of the population
by the effective size in the WFM is that there is a mismatch between the
discrete allele frequencies of a population of size N and the discrete allele

frequencies of a population of size N,. To see this consider a haploid popu-

" Throughout this work we assume the effective population size, N., takes an integral
value. If the effective size is estimated or caleulated in some way, then generally it will
not be an integer. In the work we present, we shall take N. to be given by the nearest
integer to the estimated/calculated value,
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lation, of census size N, in an initial state where a single adult carries a focal
allele. The initial frequency of the focal allele is, non-negotiably, 1/N. If
we simply replace the population size, N, by the effective size, N, then the
smallest non-zero frequency becomes 1/N,. The effective size is generally
smaller than the census size (N, < N) hence the value of 1/N, is generally
larger than the smallest non-zero frequency of the actual population (1/N),
possibly much larger. For example, if N = 1000 and N, = 100 then we have
1/N. = 1072 which is 10 times the value of 1/N = 1073, Thus, whatever
else that naive replacement of N by N, does, any result for an actual initial
frequency of 1/N, can, at best after the replacement, only be determined
by the smallest non-zero initial frequency of 1/N, with generally erroneous
results. This problem of mismatch of frequencies in populations of size N'
and N, is more general than just for the smallest non-zero frequency, and
holds for many other frequencies.

The frequency mismatch problem, just described, is evaded under a well-
known approximation of the WFM, namely the diffusion approximation
(Fisher 1922; Wright 1945; Kimura 1955). This is an approximation that
takes both the census size of the population, N, and the effective population
size, Ne, into account. The approximation involves a diffusion equation for
the distribution of an allele’s frequency (hence the approximation’s name),
and has two important features. The first feature is that N, takes the place
of N in the diffusion equation. This means the dynamics of the frequency is

treated as if the population had a census size of N, in accordance with the

general idea behind the effective population size. The diffusion approxima-
tion has a second feature that it treats an allele’s frequency as a continuous
quantity. This means that the initial frequency can be chosen to be any

value. Accordingly, when initially there is, e.g., a single copy of an allele in
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a population of census size N, the initial frequency can be chosen to be the
correct value, namely 1/N, irrespective of the value of N,. In practice the
above two features of the diffusion approximation generally work well to-
gether, to the extent that the diffusion approximation can determine many
properties to good accuracy even for relatively small populations (Ewens
1964).

There is, however, a drawback of the diffusion approximation. Except in
a rather small subset of problems that can be analytically solved, the diffu-
sion equation, which plays a central role in the approximation, has solutions
which can only be found numerically. While numerical procedures exist for
the case of one locus with two alleles (see e.g., Zhao et al. 2013) it appears to
be very difficult to extend these methods to more complex problems where
the dimensionality, associated with allele frequencies, is higher. Alternative
ways to proceed are simulations (which have to be sufficiently detailed that
they yield an effective population size that differs from the census size) or -
the innovation of the present work - a modification of the WFM. Simulations
may be time consuming and are subject to statistical errors, however, the
‘WFM, which is formulated in terms of matrices and vectors, is amenable to
a computational analysis (in principle, at least, even for complex problems
(see Waxman 2009)). In this work we present a modified WFM where the
effective population size, Ne, is directly incorporated into the WFM, with
advantages of both biological realism and computational efficiency.

We now state and explain what we view as a working principle that

allows incorporation of the effective population size into the WFM.
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2 Principle

The simplest statement of the principle amounts to saying that we should
treat the population as though it has a census (or actual) size of N when
the copy number of an allele is definitely known, e.g., when a mutation first
appears in a population, but in all subsequent generations, the dynamics
of the allele’s frequency behaves as if the actual population size were N..
The previous sentence is theoretically equivalent to saying that the popula-
tion size discontinuously changes from N, in the generation where the copy
number is definitely known, to the size N, in the next generation — and all

2. This viewpoint, of a discontinuous change of the

subsequent generations
population size from N to N, is also a possible interpretation of solutions
of the diffusion equation, where the frequency that is used at an initial time
is correct for a population of size N, but the subsequent dynamics of the
allele is treated as though the population has a census size of N.. As a con-
sequence, the principle we are proposing, to incorporate N, into the WFM,
is expected to hold to good accuracy in all of the circumstances where the
diffusion approximation holds to good accuracy.

We find it helpful to formally state the principle in the simple context
of a haploid population with a census size of N and an effective size of N,

as follows.

*1f the effective population size changes with time, we shall use the notation N.(t) to
represent the local (in time) effective population size. That is, N.(t) is a quantity deter-
mined from processes occurring in a only single generation (Ewens 2004). The quantity
N.(t) is the effective size appearing in the diffusion equation (Waxman 2012), since it is

1 with the i rate at which genetic drift increases the genetic vari-
ance between different replicate populations. Tn this work we shall not use averages of the
effective population size, such as the harmonic mean, which summarise properties of N, ()
over multiple generations, and which reflect information about N(t) that is non-local in
time.
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When a known number of n copies of an allele (or mutant) are
initially present in a given generation, then in that generation
the population size should be taken as the actual census size of
the population, N, so the allele’s frequency is n/N. However, in
all subsequent generations, the population size should be taken
as the effective population size, N.. For time dependent N and

N, this principle is straightforwardly extended®.

To provide some examples and comparisons that clearly illustrate the
working of this principle, we need to have an explicit example of a population
whose effective size differs from its census size. There are many different
origins of the effective population size, and we shall make use of a specific
population which has a well-defined effective population size. We term this
population the Test Population and introduce it next. We emphasise that
the primary interest of the Test Population is to test our results; it may or

may not be relevant to a real biological scenario of interest.

3 Test Population

‘We consider a population comprised of haploid individuals. These have a
single biallelic locus under selection and we label the two alleles A and B.
‘We assume a constant census size of N, and discrete generations which are

labelled by t = 0,1,2,.... When n adults carry the A allele, its frequency

¥ Assume both N and N, depend on time: N = N(t) and N, = N,(t). and the copy
number of an allele is definitely known in generation ¢ to be n. Then the appropriate
population size to use is N(t) and the initial frequency is n/N(t). The relevant effective
sizes that should be used in generations £+ 1, £ +2, .. are the local values appropriate to
these generations, i.e., Ne(t + 1), Ne(t+2), ... .




10 is n/N. We shall use X; to denote the frequency of the A allele in adults
191 in generation ¢, and the corresponding frequency of the B allele is 1 — X.

192 Changes in X; are assumed to be governed by the following lifecycle.

Generation ¢ adults
1 reproduction followed
by the death of adults
offspring
thinning
1

(number regulation)

Generation ¢t + 1 adults.
103 We neglect the occurrence of mutations and assume there are reproductive

10a differences of carriers of the different alleles, as given in Table 1, which was

15 motivated by the work of Gillespie (1974; 1975).

mean No. of offspring | variance in No. of offspring

carrier of the A allele fx(1+s) fio?
carrier of the B allele f f20?
1% Table 1 Title: Basic statistics of reproductive outputs
197 in the Test Population
198 Table 1 Caption: This table shows basic statistics of the
199 reproductive outputs of different allele-carriers in the Test Pop-
200 ulation. The quantity f represents a baseline fertility, while s
201 is the selection coefficient of an A allele relative to a B allele.
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Both alleles have the same variance in offspring number, which

2

is taken to be f2¢ where o2 is a constant.

‘We interpret the scheme in Table 1 as fertility selection (but see Gillespie
1975), where the A allele has a selective advantage of s relative to the B
allele.

The quantity f represents a baseline fertility. Its presence in both the
mean and the variance in Table 1 leads to a coefficient of variation (=
standard deviation/mean) of the number of offspring that is independent of
f and results in a simple form of the effective population size (see below).

‘Within the lifecycle, thinning of the population to N individuals is non-
selectively carried out according to sampling with replacement, i.e., ‘bino-
mial sampling’, as used in the standard WFM.*

The above specification of a population is, of course, incomplete; a com-
plete description includes the actual distribution of offspring numbers pro-
duced by an adult of the population. While there are many possible distri-
butions that could serve for this purpose, representing different biological
situations, the distribution of offspring numbers we choose is the negative
binomial distribution (see e.g., Johnson et al. 2005). This is a convenient
and not unreasonable choice. The negative binomial distribution has a vari-

ance that is generally larger than its mean, but has a Poisson distribution

IThe Test Population involves independent reproduction of each individual, followed
by population thinning that ensures the census size is N. Generally, all calculations for
the Test Population should be conditioned on the number of offspring equalling/exceeding
N, since it is possible that after reproduction, the total number of offspring is smaller than
N, and thinning cannot be carried out. For the parameters we later adopt in this work
for simulations, this conditioning is not required, because population non-replacement is
extremely improbable, and was never observed in the simulations.

11
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(which is often adopted for offspring numbers) as a limiting case. A nega-
tive binomial distribution is controlled by two parameters, and specification
of its mean and variance fully determine these parameters and hence the
distribution. This conveniently means there is no need to introduce addi-
tional parameters beyond those of Table 1. Additionally, there is evidence
in the literature that reproductive success in some species is reasonably
approximated by a negative binomial distribution (Grant and Grant 2000;
Anderson, Ward and Carlson 2011), and some studies have described models
where the lifecycle involves randomness associated with a negative binomial
distribution (Melbourne and Hastings 2008; Reiss 2013).

The above constitutes a complete description of the Test Population.

3.1 Properties of the Test Population

We note that as the parameter o2 approaches zero and f approaches infinity,
the Test Population can be described by a standard WFM where N, = N
and the A allele has a selective advantage of s over the B allele. However
generally, the Test Population cannot be described by a standard WFM.
Applying the analysis of Gillespie (1974; 1975), suggests that the Test Pop-
ulation is equivalent, under a diffusion approximation, to a population where
the selection coefficient of the A allele is replaced by an effective value that
may be frequency-dependent, and the census size of the population is re-
placed by an effective size that may also be frequency dependent. We shall
assume that: (i) the A allele’s selection coefficients is small, |s| < 1; (ii) the
population size is large, N > 1; (iii) the baseline fertility is large, f > 1;
(iv) the parameter o2 is much smaller than N, 0% < N. We will work in

the framework of the reproductive scheme in Table 1, combined with the

12
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thinning process of the Test Population. We then find the following (cf.
Gillespie 1974; 1975): (i) apart from small corrections of order so?/N, the
effective selection coefficient is frequency independent and has the value s
(see Table 1); (ii) apart from small corrections of order [f (1+ 02)]71. the
effective population size is also frequency independent and given by

7N+02
cT 1ro2

(O]

In general, the value of N, following from this equation is not an integer.
As stated in the Introduction, the N, that we shall use in calculations will
be the closest integer to the result in Eq. (1).

We can summarise the Test Population by saying it has a census size of N
and, emerging from individual reproduction and thinning of the population,
it has selection of strength s, and an effective population size given by Eq.

(1).
4 Applying the modified Wright-Fisher model to
the Test Population

4.1 Standard results of a Wright-Fisher model

‘We shall make use of some results of a standard WFM for a haploid pop-
ulation of finite census size N, with discrete generations, where individuals
have a single locus with two alleles, labelled A and B. The population is
assumed have an effective population size that coincides with the census

size. The behaviour of the distribution for this population can be written as
F(t+1) = WF(t) 2)

13
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where F(t) is a column vector with N 41 elements, corresponding to proba-
bilities of the different frequency states of a population of size N, and W is
square matrix of size (N+1)x (N+1) - the transition matrix - which contains
probabilities of transitions between frequency states of the population.

If the A allele has a small selective advantage of s over the B allele, and
there is no mutation and migration, then it is well known that the transition

matrix for the finite population is given by

o= () PN b0 (O)

where n and m take the values 0,1, ...,

a binomial coefficient,while I("(l) = n/N are the possible frequencies of an

V, the quantity (ﬁt) = m is

allele in a haploid population of size N and, with small corrections of order
2
52,

D(z) =z +sz(l —x) (4)

(see e.g., Ewens 2004).
In the calculations we shall present, it is useful to write the transition
matrix in a ‘block’ form (see e.g., Waxman 2011). For the transition matrix

of Eq. (3) we write

Woo Woa

- - 1 u 0

V1,0 1,1

W= . ) =0 wo (5)
0 v 1

Wn.N

where 0, is a column vector of length N — 1 where all elements are 0, while

u and v are row vectors of length N — 1, and w is square matrix of size

14
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(N —1) x (N —1). The elements of u and v are probabilities of transition
from states of the population where the A allele is segregating to states
where this allele is lost or fixed®. The elements of the matrix w are transition

probabilities between pairs of states where the A allele is segregating.

4.2 Modified Wright-Fisher model for the Test Population

The modified WEM of the present work, that incorporates Ne, can be di-
rectly applied to the Test Population. In doing so, we will make use of the
standard WFM results given in Eqs. (2) and (3), along with Eq. (4).

The modified WFM follows from assuming that in a given generation,
say generation 0, the population size is N and the distribution is known.
The method then assumes that incorporating the effective population size
into the dynamics is equivalent to the population size changing from N to
N, at the end of generation 0, and then remaining at the value N,.

For generation 0 we write the distribution of the A allele’s frequency as
F(0). This distribution describes a population of size N and is a column
vector with N + 1 elements, corresponding to probabilities of the different
frequency states of the population.

After generation 0 we describe the population by an effective distribution
that is appropriate to a population with N, individuals. We write the effec-
tive distribution for generation ¢ (with ¢ > 1) as F()(¢). This is a column

vector with N, + 1 elements. The behaviour of the effective distribution is

7 Let us point out the labelling convention we use for elements of matrices with a block
structure like that of W (Eq. (5)). The elements of the row vector u in Eq. (5) correspond
to u = (Wo,1, Wo.2, Wo, We shall also write this vector as u = (u1, uz, us, ..).
other words, for row vectors such as u (and v), their elements have labels that start at 1
and not 0. For such row vectors, we shall sometimes use the notation [u], to denote the
n'th element, i.e., to denote un, with n = 1,2, ... .

In

15



given by

FO(1) = WOF(0)
(6)
FO@t+1)=WOFQ@),  t=1,2,...

w2 Here W) is a rectangular transition matrix of size (N, + 1) x (N + 1) that
303 takes into account the genetic drift and selection of the Test Population
304 that occurs in going from generation 0 (where the population size is N),
305 to generation 1 (where the population size is treated as N,), while W(©) is
s0s an effective transition matrix of size (Ne + 1) x (N, + 1) that is defined in
s complete analogy to a standard WFM, but for a population of census size
38 Ne.

‘We write the possible allele frequencies in populations of size N and N,

as 2 and 27, respectively, with

20 =n/N withn =0,1,2,..,N
(7)
2 = n/N, with n = 0,1,2, ..., N..

300 The two transition matrices can be written in terms of the function D(z) of

s0 Eq. (4) as

()P -

16
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with m =0,1,..,Nc and n =0, 1

v () oG o

with m and n =0,1,.., Ne.

A ‘block’ form of the transition matrices W) and W of Egs. (8) and
(9) that is similar to that of a standard WFM (Eq. (5)), turns out to be

useful in the calculations that follow. These take the form

1 u® 0 1 u® o
WO = [ g0 w@ o0 |, WO=| g0 wo o0 |. (10)
0 vl 1 0 v 1

Here: 0© and 0(©) are column vectors of length N, — 1 with all elements 0;
u® and v(© are row vectors of length N, — 1; u® and v(©) are row vectors
of length N — 1; w(®) is a square matrix of size (N, — 1) x (N, — 1); w(® is

a rectangular matrix of size (N, — 1) x (N —1).

5 Illustrative examples involving the Test Popula-
tion

‘We now consider some illustrative examples involving the Test Population,
which we note is one possible way an effective population size, N, can
arise. We shall apply our modified WFM, that incorporates N, using Eq.
(1). We can then make the comparison with the diffusion approximation
(when results are available). As an independent test, we shall also carry out
simulations (which do not assume validity of the diffusion approximation),

and which are also based on the Test Population.

17
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5.1 Probabilities of fixation and loss

We use arguments, based on Eq. (6), that are very similar to those used in
the standard WFM to determine the probabilities of ultimate fixation and
loss of the A allele. These results involve ‘blocks’ from the matrices W (©)
and W(©) given in Eq. (10). The results are concisely expressed in terms of

a matrix G(©) defined by
G = (I(")—w(")) B (1)

where 1) is an identity matrix that is the same size as w(®).
‘We find that when n copies of the A allele are initially present in the

population (n = 1,2,.., N — 1), so the A allele is initially at a frequency of

n/N, the probabilities of fixation and loss of the A allele are
Pax(n) = [v(n) + v(”)G(“‘)w(O)] (12)
n

and

Pos(n) = [0® +uGOw)] (13)

n
(see Appendix A for details).

Note that when N, = N, and G(®) becomes G = (I — w)’l, Egs. (12)
and (13) reduce to Pig(n) = [vG], and Pig(n) = [uG], (cf. Waxman
2009).

In Figure 1 we illustrate how the results in Egs. (12) and (13), from the
modified WFM, compare with results from the diffusion approximation and

simulations.

18



A [— Modified Wright—Fisher
© Diffusion
*_Simulation

0z 04 06 08
initial frequency, N

(B) — Modified Wright—Tisher
© Diffusion
*_Simulation

02 0 06 08
initial frequency, /N

Figure 1 Caption: This figure gives results, from three
different calculational methods, for the probability of ultimate
fixation of the A allele as a function of initial frequency (Panel
A), and the probability of loss of the A allele as a function of
initial frequency (Panel B). The three methods are: (i) the mod-
ified Wright-Fisher model, which was introduced in this work,

(i) the diffusion approximation, (Kimura 1962) and (iii) simu-
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lation. The parameter values adopted were: census population
size, N = 500; selection coefficient of the A allele relative to the
B allele, s = 0.01; baseline fertility, f = 100; value of ¢ (related
to the variance in offspring number of an adult - see Table 1),
02 = 9. For the simulations we used 10° replicate populations.
The approximate value of the effective population size that fol-

lows from these parameters is N, = 51, see Eq. (1).

It is evident from Figure 1 that the results from all three methods of
calculation used (modified WFM, diffusion approximation and simulation)
are extremely close to each other, despite there being a very substantial
difference between the census size (N = 500) and the effective population

size (N, = 51).

5.2 Mean times to fixation and loss

The mean times to fixation or loss of the A allele are conditional on fixation
or loss of this allele ultimately occurring. When there are n copies of the A

allele initially present in the population in generation 0 (n = 1,2,..,N — 1),

so the A allele is at a frequency of n/N, we write these mean times as

E|[Tsx|n] and E[Tiess|n], respectively. We find

[v@) (GE)? wm)]
RS (14)
VO +vOGEwW0)]

n

E[Tix|n] =1+

and
[u(e) (GE)* w(c)}

B .
ElTiossin] =1+ [0 T OGO

(15)
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(see Appendix A for details).

Note that when I

= N Egs.

(14) and (15) reduce to E[Txx|n]

v [vG?], /[vG], and E[Ties|n] = [uG?] /[uG], (cf. Waxman 2009).

378

In Figure 2 we illustrate how the results in Eqs. (14) and (15), from the

modified WFM compare with results from the diffusion approximation and

simulations.

‘mean time to fixation, £

[— Modified Wright Tisher
© Diffusion
*_Simulation
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initial frequency, n/v

08

2
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© Diffusion
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5
initial frequency, N
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Figure 2 Caption: This figure gives results, from three dif-

ferent calculational methods, for the mean time to fixation of
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an A allele as a function of initial frequency (Panel A), and
the mean time to loss of an A allele as a function of initial
frequency (Panel B). The three methods are: (i) the modified
Wright-Fisher model, which was introduced in this work, (ii) the
diffusion approximation (Kimura and Ohta 1969) and (iii) sim-
ulation. The parameter values adopted were: census population
size, N = 500; selection coefficient of the A allele relative to the
B allele, s = 0.01; baseline fertility, f = 100; value of o2 (re-
lated to the variance in offspring number of an adult - see Table
1), 02 = 9. For the simulations, 10° replicate populations were
used. The approximate value of the effective population size that

follows from these parameters is N, = 51, see Eq. (1).

It is evident from Figure 2 that the results from all three methods of cal-
culation used (i.e., modified WFM, diffusion approximation, and simulation)
are close to each other, despite there being a very substantial difference be-

tween the census size (N = 500) and the effective population size (N, = 51).

5.3 Site frequency spectrum

‘We shall incorporate the effective population size into results for the site
frequency spectrum (SFS), assuming an effectively infinite number of inde-
pendent (unlinked) sites (see e.g., Evans, Shvets and Slatkin 2007). Muta-
tions are assumed to occur in adults at the beginning of a generation, and
once mutations have arisen, each site is described by the dynamics of a Test

Population, where no additional mutations occur.
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With p denoting the expected number of new mutations in an adult each
generation, and with 6 the scaled mutation rate, defined by 6§ = 2Np, the
expected number of mutations entering the adult population in a generation
is /2.

In the main text we only consider the equilibrium SFS, which we write
as a column vector M (dynamics of the SFS is considered in Appendix B).
The elements of 1\7[, written ]\71", withn =1,2,..., N —1, represent the mean
number of sites with mutants at a frequency of n/N. We only include those
sites in the SF'S where mutant alleles are segregating in the population, and
exclude contributions from sites where mutations have become lost or have
not occurred or have become fixed.

A consequence of the assumption of an effectively infinite number sites
is that each site can, at most, suffer only one mutation; double mutations
of a site happen with negligible probability.

The equilibrium SFS represents a steady state situation, where the single
copies of new mutations represent an input that balances mutations that are
removed by fixation and loss. From dynamical considerations, we can view
the value of ML, in any generation, as arising from two sources: (i) from sites
where new mutations originated in adults at the beginning of the genera-
tion, written as 1\71"3”, and (ii) from sites associated with mutations which
originated in the previous generation, or yet earlier generations, written as
NP, We thus have M = NI" 4 NP, The form of M is explicitly
known; it is a column vector where only the first element is non-zero and has
the value /2. Following the approach of the present work, we can obtain an
approximation for NPV, which, by assumption, corresponds to sites which

have evolved in a manner appropriate to a population size of N, for at least
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one generation.

5.3.1 Coarse grained equilibrium site frequency spectrum

The exact SFS is defined at the frequencies z%o) =n/N withn=1,2,..,N—
1. By contrast, the effective SF'S that we determine is defined at the fre-
quencies z(:) =n/N, with n =1,2,.., N, — 1. The z(:) represent a coarser
grid than the 17(10), with the spacing between adjacent sz) (i.e., 1/Ne) being
larger than the spacing between adjacent xﬁto) (i.e., 1/N). For example, if
N, = N/10 then for 10 adjacent frequencies where the exact SFS is defined
(the 17(10 ))7 there corresponds just one frequency where the effective SFS is
defined (a:if))

While the effective version of MP™", written as MP¢*¢, can be used to
approximate properties of the exact SFS, the values of NP and NIPreve
are not directly comparable. Each element of the effective result, Npreve
represents approximately N/N, elements of the exact result, NP, For the
example used above, where N, = N/10, each element of MP"eV¢ represents
approximately 10 elements of NIPrev, However, two quantities which are di-
rectly comparable are M and (N./N) x NIP™"¢. We therefore define the
‘coarse grained’ approximation of NIP'®" as NIP'U9 = (N, /N) x MPreve,
Thus NP9 is defined on a coarse frequency grid given by the z(; ) how-
ever, the magnitude of NP should be closely comparable with the exact
result, NP when both NIP™"¢9 and NIP'®" are evaluated at a common
(or near common) frequency.

In Appendix B we give details of the calculation leading to the coarse-

grained form for NP namely NIPT"9_ The result is
VIPrev:ed — &G(">w(0)i (16)
2
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where in this equation: 6. = N.0/N = 2N,u, while the matrices G© and
w(® appear in Egs. (10) and (11), and i is a column vector with N, — 1
elements, all of which are zero except the first, which is unity.

In Figure 3 we plot the equilibrium coarse grained SFS, NIP'eV:<9  at the
frequencies z(nﬁ) = n/N,, which is calculated from the modified WFM. We
also plot an estimate of the exact form for NIP? that is based on simulations

of the Test Population, with details of the simulations given in Appendix C.

10° o Modified Wright-Fisher result, N7reves
- — Simulation estimate of M»""
g
& i
g 810
R
52
,\:,v 210
52
g2
g &
2 107
2 y
.
10 0 0.2 0.4 06 0.8 1

frequency, x

Figure 3 Caption: This figure illustrates the equilibrium
SFS that arises from existing mutations, showing the coarse
grained result NP9 from Eq. (16) (blue dots), and an esti-
mate of MP"¢ from simulations (red line). The parameter values
adopted for the figure were: scaled mutation rate, §/2 = 1; cen-

sus population size, N = 500; selection coefficient of the A allele
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relative to the B allele, s = 0.01; baseline fertility, f = 100; value

of 02 (related to the variance in offspring number of an adult -
see Table 1), 02 = 9. The approximate value of the effective
population size that follows from these parameters is N, = 51,
see Eq. (1). Note that the equilibrium SFS is proportional to 6,
so for a different value of 0, the results in Figure 3 simply become
multiplied by 6/2. The simulation procedure used for this figure
was different to that used in Figures 1 and 2: see Appendix C

for details.

It is evident from Figure 3 that the coarse grained equilibrium SFS and
the simulation results are, where the SFS is appreciable, very close to each
other. This applies despite the very substantial difference between the census

size (N = 500) and the effective population size (N. = 51).

5.4 Application to the complex problem of three alleles

We shall apply the modified WFM to an extension of the Test Population to
three alleles and shall determine some results for the probability of fixation,
when N, # N. The diffusion equation (of the diffusion approximation) is
very hard or impossible to solve with more than two alleles. Thus prior to the
present work, the only viable approach that could incorporate a nontrivial
N, was simulations.

‘We assume the three alleles have different selection coefficients but iden-
tical variances in the number of offspring their carriers produce, as shown

in Table 2.
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mean No. of offspring | variance in No. of offspring
carrier of the A allele Fx(1+sa) f20?
carrier of the B allele fx(1+sp) fio?
carrier of the C' allele fx(1+0) f2o?

Table 2 Title: Basic statistics of reproductive outputs
in a population with three alleles

Table 2 Caption: This table shows basic statistics of the re-
productive outputs of different allele-carriers in the a population
with three alleles. This population is a direct generalisation of
the Test Population, to three alleles. The quantity f represents
a baseline fertility, while s4 and sp are, respectively, the selec-
tion coefficients of the A allele and the B allele, relative to the C'
allele, which has a vanishing selection coefficient (s¢ = 0). All
three alleles have the same variance in offspring number, which

is taken to be f202, where 02 is a constant.

Prior to giving any results, we note that apart from the modified WFM
incorporating the effective population size, Ne, (unlike the standard WFM),
the modified WFM for three alleles also has a lower complexity than the
standard WFM. The complexity of the modified WFM relative to that of
the standard WFM can be measured by the ratio of the number of elements

in the transition matrix of the two models. When there are o distinct alleles,
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the ratio of the number of elements in the transition matrix of the modified
WFM, compared to the number in the standard WEM, is (N,/N)2~1 (cf.
‘Waxman 2009). Thus when there are three alleles (¢ = 3) and the census
and effective population sizes are N = 100 and N, = 20, respectively, we
have a ratio of (N./N)* = 1/625 indicating a significantly reduced complex-
ity of the modified WEFMS.

For the three allele problem, random genetic drift, in the absence of mu-
tation and migration, is somewhat different to that of the two allele problem.
With three alleles, loss is not equivalent to fixation: if an allele is lost, the
frequency of the other two alleles can still change; the three allele prob-
lem simply degenerates into a two allele problem. Thus loss is generally
not associated with an absorbing state but fixation is. It follows that in a
three allele problem there are a total of three absorbing states, represent-
ing fixation of each of the three alleles. We shall compare results for the
probability of ultimate fixation, from the modified WFM and simulations.
The expression for the required probability, from the modified WFM, takes
a very similar form to that of Eq. (12), but the matrices that must be used
arise from the ‘higher-dimensional’ three allele problem (Waxman 2009).

Furthermore, the number n that appears in Eq. (12) must be replaced by

SThis reduced complexity indicates there is a qualitative reduction in computational
complexity of the modified WFM (as measured by number of elementary operations, or
mean time of running of a program). A quantitative measure of the reduced computa-
tional complexity of the modified WFM depends on the quantity calculated. Restricting
ourselves to quantities which just require matrix multiplication, the multiplication of two
matrices of size n has a running time which scales as n” with exponent 2 < b < 3. For
example, a fast multiplication algorithm leads to a running time which scales as n*%°7
(Strassen 1969) and more recent algorithms have yet smaller exponents. For the problem
with « alleles, the computational complexity of the modified WFM, relative to the stan-
dard WFM, is (Ne/N)"*~D) with 2 < b < 3. We generally conclude that the modified
WFM leads to a reduced computational complexity, and it may be substantial.
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527 an appropriate scalar index that corresponds to the initial numbers of all
s three alleles (Waxman 2009). In Figure 4 we illustrate results associated

529 with the probability of ultimate fixation of the A allele.

2 * Modified Wright-Fisher

2 x_Simulation
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initial copy numbers, ¢

530 Figure 4 Caption: We extended the Test Population to
531 three alleles that we have labelled A, B and C. The three alle-
532 les have different selection coefficients but the same variance in
533 the number of offspring. The figure illustrates the probability of
534 ultimate fixation of the A allele. For the figure, the census pop-
535 ulation size was N = 100, while other parameters, as described
536 in Table 2, have the values: baseline fertility, f = 100; value
537 of g2 for all three alleles, 0% = 4; selection coefficients of the
538 three alleles, s4 = 0.01, sg = —0.01 and s¢ = 0. The effective
539 population size that follows from Eq. (1), which was derived for
540 the Test Population but also applies for the three allele model, is
sa1 N, = 21. We have written the initial copy numbers of the three
542 alleles as (na,np,nc); six different sets of initial copy numbers
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of the three alleles were used in the figure.

It is evident from Figure 4 that for the parameter set and initial copy-
numbers adopted, the results following from the modified WFM are very
close to the simulation results. As a quantitative illustration of this, we
looked at the difference between the calculated and simulated values of the
six fixation probabilities plotted in Figure 4. The maximum difference was

found to be smaller than 2%.

6 Discussion

In this work we have presented a method of incorporating the effective pop-
ulation size into a Wright-Fisher model (WFM), but in a manner that also
contains information on the census size, which also plays a key role, and can-
not be ignored. We have called the resulting model a modified WEFM, and
have explicitly illustrated the method on ‘non-ideal’ haploid populations,
where the effective and census population sizes are very different. However,
as already pointed out, the closeness of the logic we employ, to that of the
diffusion approximation, suggests that in all situations where the diffusion
approximation works well, the modified WFM will also work well. Thus
the modified WFM should have broad applicability and apply, for example,
to diploid populations, as well as accommodating multiple alleles, multiple
loci, structured populations etc.

The modified WFM allows a more efficient capturing of numerical results

than e.g., solving the diffusion equation (which may be hard or impossible
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to carry out in complex problems). Importantly, we do not just gain com-
putational advantages over a standard WFM: the results obtained apply
under biologically more realistic assumptions. This is of particular interest
for species for which the effective population size, N, differs substantially
from the census size. Such a phenomenon is often observed in animal breed-
ing and conservation biology (Charlesworth, 2009). It may also occur in
species with complex eusocial behaviour, e.g. insects or rodents (Wilson
and Holldobler 2005; Jarvis 1981) and parasite related differences in sex ra-
tios (Dyson et al. 2002). Differences between N, and N are also observed
in plants species, where the mode of inheritance may differ even between
closely related species. Interestingly, selfing plant species (presumably with
low N.) show a larger geographic range distribution (presumably large N)
than their outcrossing counterparts (Grossenbacher et al. 2015). These
examples and numerous others illustrate the importance of incorporating
N and N in a biological meaningful framework, when studying important
ecological questions.

The human species provides an example of great interest where there
is a dramatic difference between effective and census sizes. However the
census size that is typically reported is not a local quantity, associated with
processes in a particular generation, but rather a harmonic mean, that re-
flects a severe population bottleneck that the population went through, and
from which the effective population size is now recovering (see e.g., Tenesa
et al. 2007). Additionally, the census population size continues to increase,
while the (local) effective size may exhibit a different rate of change, thus the
situation is complex and does not simply warrant the incorporation of an N,
into a WFM without additional considerations. However, for specific mod-

els/behaviours of the time-dependent local effective population size, N(t)),
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we can employ the methodology of the present work. This will involve
rectangular transition matrices. Suppose, in particular, that the effective
population size changes at generation tg, so that Ne(to 4+ 1) # Ne(to). The
relevant transition matrix, connecting generation to to generation to+1, will,
for a haploid population, have the size (Ne(to + 1) 4+ 1) x (Ne(to) + 1) (Eq.
(8) is an example of a rectangular transition matrix). If there are no further
changes in the effective population size, then all transition matrices after
generation to+1 will be square and of size (N (to + 1) 4+ 1)x (Ne(to + 1) 4 1).
If there is a pattern of effective population size changes, with discrete changes
occurring at generations t, t1, t2, ..., then appropriate rectangular transition
matrices need to be introduced into the dynamics at these times.

An interesting application of the method of this work is to the site fre-
quency spectrum (SFS). This quantity can be used to obtain information
about the selective effects of mutations segregating in a population (Keight-
ley and Eyre-Walker 2007; Schneider et al. 2011). Even though some meth-
ods consider demographic events when estimating selective effects from the
SFS, very little is known about how differences between effective and cen-
sus population size systematically affect these estimates. For example, the
SFS can be used to infer the amount of adaptive evolution in a McDonald-
Kreitman type of test (McDonald and Kreitman 1991; Eyre-Walker and
Keightley 2009) to deduce whether the (effective) population size is deter-
mining the rate of adaptive evolution across species (Gossmann et al. 2012).
Therefore would the inclusion of both the effective population size, N, and
the census population size, N, shed further light into this important ongoing
debate (Venton 2012)?

A feature of the method of this work, that was explicitly exposed in

the calculations of the site frequency spectrum, is that it leads to ‘coarse
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grained results’. Distributions and associated quantities are determined at
the frequencies n/N, (for a haploid population) with n an integer. The
splitting of these frequencies, namely 1/N,, is wider (possibly substantially
wider) than the splitting of the frequencies at which an exact calculation
would yield, namely 1/N. This has the implication that we cannot enquire
into fine features of such distributions that might occur on scales comparable
or smaller than 1/N.. This does not seem problematic, since if there are
questions about such fine features existing, then calculations based on an
effective population size may, themselves, be questionable without additional

analysis.

6.1 Summary

In summary, we have provided a method that incorporates the effective
population size into the Wright-Fisher model. This increases the biological
realism of this model, and, importantly, is a viable way of obtaining numer-
ical results. We have thus provided a tool that will allow new analyses to
be systematically carried out, without the need of detailed simulations, or

numerical solution of the diffusion equation.
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Appendices

Appendix A: Calculating quantities in the modified Wright-
Fisher model for the Test Population
In this appendix we use the modified Wright-Fisher model (WFM) to cal-
culate the probabilities of ultimate fixation and loss, and the mean times to
fixation and loss, for the Test Population.

To begin, we determine the effective distribution in different generations.
From Eq. (6) of the main text we can show that the solution for F(®)(¢) is
given by

-1

FE)(t) = (W(“)) WOF(©), t=12 . (A1)

Using the block form for W) (Eq. (10) of the main text) we obtain
. k
1 a3 (W) o
-1

(W(f)) —| o© (w9 ! 0 (A2)

0 VO (W)t

_ 13
with the understanding that Zi}u (w(")) = 0 for ¢ = 1. Combining this

with the block form of W(© (Eq. (10) of the main text) leads to

1 u® 4u@yt? (w(e>)’“w(0> 0
FO@t) = | o© (w©)" " w(© 0@ | F(0). (A3)
0 vO 4y (wm)’“ w® 1
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Probabilities of ultimate loss and fixation of the A allele
For long time properties, we determine the ¢ — oo limit of the above equation

with the result

1 u® 4 u@cEw® o
F(x0) = | 0@ 0 0@ | F(0) (A4)
0 v fyvEOGEw©® 1

where G is given in Eq. (11) of the main text and here 0 is a matrix
of size (Ne — 1) x (N — 1) with all elements 0 that occurs because it can
be argued that all eigenvalues of w(®) have magnitude less than unity (see
Appendix C of Waxman 2009).

The n'th element of F()(¢), namely F"(')(t)7 has the interpretation as
the probability of occurrence of the frequency n/N, at time ¢, with n =

0,1, ..., Ne. This means that we can write equivalently write Eq. (A4) as

probability of ultimate PO

fixation of the A allele
- ( 1, vO 4 vOGEwO )F(U)‘

robability of ultimate .
e = R(e0)
loss of the A allele

= (1. w04 u9IGOWO, 0 )FO).

(A5)
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Assuming there are n copies of the A allele present in generation 0, with
n =1,2,..,N — 1, the vector F(0) has only one non-zero element, namely
F,(0), which equals 1. Using the notation [a],, to denote the n’th element

of the row vector a, we have, for

probability of ultimate fixation
of the A allele when n copies = [V(O) + v(")G(")w(D)]
n

are initially present

probability of ultimate loss

of the A allele when n copies = [U(o) + U(E)G(E)W(O)]

n

are initially present

(A6)

This pair of equations corresponds to Egs. (12) and (13) of the main text.

Expected times to fixation and loss of the A allele

‘We shall focus just on the expected time to fixation, since the corresponding
quantity for loss has a form which can be simply inferred.
Assuming there are n copies of the A allele present in generation 0, with

n =1,2,..,N — 1, the vector F(0) has only one non-zero element, namely

F,(0), which equals 1. The interpretation of the fixation part of Eq. (A3) is
that V(O)F(O) = [v(”)]n is the probability of fixation occurring precisely in
generation 1, and similarly v(©) (w(“))F2 wOF(0) = [v(") (w("))F2 W(“)}
is the probability of fixation precisely occurring in generation ¢ for ¢ > 2. !
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From these results, the mean time to fixation, conditional on fixation

ultimately occurring, is written E[Tgy|n] and given by

(V0] + 2t [y (w19) w0

ElTixln] = VO + v GEwO)]

o, (A7)
n

Evaluating the sum and simplifying the result quickly yields Eq. (14) of the
main text. Replacing v’s by u’s in the result leads to the expected time
to loss, conditional on loss ultimately occurring, and yields Eq. (15) of the

main text.

Appendix B: Site frequency spectrum

In this appendix we give details of the calculation for the effective site fre-
quency spectrum (SFS) and a coarse grained SFS using the method intro-
duced in this work, in the context of a haploid population of census size N'
(number of adults).

In the lifecycle given in the main text, mutation has been assumed ne-
glectable, because only a single locus was under consideration. This is not
the case for the SFS, where the mutational target is an extended part of
the genome. We thus include mutations which we take to occur in adults
at the beginning of a generation. We use p to denote the expected number
of new mutations each generation. In terms of the scaled mutation rate
0 = 2Ny there are an expected number of /2 mutations entering the adult
population each generation.

We shall use M, (t) to denote the mean number of sites with mutant
alleles at a frequency of n/N in generation ¢ (equivalently, M, (t) denotes the
mean number of sites with n mutant alleles in generation t). The SFS is the

set of My (t) forn =1,2,...,N—1, ie., it only includes sites where mutations
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are segregating in the population, and excludes sites where mutations have
been lost or have not occurred.

The model of the SFS we consider is based on the assumption that
there are an effectively infinite number of independent (unlinked) sites where
mutations can occur, that is to say, the infinite sites model (Kimura 1969).
A consequence of this assumption is that each site can, at most, suffer only
one mutation; double mutations of a site are considered to happen with
negligible probability.

When N, = N, a standard Wright-Fisher model for a haploid population
with census size N can be applied. The SFS obeys

0
My(t+1) = Zmem(tHQ s (B1)

m=1

where the w;, ,, are elements of a submatrix w of the Wright-Fisher transi-
tion matrix which takes into account transitions between segregating states
of the population (see Eq. (5) of the main text), and d,p is a Kronecker
delta (05 is 1 if a = b and is 0 if @ # b). The presence of the term %%,1
in Eq. (B1) reflects the assumption that new mutants originate as single
copies in the population, at a rate of /2 per generation. Equation (B1) can

be written as the matrix equation
0,
Mt + 1) = wM(t) + b (B2)

where both M(t) and i are column vectors of length N —1. The first element
of i is 1 with all others being 0. From Eq. (B2) the equilibrium SFS, written
M, is found to be

M :gGi (B3)
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where G = (I—w) ™! and T is an identity matrix (the same size as w).

In a ‘non ideal’ population, where N, < N, the standard results, de-
scribed above, cannot be directly used. We shall use a method associated
with the modified WFM of the present work. As we shall see, this leads to
a ‘coarse grained’ SFS which is defined only at the frequencies z,(f) =n/N,
(with n = 1,2,.., N, — 1) rather than at the exact frequencies z%n) =n/N
(with n = 1,2,..., N — 1). Because N. < N the exact frequencies, .’L‘%O), are
more finely spaced than the .'1:%)‘

Note that the initial SFS M(0) (assumed known) and the contribution
from new mutations, to the SFS, gi, are both defined for the exact frequen-
cies, 7 = n/N. Thus M(0) and %i are both column vectors of length
N — 1. However, the SFS that is associated with a modified WFM, where
the effective population size is N, is, under the approach of this work, de-
scribed as a column vector of length of N, — 1. The difference in the lengths
of the vectors of the SFS, of the actual model and the model following from
the modified WFM, make it impossible to directly evolve the SF'S, according
to Eq. (B1). To overcome this, we decompose the value of M(t) in gener-
ation ¢ (¢t > 1) into two contributions: (i) from sites where new mutations
originated at the beginning of generation ¢, and (ii) from sites associated
with mutations which originated in the previous or earlier generations. We
write this decomposition as M(t) = M"™" + MP’(¢). The form of M"
is known; it originates purely from new mutations and is a column vector of
length N — 1 where only the first element is non-zero and has the value /2.

Consider the part of the SFS associated with mutations which originated
in the previous generation, and which have evolved for at least one generation
in a manner appropriate to a population size of N.. Under the approach of

the present work we write this part of the SF'S as MP""¢(t). This is a column
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vector of length N, — 1 whose n’th element may be approximately viewed
as the mean number of sites corresponding to the mutant allele frequency
lying in an interval of width 1/N, in the vicinity of the frequency n/N. (with
n=1,2,..,N. — 1). Following the viewpoint of the present work, we take

the behaviour of MP"¢(t) to be given by

MPreve(1) = w(O)M(U),
(B4)
MPreve(t 4 1) = wlOMPreve(t) + gw(o)i, t=12,..

An explanation of the various terms in Eq. (B4) is as follows. The quantity
w(® is a rectangular matrix that ‘converts’ the segregating part of a defi-
nitely known distribution in a generation where the population size is N, to
the corresponding effective distribution in the next generation (see Eq. (10)
of the main text), where the population size is treated as N. Thus w(®M(0)
reflects the conversion of the known quantity M(0), where the population
size is N, to the next generation, where the population size is treated as
N.. The quantity w(®) is a square matrix that takes the segregating part
of the distribution of a population in any generation where the population
size is treated as N, and yields the corresponding distribution in the next
generation, where the population size is also treated as N, (see Eq. (10) of
the main text). Thus w(®)MP™"€(t) represents the part of MP*"<(¢ 4 1)
that was contributed by mutations prior to generation ¢, while gw(u)i repre-
sents new mutations that occurred at the beginning of generation ¢, whose

contribution is ‘converted’ to generation ¢ + 1.
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The equilibrium form of MP™“:¢(t) that follows from Eq. (B4) is written
as MIPrev¢ and given by

- 0
wrrreve — L gleg ), B5
3 w'i (B5)

where G(®) is given in Eq. (11) of the main text.
Now consider the mean number of sites in a frequency range dx around
a frequency z. We assume dz is small in value (< 1) but still large com-

pared with 1/N and 1/N,

so it covers many frequency states. Further-
more, assume that we can approximately write = as either n/N or m/N.
where n and m are integers. Then the mean number of sites whose mutant
frequency lies in the frequency range dz around the frequency z is given
(approximately) by either adding J—Tv = Néz adjacent elements of the ex-

act SFS M}, or adding (the smaller number of) 1‘/’—{,' = Nz adjacent
elements of the effective spectrum M} . That is, we approximately have
NoxMY = NedzMp . This tells us that ME™ and ME "¢ are not
of the same magnitude, but are related by My = (N./N) x MF“"°. To
obtain an approximate quantity that should be directly comparable with

the exact spectrum we shall generally define

e

MPreved ()
N

MPTeve(t) (B6)
and call MP""%9(t) the coarse grained SFS. The quantity MP"¢"4(t) cor-
responds to the frequencies JLL&) = n/N,, which have splittings of 1/N,
that are larger than the splittings of the exact SFS (which is defined at the
frequencies 20 = n/N) and hence have splittings of 1/N. However, the

magnitude of MP™"<9(¢) should closely correspond to the magnitude of the
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exact SF'S, when evaluated at a common frequency. We define the coarse

grained equilibrium SFS as

KIPreves — % Nreve — e glo) ) (B7)

] 2

where 6, = = 2N,y and this appears to work well (see Figure 4 of the

N

main text).

Appendix C: Simulation procedure for the site frequency spec-
trum

In this appendix we give details of the simulation procedure adopted to
estimate the SFS.

To simulate the SF'S, we could use the method introduced in the main
text, for the Test Population, with the added feature that a random number
of new mutations are introduced in adults at the beginning of each gen-
eration. However, to determine the equilibrium SFS requires a number of
generations to ‘forget’ the initial distribution (‘burn in’ time). Furthermore,
to obtain a smooth result requires averaging the resulting fluctuating spec-
trum over a very large number of generations (an alternative is carry out
an average over many replicate populations), and this will cost a large com-
putation time or require a large computer memory. We adopt the following
alternative approach.

‘We note that once a mutant occurs at one site, it will evolve according to
a time homogeneous Markov chain, even though this will not be a standard
WFM, because N, < N. To obtain a simulation result to compare with
the modified WFM result, and is independent, we use a one step simulation

(following the simulation described in main text) to estimate the transition
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matrix of this Markov chain model. This involves using a total of R trajec-
tories of the mutants, with the same initial copy number. These trajectories
are run for a single generation, which includes a random reproductive stage
(negative binomial random variables are used) and a random thinning stage,
both of which are described in the Section Test Population of the main text.
Let Cj(N, s,n) represent the copy number of mutants after one generation of

trajectory j (j = 1,2, ..., R), when the initial copy number of mutants is n,

the census population size is N, and the selection coefficient of the mutant is
s. We use the simulated values of the Cj(N, s,n) to estimate elements of the
transition matrix of this Markov chain. Writing this estimated transition

matrix as W we have

<,

Rid o
21 Orm, 05 (N 5.m)
R

Wi =

This result is determined for m = 0,1,2,..., N and for n = 1,2

while we determine the remaining elements using Wy, 0 = 0,0 and Wy, 1 =

Om,1-
The matrix W has the same general structure as the matrix W of Eq.

(5) of the main text, namely,

1 u 0
W= 0w o0 |. (C2)
0 v 1

It also has a size of (N + 1) x (N + 1), irrespective of the value of N.. In a
standard WFM, the equilibrium SFS is given by Eq. (B3), and analogously,

the result of the above procedure leads to an estimate of the equilibrium
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SFS of
M= 5Gi. (C3)

~ - -1 ~
where G = (I*"X’) and I is an identity matrix (the same size as w).

Finally, using the identity M =wM+ gi, and following the definition in

Appendix B of the equilibrium form of the SFS from ‘previous’ mutations,

—~prev —~prev —~

which we write as M | we obtain M = wM. This can be written as
—prev. @

= §GvaL (C4)

and is the result we use in Figure (3) of the main text, as our estimate from
simulations. The value of R used for the figure was R = 10°.
In the Supplementary Material we provide a Matlab function which is a

generalised version of the function Cj(N, s, n) used above.
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Supplementary Material

A modified Wright-Fisher model that incorporates N :
A variant of the standard model with increased biological

realism and reduced computational complexity

Lei Zhao, Toni Gossmann, and David Waxman

On the following page we give a Matlab function C.m that generates the
number of copies of the mutant allele after a single generation, as described in
Appendix C. Repeated use of this function allows estimation of the transition
matrix for the Test Population.

We use the abbreviation NBD for the negative binomial distribution.
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C.m

function n=C(N,nl,s1,s2,sigmal,sigma2)

% Simulates copy number of the mutant allele for a haploid population

% INPUTS:

% N: census population size

% nl: copy number of the mutant allele in the current generation

% s1 and s2: selection coefficients of mutant and resident alleles, respectively
% sigmal and sigma2: variances in offspring No. of mutant and

% resident alleles, respectively

% OUTPUT:

% n: copy No. of mutant allele one generation after the current generation

% CALCULATION

f=100; % baseline fertility, taken as a constant

n2=N-nl; % copy No. of resident alleles in current generation

ml = f*(1+s1); % mean No. offspring of a carrier of the mutant allele
m2={*(1+s2); % mean No. offspring of a carrier of the resident allele
v1=f"2*sigmal; % variance offspring No. of a carrier of the mutant allele
v2=f"2*sigma2; % variance offspring No. of a carrier of the resident allele
pl=ml/vl; % parameter p of NBD for mutant alleles

p2=m2/v2; % parameter p of NBD for resident alleles
r1=pl/(1-pl)*ml; % parameter r of NBD for mutant alleles
12=p2/(1-p2)*m2; % parameter r of NBD for resident alleles
nl=nbinrnd(nl*rl,pl); % NBD offspring No.

n2=nbinrnd(n2*r2,p2); % NBD offspring No.

n=binornd(N,nl./(nl1+n2)); % Thinning: copy No. mutant alleles in next generation



