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The Capacitated Lot Sizing Model: a Powerful Tool for Logistics Decision Making 
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Abstract 
Starting from the seminal intuitions that led to the developments of the Economic Order 
Quantity model and of the formulation of the Dynamic Lot Sizing Problem, inventory models 
have been widely employed in the academic literature and in corporate practice to solve a 
wide range of theoretical and real-world problems, as, through simple modifications to the 
original models, it is possible to accommodate and describe a broad set of situations taking 
place in complex supply chains and logistics systems. 
The aim of this paper is to highlight, once more, the powerfulness of these seminal 
contributions by showing how the mathematical formulation of the Capacitated Lot Sizing 
Problem can be easily adapted to solve some further practical logistics applications (mainly 
arising in the field of coordination of transportation services) not strictly related to 
manufacturing and production environment. Mathematical formulations and computational 
experiences will be provided to support these statements. 
 
1. Introduction 
The history of inventory problems can be rooted back to the Economic Order Quantity (EOQ) 
model presented by Harris (1913), also known as the Wilson Lot Size formula, since it was 
firstly used in practice by Wilson (1934). The EOQ model assumes the presence of a single 
item whose demand is continuous (with a constant known rate) and an infinite planning 
horizon. The solution of the model is easy and provides the optimal quantity to be ordered, 
balancing the setup and inventory holding costs. However, with the same assumptions, in 
presence of multiple items and capacity restrictions the model becomes NP-hard (Hsu, 1983). 
The Dynamic Lot Sizing Problem (in the following, generically referred to as DLSP or Lot 
Sizing), first proposed by Wagner and Whitin (1958), can be considered as an extension of 
the EOQ model. In this new version, on a discrete time scale, deterministic dynamic demand 
and finite time horizon are considered while the objective function is the same basic trade-off 
between setup and inventory costs.  
Starting from these seminal papers, further variants of the problem have been introduced. 
These are mainly concerned with the extension to the multi-item case (Barany et al., 1984), 
the introduction of several conditions about the costs, limitations on production capacities 
(leading to the Capacitated Lot Sizing Problem, in the following CLSP) (Bitran et al., 1982) 
and possible additional features regarding, for instance, demand uncertainty (Brandimarte, 
2006), setup costs and/or times (Trigeiro et al., 1989), linked lot sizes (Suerie and Stadtler, 
2003), alternative suppliers (Basnet and Leung, 2005). Combinations of these aspects can 
provide models with very different complexities.  
Interesting reviews about models and methods to tackle Lot Sizing problems have been 
published by Kuik et al. (1994), Drexl and Kimms (1997), Karimi et al. (2003), Jans and 
Degraeve (2008), while a rich textbook on the topic has been provided by Pochet and Wolsey 
(2006). 
Jans and Degraeve (2008) compiled a very interesting and complete survey devoted to 
describe actual and potential variants of the problem. The authors highlight how most of them 
are inspired by specific real life applications and, in particular, they focus on a variety of 
industrial production planning problems. Still nowadays, applications of the Lot Sizing 
model, and its variants, to real-world problems constitute a very active research strand (see, 
for instance: Rezaei and Davoodi, 2011; Ferreira et al., 2012; Liao et al., 2012). 



In this paper we want to show how, through an appropriate interpretation of the elements of 
the model, lot sizing formulations can also be effectively used to face further practical 
logistic problems, outside of the classical field of production and manufacturing planning. 
Therefore, rather than providing original models, the aim of the paper is to show how 
standard formulations can be used to support decisions in other contexts of applications; in 
this sense, more established these models are, more powerful and insightful will be their 
adaptation, as existing results in terms of formulations and solution approaches can be easily 
exploited. 
The remainder of this paper is arranged as follows. In the next section we introduce the 
mathematical model of the CLSP, considering the single item and the multi-item versions. 
Then we illustrate a general framework indicating how these models can be used to describe 
different kinds of logistic problems. In particular three specific examples are introduced and 
discussed: the optimisation of the departure schedule for a bus terminal; the management of a 
logistic cross-dock platform; the optimisation of an airport check-in gates configuration. For 
the above problems, we explain how they can be formulated, through few adaptations, 
starting from the CLSP model. Furthermore, some case studies (related to real-world 
situations) are presented, showing how these models can be solved in limited computational 
times and be used as decision support tools. Finally, some concluding remarks and directions 
for future research are drawn. 
 
2. Mathematical Models for Lot Sizing Problems: Generalities  
By denoting with א ݐ ሼͳǤ Ǥ ܰሽ one of the ܰ  time buckets introduced to divide the planning 
horizon, the following parameters can be considered, referred to the specific time period t and 
to a single product scenario: 

 ݀௧   the demand forecast; 
 ݌௧    the unit production or purchasing cost; 
 ݄௧    the unit inventory cost; 
 ௧݂ the fixed setup or ordering cost; 
 ܥ௧  the maximum feasible lot size (capacity). 

Introducing the variables: 
 ݏ௧   stock at the end of period t; 
 ݔ௧ quantity to be produced or ordered during period t; 
 ݕ௧ binary variable equal to 1 if units of the product are manufactured (or ordered)     

            in period t (0 otherwise). 

the DLSP can be formulated as follows: 

 min  ݖ ൌ ෍ሺ݌௧ݔ௧ ൅ ݄௧ݏ௧ ൅ ௧݂ݕ௧ሻே
௧ୀଵ  (1) 

s.t.    
௧ݏ  ൌ ௧ିଵݏ ൅ ௧ݔ െ ݀௧ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰ (2) 
௧ݏ  ൌ Ͳ ݐ ൌ Ͳ and ݐ ൌ ܰ (3) 
௧ݔ  ൑ ݐ ௧ݕ௧ܥ ൌ ͳǡ Ǥ Ǥ ǡ ܰ (4) 
௧ݏ  ൒ ͲǢ ௧ݔ ൒ ͲǢ ௧ݕ ൌ ͲȀͳ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰ (5) 

The objective function (1) represents the total management costs, including the production 
(and/or purchasing), inventory and setup or ordering costs. Constraints (2) reproduce the 
demand satisfaction and inventory balance constraint for each period. Conditions (3) impose 
that inventory levels at the beginning and the end of the planning horizon are equal to zero. 



Constraints (4) allow a positive production (constrained between 0 and a value ܥ௧) in period t 
if and only if the setup variable is equal to 1; in particular, the problem turns out to be 
uncapacitated for large values of ܥ௧ (ܥ௧ ൒ σ ݀௞௞ୀ௧ǡே , for every specific time period t). 
Constraints (5) express the non-negativity and binary restrictions on the variables. As known, 
model (1)(5) has O(N) constraints in O(N) variables.  
Wagner and Whitin (1958), in order to avoid trivial solutions to the problem, introduced a 
condition on the production and inventory costs, i.e.  ݄௧ ൅ ௧݌ െ  ௧ାଵ≥0 (Wagner-Whitin cost݌
condition). This condition assures that if setups occur in both periods t and t+1, it is more 
convenient to produce directly in period t+1, as there is no speculative reason for early 
production (Pochet and Wolsey, 1995).  Zangwill (1966) further clarified that inventory costs ݄௧ and setup/ordering costs ௧݂ should be intended as non-negative. 
Zangwill (1969) provided an interesting and fruitful interpretation of the problem as a fixed 
charge network problem. In Figure 1, a network representation for a generic instance with ܰ periods is provided. The flow on the generic arc ሺͲǡ  ݐ ሻ represents the production in periodݐ
ǡݐwhile flow on arc ሺ (௧ݔ) ݐ ൅ ͳሻ reproduces the stock at the end of period ݐ (ݏ௧). This way, 
constraints (2) can be interpreted as flow conservations conditions at each node t while 
constraints (4) indicate that, in presence of flow on arc ሺͲǡ  ሻ, this value cannot exceed theݐ
capacity of this arc. In practice the problem consists in defining the production inflows (ݔ௧) 
able to satisfy the outflows (݀௧) with the minimum cost, also using possible holdover flows 
accumulated in the previous periods (ݏ௧ିଵ).  
This representation can also be used by reversing flows ݔ௧ and ݀ ௧ as shown in Figure 2. In 
this case, outflows (ݔ௧) have to be determined in order to absorb the sum of the demand 
inflows (݀ ௧) and of holdover flows from the previous period (ݏ௧ିଵ). Of course, in this case, in 
the formulation, constraints (2) have to be written reversing the signs of the variables ݔ௧ and 
parameters ݀௧, providing the following: 
௧ݏ  ൌ ௧ିଵݏ െ ௧ݔ ൅ ݀௧ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰ (2’) 
__________________________________________________________________________ 

Insert Figure 1 here 
__________________________________________________________________________________________ 
___________________________________________________________________________ 

Insert Figure 2 here 
 
 

In the case of a multi-item problem, introducing the index ݆ א ሼͳǤ Ǥ  ሽ  representing one ofܯ
the  ܯ items whose production has to be planned, and considering each parameter and 
variable indexed by both ݆ and ݐ, the formulation of the Multi-item DLSP, also known as 
Capacitated Lot-Sizing Problem (CLSP) becomes:  

 min  ݖ ൌ ෍ ෍൫݌௧௝ݔ௧௝ ൅ ݄௧௝ݏ௧௝ ൅ ௧݂௝ݕ௧௝൯ெ
௝ୀଵ

ே
௧ୀଵ  (6) 

s.t.    
௧௝ݏ  ൌ ௧ିଵǡ௝ݏ ൅ ௧௝ݔ െ ݀௧௝ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (7) ܯ
௧௝ݏ  ൌ Ͳ ݐ ൌ Ͳ and ݐ ൌ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (8) ܯ
௧௝ݔ  ൑ ݐ ௧௝ݕ௧௝ܥ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (9) ܯ
 ෍ ௝ܽெ

௝ୀଵ ௧௝ݔ ൅ ෍ ௝ܾெ
௝ୀଵ ௧௝ݕ ൑ ܴ௧ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰ (10) 

௧௝ݏ  ൒ ͲǢ ௧௝ݔ ൒ ͲǢ ௧௝ݕ ൌ ͲȀͳ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (11) ܯ



The objective function and all the constraints, except (10), simply represent the extension of 
the expressions (1)(5) to the multi-item case. Assuming that ௝ܽ is the capacity consumed for 
the production of one unit of item ݆, ௝ܾ is the capacity consumed for the setup of item ݆ and ܴ௧ the total available capacity in period ݐ, conditions (10) represent resource capacity 
constraints. As pointed out by Karimi et al. (2003), although the setup costs may vary for 
each product and each period, in general they are sequence independent. However, it is also 
possible to define some variants of the CLSP, where setups are sequence dependent (also 
known as complex setup structure) (see, for instance, Haase and Kimms, 2000; Kovács et al., 
2009). 

Further constraints can be added to the model in order to describe different production mode 
options. Examples of these constraints can be the following:  

 ෍ ௧௝ெݕ
௝ୀଵ ൑ ݐ ௧ܭ ൌ ͳǡ Ǥ Ǥ ǡ ܰ (12) 

 ෍ ௧௝ெݏ
௝ୀଵ ൑ ܵ௧ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰ (13) 

௧௝ݏ  ൑ ෍ ݀௧ା௞ǡ௝ఋ
௞ୀଵ ݐ  ൌ ͳǡ Ǥ Ǥ ǡ ܰ െ Ǣߜ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (14) ܯ

௧ାఒǡ௝ݕ  ൑ ൫ͳ െ ݐ ௧௝൯ݕ ൌ ͳǡ Ǥ Ǥ ǡ ܰ െ Ǣߣ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (15) ܯ
௧ାଵǡ௝ݕ  ൒ ݐ ௧௝ݕ ൌ ͳǡ Ǥ Ǥ ǡ ܰ െ ͳǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (16) ܯ

 
Constraints (12) assume that at most ܭ௧ setups per period are allowed, while (13) express a 
limitation to the total inventory level in each period.  
Imposing an upper bound to the inventory level for item j at the end of period t, based on the 
sum of the demand of ߜ periods successive to t, constraints (14), in environments that operate 
according to a strict First-in-First-out (FIFO) logic, assure a maximum duration (ߜ) for the 
inventory level.  
Conditions (15) impose a minimum interval ߣ between two consecutive setups for the 
production of item ݆; while conditions (16) impose that once the production (or the purchase) 
of an item ݆  has been started, it will continue until the end of the planning horizon; these 
constraints are useful to represent semi-continuous production processes.  
The reverse representation in terms of network flow problem implies the association of a 
commodity with each item; also in this case, in the formulation, constraints (7) have to be 
written reversing the signs of variables ݔ௧௝ and parameters ݀௧௝, providing the following 
equation: 

௧௝ݏ  ൌ ௧ିଵǡ௝ݏ െ ௧௝ݔ ൅ ݀௧௝ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  ('7) ܯ
 
Coherently, constraints (14) should be reformulated as follows, by replacing ݀௧௝ with ݔ௧௝: 

௧௝ݏ  ൑ ෍ ௧ା௞ǡ௝ఋݔ
௞ୀଵ ݐ  ൌ ͳǡ Ǥ Ǥ ǡ ܰ െ Ǣߜ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  ('14) ܯ

In this case, the upper bound for the inventory level at the end of each period ݐ, is defined as 
the sum of the units to be processed during the ߜ periods successive to t. Constraints (14') can 
be then interpreted as constraints (14). 



 
3. Adaptation of CLSP models to logistics applications 
As mentioned in the literature review, the above-cited models have been applied, in the last 
decades, to solve a variety of problems in the field of inventory management; accordingly, 
many variants of the basic mathematical formulations have been developed. It can be noticed, 
however, that the structure of the models can be easily adapted even to fields not strictly 
related to inventory management, belonging to a wider logistics context. Indeed, the 
Capacitated Lot Sizing model can be regarded as a general model of flow control, through 
which various optimization problems can be described and formulated. In particular, by 
interpreting the index ݆ as representative of a logistic service, rather than of an item, it is 
possible to revisit the meaning of the variables and of the parameters, as reported in Table 1. 
The model allows solving generic dimensioning and synchronization problems related to 
logistics services, in which the demand for a given service j in a time instant ݐ (݀௧௝) is known 
a-priori. It can be seen that the adaptation of all the elements of the basic version of the model 
is straightforward, as parameters and decision variables typical of the CLSP (inflows, 
outflows, holdover flows) can be appropriately interpreted in order to describe the specific 
applications. In particular, variables ݔ௧௝  and ݏ௧௝  refers, respectively, to the demand for 
service ݆ to be satisfied in period ݐ, and to the residual demand for service ݆ at the end of 
period ݐ, while variables ݕ௧௝ represent the activation of service ݆ during period ݐ. 
___________________________________________________________________________ 

Insert Table 1 here 
__________________________________________________________________________________________ 
 
In the following we describe three applications derived from different logistic fields. Even if 
apparently quite different, all of them can be modeled through the general CLSP, by utilising 
the revised meaning of variables and parameters described in Table 1 and performing some 
simple adaptations. For all the cases we suppose that the time horizon is partitioned into N 
buckets of duration  each. Then, it is possible to describe the problems using the formulation 
(6)(11) and its representation in terms of reverse multi-commodity network flows (Figure 
3). We also assume, for all the models, non-negative setup costs ሺ ௧݂ ൒ Ͳ ݐ ׊ ሻ and the 
Wagner-Whitin cost condition.  
 
3.1 The Bus Terminal Schedule Optimization Problem  
Suppose we have a bus transit terminal, i.e. a facility in a transportation system, where lines 
starting from a set of origins converge and users can access departing lines in order to reach a 
set of destinations. A crucial aspect in managing the terminal is represented by the schedule 
of output lines towards the set of most common destinations. Indeed, there is a need to find 
trade-off solutions considering the minimization of the activation costs of the output lines and 
the total users’ waiting costs. 
The problem known as aperiodic schedule synchronization problem has generally been 
solved through the adaptation of models and methods for the periodic case (see for instance 
Liebchen and Stiller, 2009; Michaelis and Schöbel, 2009) while only few specific 
mathematical models have been developed to explicitly solve the problem (Wong et al., 
2008; Schmidt and Schöbel, 2010). 
Through a simple adaptation process, CLS models can provide a straightforward way of 
representing the problem. Indeed, here ݀௧௝ is the number of passengers arrived at transit 
terminal at time ݐ  and directed to one of the ܯ destinations ݆ǡ while ݕ௧௝ is a binary variable 
equal to 1 if a bus leaves the terminal at time ݐ towards destination ݆. Assuming a reverse 
network flows representation, the problem can be viewed as the determination of passengers 



leaving the terminal at each time ݐ towards destination ݆ (ݔ௧௝) through the departure of 
outbound buses of given capacity ܥ௧௝ (that can be assumed to be constant; therefore ܥ௧௝ ൌ  .(ܥ
Within this interpretation, ݏ௧௝ variables represent passengers waiting in the terminal to leave 
toward destination ݆ at the end of period ݐ.  
 
Assuming ݌௧௝ ൌ Ͳ, the objective function (6) describes a performance measure defined as the 
sum of the costs associated with users’ waiting times and the costs associated with departing 
lines activation. In particular, in absence of unit production costs (݌௧௝ ൌ Ͳ), the Wagner-
Whitin condition implies ݄௧௝ ൒ Ͳ ݐ ׊ǡ  .݆ ׊
Also in this case the formulation of the model includes flows (passengers) conservation 
constraints (7’), while conditions (8) simply indicate that no passenger must be in the 
terminal at the beginning and at the end of the planning horizon. Equations (9) reproduce 
constraints associated with the capacity of buses leaving at time ݐ with destination ݆.  
In the model, also constraints (12), (13), (14’) and (15) can be introduced. The first group 
imposes that a maximum number of buses (ܭ௧) can leave during the same period ݐ; this may 
also reproduce physical constraints within the terminal, such as the availability of a limited 
number of platforms. The second set concerns limitations on the maximum number of 
passengers waiting in the terminal. Constraints (14’) can be introduced to limit waiting times 
of passengers in the terminal, while conditions (15) to impose a minimum interval  between 
two consecutive departures towards the same destination.  

A description of basic versions of the model can be found in Bruno et al. (2009) and (2012). 
Table 2 summarizes the model and the constraints that will be considered in the following 
implementation; the complete model formulation is reported in Section A.1 in Appendix A. 
 
___________________________________________________________________________ 

Insert Table 2 here 
_________________________________________________________________________________________ 
 
 
3.2 The Cross-Docking Operations Optimization Problem  
Within a complex supply chain, a cross-docking platform is a facility that receives goods 
from suppliers and sorts them into alternative arrangements which have to be delivered to 
given destinations. According to this logistic practice, storage of goods occurs only for short 
periods required to assemble and consolidate loads for immediate onward carriage (Vogt and 
Pienaar, 2007). This way, it is possible to reduce the total distribution costs taking advantage 
of the benefits of a warehousing strategy in terms of consolidation, but keeping at minimum 
storage costs. However, in order to properly operate, this kind of systems requires a relevant 
synchronization between inbound and outbound flows in order to obtain both lower lead 
times and inventory costs. If the inbound trucks’ arrival scheduling along with their 
composition in terms of loaded lots is supposed to be known, the outbound truck scheduling 
problem consists in determining the loading and the scheduling sequence of outbound 
vehicles. 
In recent years, several procedures adapted from scheduling models have been proposed, 
using aggregate representations of the activities within the cross-dock area (see for instance  
Boysen, 2010; Boysen et al., 2010), or proposing more in-depth and detailed models (see for 
instance Yu and Egbelu, 2008; Chen and Lee, 2009). Li et al. (2004) consider material 
handling inside the terminal for a given truck schedule, modelling this task as a machine 
scheduling problem; a meta-heuristic algorithm is proposed for the solution. Yu and Egbelu 
(2008) as well as Boysen et al. (2010) consider stylized settings where a terminal consists of 



a single inbound and a single outbound door, proposing dynamic programming approaches to 
solve these problems. Miao et al. (2009) provide scheduling procedures adopted from gate 
assignment in airports, where trucks are assumed to have given service time windows, which 
are to be maintained as hard constraints. However, to date, no mathematical programming 
framework has been proposed to deal with synchronization problems from a more general 
perspective.  
Supposing to know inbound trucks’ arrival scheduling along with their composition in terms 
of lots and their final destination, a crucial aspect in managing the cross-docking terminal is 
represented by the schedule of outbound trucks towards a set of destinations, after incoming 
goods have been unloaded and sorted. Indeed, there is a need to find trade-off solutions 
considering the minimization of the activation costs of the outbound trucks and the total 
goods storage costs. This problem presents many similarities with that described in the 
previous application: in practice, the role of the transit terminal is here played by the cross-
dock platform and the problem consists in the definition of outbound truck scheduling. Then 
variables ݀ ௧௝, ݔ௧௝, and ݏ௧௝ have the same meaning considering freight lots instead of 
passengers.  
In particular, assuming ݌௧௝ ൌ Ͳ (and, hence, ݄௧௝ ൒ Ͳ ݐ ׊ǡ  ሻ, the objective function (6)݆ ׊
describes a performance measure defined as sum of the costs associated with storage of goods 
and the activation of departing trucks.  
Constraints (8), (9) and (10) can be easily interpreted on the basis of the above-mentioned 
analogy (see also Table 3). In this case, it may be worth to reproduce constraints on labour, 
workforce, and on the structure of the cross-dock expressing that just a limited number of 
trucks can leave during a given time period; this condition can be effectively formulated 
through equation (12), assuming that ܭ௧ represents this upper bound. Furthermore, conditions 
(13) and (14’) can be used to impose respectively a maximum capacity and a maximum 
storage time in the cross-dock. 
Table 3 summarizes the model and the constraints that will be considered in the following 
implementation; the complete model formulation is reported in Section A.2 in Appendix A. 
___________________________________________________________________________ 

Insert Table 3 here 
_________________________________________________________________________________________ 
 
A more complex version of the problem can be introduced, associating with each lot also a 
deadline, i.e. a time limit for goods to leave the cross-dock. In this case it is possible to define 
variables ݀ ௧௝௞ indicating lots arrived at cross-dock at time ݐ that can be transferred to the 
destination ݆ within the deadline ݇. Consequently also variables ݔ௧௝௞, and ݏ௧௝௞ have to be 
interpreted considering the deadline. Then the formulation of the problem is the extension to 
the three index case of the model (6)(11) while constraints on the deadline can be easily 
expressed, imposing that ݏ௧௝௞ must be equal to 0 for each period ݐ ൐ ݇. 
 
3.3 The Check-in Service Optimization Problem  
In an airport terminal, the check-in service consists in processing and accepting passengers 
arriving at designated desks. Even if, in recent years, many companies have introduced online 
procedures aimed at reducing the impact of these operations, the need for an efficient 
management of such service still arises due to increasing air passengers’ traffic and to a 
concurrent decrease in resources employed in handling operations. The latter phenomenon is 
related to the necessity of cutting costs for airlines and third party providers, in a context of 
general economic crisis. These concomitant issues frequently lead to congestions of the 
terminal infrastructures and long waiting times and queues at check-in desks.  



The efficient management of the check-in operations can produce significant benefits in 
terms of costs and quality of the service provided to the users, especially for long range 
flights in which passengers need to drop off their baggage. For this reason, some techniques 
have been proposed in order to support this kind of decisions (TRP, 2010). In particular, as 
the problem is characterized by different uncertain factors, most of the approaches are based 
on simulation tools (Kovacs et al., 2010). Even if suitable to represent the actual working of 
the system, they fail in suggesting near optimal solutions. The most recent trend is to 
integrate simulation models into optimisation tools (Van Dijk and Van Der Sluis, 2006); 
therefore, there is the need for designing mathematical programming models capable of 
handling the problem with limited computational effort. 
Suppose to have in the planning time horizon (for instance one day) a given flights departures 
schedule and, for each time period t, a given check-in capacity (ܴ௧). In particular, ܴ ௧ ൌ ݊௧ ݎ, 
where ݊ ௧  is the number of accessible desks in period ݐ (related to workforce availability) and ݎ represents the capacity of each single desk (assumed as a static parameter). 
In order to optimally allocate this capacity, we have to consider that, in each time period ݐ, 
only some flights can be processed; indeed, for each flight j, a time window ൫ ௝ܶି ǡ ௝ܶା൯, within 
which passengers can be checked in, is defined depending on the departure time of flight ݆, 
the characteristics of the flight (i.e. national, international, intercontinental) and/or the 
company policies.  
Even if the uncertainty in passengers’ behaviours could not allow forecasting the exact 
distribution of the arrivals of passengers, through the analysis of historical data, it is possible 
to estimate it with a significant reliability (De Neufville and Odoni, 2003). 
With reference to a reverse network flows representation, denote by ݀௧௝ the number of 
passengers of flight ݆ arriving at check-in desks in the period ݐ. If binary variables ݕ௧௝ 
indicate whether or not the check-in of passengers of the flight ݆ in the period ݐ is possible, 
consequently the outflows ݔ௧௝  represent passengers to be checked-in in ݐ, while the holdover 
flows ݏ௧௝  those queuing at the end of period ݐ. With this interpretation, model (6)÷(11) 
consists in the optimization of the use of the available check-in capacity. In particular, 
assuming ݌௧௝ ൌ Ͳ (and, hence, ݄ ௧௝ ൒ Ͳ ݐ ׊ǡ  ሻ, the objective function (6) describes a݆ ׊
performance measure defined by the costs associated with maintaining queues and activating 
check-in operations.  
Constraints (7) are passengers’ conservation flow constraints. Constraints (8) can be modified 
in this way:  

௧௝ݏ  ൌ ෍ ݀ఛ௝௧
ఛൌͲ ൌ ݐ  Ͳǡ Ǥ Ǥ ǡ ௝ܶି െ ͳǢ  ݆ ൌ ͳǡ Ǥ Ǥ  ('8) ܯ

௧௝ݏ  ൌ Ͳ  ݐ ൌ ܶ൅݆ǡ Ǥ Ǥ ǡ ܰǢ  ݆ ൌ ͳǡ Ǥ Ǥ  (''8) ܯ
 

Conditions (8') express, for each flight ݆, the possible presence of queue before its check-in 
window, represented by all those passengers that arrive at the airport before ௝ܶି  and cannot be 
processed. It has to be noticed that the arrivals potentially can occur also before the beginning 
of the planning horizon, especially for those flights, whose check in window starts in period ௝ܶି ൌ ͳ. In order to take into account this aspect we introduced a non negative demand  ݀଴௝ ൒ Ͳ, and then the possibility to have a queue at the beginning of the planning horizon 
଴௝ݏ) ൌ ݀଴௝).  
Conditions (8'') impose that no passenger of flight ݆ can be in queue from the end of period ௝ܶା. 



Constraints (9) assure that passengers of flight j can be processed in the time interval t if and 
only if ݕ௧௝ ൌ ͳ. Interpreting ܽ ௝ as the check-in processing time of a single passenger of flight ݆, and assuming ܾ௝ ൌ Ͳ, conditions (10) express the resource capacity constraints for each 
period. The total capacity ܴ௧, coherently, is the total time available to accept passengers in 
the period ݐ and, then, it is defined as product between the number ݊௧  of accessible desks in 
period ݐ and the maximum service time of each desk, equal to the duration ߬ of the period 
itself   (ܴ௧ ൌ ݊௧ ߬). It can be noticed that the values of slack variables of constraints (10) 
indicate the reserve capacity and, therefore, an indication of the number of desks that can be 
closed with no change in the system performance in each period ݐ.  
In this case, constraints (14') on the maximum waiting times of passengers in the airport have 
been restricted to the check-in windows of the single flights as they are the only periods in 
which the processing is possible. They are, then, reformulated as follows: 

௧௝ݏ  ൑ ෍ ௧ା௞ǡ௝ఋݔ
௞ୀଵ ݐ  ൌ ܶെ݆ െ ͳǡ Ǥ Ǥ ǡ ܶ൅݆ െ Ǣߜ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (''14)  ܯ

Similarly, conditions (16) have been introduced here (restricted to the same time window) in 
order ensure that, once the check-in operations have been activated for a flight  ሺݕ௧௝ ൌ ͳሻ, 
they cannot be stopped until the end of the check-in window.  

௧ାଵǡ௝ݕ  ൒ ݐ ௧௝ݕ ൌ ܶെ݆ǡ Ǥ Ǥ ǡ ܶ൅݆ െ ͳǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  ('16) ܯ
 
The other constraints derive from the physical meaning of the introduced variables. 
Table 4 summarizes the model and the constraints that will be considered in the following 
implementation. The complete model formulation is reported in Section A.3 in Appendix A. 
___________________________________________________________________________ 

Insert Table 4 here 
_________________________________________________________________________________________ 
 
4. Implementation and solution of the described models  
The models based on CLSP formulation, introduced to describe three practical logistic 
applications, have been implemented and used to solve some test problems. The objective is 
to show how the proposed models are able to find solutions to problems of real dimensions in 
limited computing times and are capable of providing useful information to support 
decisions. Models were solved by utilising CPLEX 12.3 (with basic parameters setting) on an 
Intel Core i7 (1.86 GigaHertz) CPU equipped with 4.00 GB RAM.  
It is useful to underline that the experiences that will be shown can also be improved from the 
computational point of view. In fact, better results in terms of computing times may be 
obtained using approaches like cutting planes or branch and cuts algorithms, which can 
exploit alternative formulations of the model (for these aspects see, Pochet and Wolsey, 
2009). However this issue is out of the scope of the current paper, that is rather aimed at 
showing the potential of basic CLS models to solve the described problems. 
In the following we show the results obtained by solving the model on test problems 
appropriately generated to represent practical case studies. 
 
4.1 Application to the Bus Terminal Optimisation Problem  
For this application, a test of the model was performed using data related to a public coach 
and buses company (A.Ir. spa) operating in Southern Italy, in Avellino district. 
The aim was to define the optimal number of buses to be used and their departure time during 
the morning peak period at the transit terminal of Grottaminarda. This facility plays a crucial 
role in connecting a mainly rural area characterized by a dense presence of towns of limited 
population to the main towns of the region.  



The problem was solved assuming, as time horizon, the morning demand peak period (6.00–
11.00 am) divided in buckets of duration ߬ ൌ ͷ min, such that ܰ ൌ ͸Ͳ, a value ܥ௧௝ ൌ ܥ ൌ ͷͲ 
as bus capacity in constraints (9) and a value of ܭ ൌ ͳ as number of buses that can 
simultaneously leave the terminal in constraints (12). Furthermore, line activation costs (௧݂௝) 
and waiting costs (݄௧௝) were assumed to be independent of specific destinations and time 
periods and equal to each other ሺ ௧݂௝ ൌ ݄௧௝ ൌ ݂ ൌ ݄). For the case with ܯ ൌ ʹ destinations 
(Avellino and Naples), we used, as ݀௧௝, data provided by a passengers’ survey performed by 
the company. Then for ܯ ൌ Ͷǡ͸ we produced some randomly generated instances, assigning 
to each ݀ ௧௝ a value according to a uniform distribution in the range ሺͳǡ  ሻ. We assumedܯȀܥ
the value of parameter  in constraints (14’) equal to 4, allowing a maximum passengers’ 
waiting time of 20 minutes. 
For each value of 5 ,ܯ instances were generated. Average and maximum running times are 
reported in Table 5.  
 
________________________________________________________________________ 

Insert Table 5 here 
__________________________________________________________________________________________ 
 
In order to further test the behavior of the model, for M=6, additional tests were performed. 
For each considered instance, three different passengers arrival profiles were generated, in 
order to simulate different congestion levels. In particular, demand values for every 
destination in each single period (djt) were randomly generated according to a uniform 

distribution in the range [1, ఈכ஼ெ ሿ considering {1.5 ;1.0 ;0.5}=ߙ.  

In addition, in order to analyze how the parameters can affect the optimal solutions, a 
sensitivity analysis on the parameters ߪ, i.e. the ratio between the single bus activation cost 

and the waiting costs per period for passengers in the terminal ൬ߪ ൌ ௙೟ೕ௛೟ೕ ൌ ௙௛൰, and ߜ, i.e. the 

maximum waiting time, was performed (by not considering, in this case, constraints (12)). In 
particular,  ߪ has been first fixed equal to ͳ and then varied in the range ሾͳͲǡͳͲͲሿ with step ͳͲ, while ߜ has been fixed equal to ʹǡ Ͷǡ͸. 

It should be highlighted that, when the activation cost of a single bus is assumed to be equal 
to the waiting cost per period for a single passenger (1= ߪ), the model activates the maximum 
number of buses; namely, a bus towards each destination for each time period (ܰ כ  By .(ܯ
increasing ߪ, the number of departing buses decreases and achieves a minimum value, 
depending on the parameter ߜ. Figure 3 reports the number of buses, as a percentage of the 
maximum number of buses (y%=ሾσ σ ௧௝ெ௝ୀଵே௧ୀଵݕ ]/[ܰ כ  ߪ ሿ), depending on the parametersܯ
and ߜǤ Having assumed that each passenger can wait at most Ɂ periods in the terminal, the 
model has to activate at least a bus every ߜ ൅ ͳ periods towards each destination; therefore, ேఋାଵ כ  .impacts on the slope of the curves and on the convergence to the latter value  (ߙ ruled by the parameter) Obviously, it is possible to notice how the arrivals density .ܯ

Figures 4 report, for different combinations of values of ߙ and Ɂ, the minimum, maximum 
and average bus utilization rate depending on parameter ߪ. In particular, the single bus 
utilization rate can be defined as Ɋ௧௝ ൌ ௫೟ೕכ௬೟ೕ஼ , being computed just for the couples ሺݐǡ ݆ሻ for 

which ݕ௧௝ ൌ ͳ. It can be noticed that the bus utilization rate increases as the parameters ߙǡ Ɂ 
and ߪ increase. In particular, these curves show how the model can be employed as a decision 
support tool to analyze the working conditions of a bus terminal under different demand 



congestion profiles and service levels to be offered to passengers (expressed both in terms of 
maximum waiting times and waiting costs).  

_________________________________________________________________________ 
Insert Figures 3 and 4 here 

__________________________________________________________________________________________ 
 
4.2 Application to the Cross-Docking Operations Optimization Problem 
For this specific application, we simulated the typical organization of a cross-dock, 
considering the real functioning principles of the logistic platform of the Nola dry port in 
Naples area (Italy). The facility is a huge multi-modal platform designed to handle about 30 
million tons of freight per year. Its strategic position on the corridor between the south 
Mediterranean harbours and North Europe gives it the crucial role as consolidation point 
utilised for re-sorting shipments. In particular, within the platform, incoming goods are re-
arranged and carried forward by truck towards a limited number of other main cross-dock 
platforms in Northern Italy; then from there, goods can reach the final destination on by 
means of less-than-truckload shipments. The vast area of the dry port is sub-divided in 
logistics areas with few gates where freights directed to a limited number of predefined 
destinations are consolidated. 
On the basis of this reference real case, we generated some test problems representing 
operations to be performed at cross-docking platform. For this reason we assumed a time 
horizon of 12 hours (from 6am to 6pm) divided in periods of different duration ( ൌ͸Ͳǡ ͵Ͳǡ ʹͲ min) with, consequently, different number of periods (ܰ ൌ ͳʹǡ ʹͶǡ ͵͸). These time 
intervals are quite reasonable for a cross-docking platform, as, due to handling and sorting 
procedures, the time between subsequent shipments is usually not negligible.  
As regards the number of destinations, we considered three possible values (ܯ ൌ ʹǡ Ͷǡ ͸). 
This intends to reproduce the above mentioned case of a single logistic area. The capacity of 
outbound vehicles ܥ௧௝ ൌ  which appears in (9) was fixed equal to 38 which represents the ܥ
typical capacity (in EPAL pallet) of a heavy truck.  
Incoming goods, constituting the demand ݀௧௝ for shipments, have been generated at each 
period assigning a value according to an uniform probability distribution in the range ሾͲǡ ܯȀሺܥ כ ߝ is a corrective factor depending on the considered number of periods ܰ (in particular we fixed ߝ ሻሿ, whereߝ ൌ ܰȀͳʹ). This way, the number of periods in which the planning 
horizon has been divided, does not affect the congestion level of the arrivals but only the 
partition of the total demand across the periods. In addition, the parameter ܭ௧ representing the 
maximum number of trucks that can leave the platform in a given time period, according to 
constraints (12), was kept equal to 1, to simulate a very constrained situation in terms of 
workforce. Furthermore, constraints (13) about the maximum cross-docking capacity were 
implemented assuming ܵ௧ ൌ  corresponding to the capacity of two trucks, in order to ,ܥʹ 
simulate the stringent “just in time” logic that rules the cross-docking practice. As already 
stated, in this case, constraints (14’) were not considered. 
For each pair ሺܰǡ  ሻ, we generated 5 different test instances. In Table 6, we report theܯ
average running times (in seconds) obtained to solve problems with different values ሺܰǡ  .ሻܯ
Results show that, even for problems of more significant dimension, the model is capable of 
providing optimal solutions in reasonable times. 
Interesting managerial implications can be derived from a sensitivity analysis of the model 
considering its parameters ሺܥ௧ǡ ܵ௧ǡ  ௧ሻ. As an example, we present a typical output obtainableܭ
by varying the cross-dock capacity (ܵ) and the truck capacity (ܥ). The model is capable of 
providing the optimal result in terms of objective function for every pair of value ሺܥǡ ܵሻ. This 
way, it is possible to divide the space ሺܥǡ ܵሻ in regions on the basis of the values of optimal 



objective function. The typical pattern is provided in Figure 5: it shows that the minimum 
value (ݖ௠௜௡) is reached when both ܥ and ܵ  belong to the extreme North-East region; the 
objective function gradually increases when the capacity of the terminal and/or the truck 
capacity decrease; a non-feasibility area can be also identified. 
 
___________________________________________________________________________ 

Insert Table 6 here 
__________________________________________________________________________________________ 
___________________________________________________________________________ 

Insert Figure 5 here 
__________________________________________________________________________________________ 
4.3 Application to the Check-in Service Optimization Problem  
Test problems were obtained by considering daily timetables of a typical working day of 
main airports (reporting at least 500,000 passengers per annum) in Southern Italy (including 
the two main islands of Sardinia and Sicily). Table 7 shows the characteristics of each test 
problem.  
In particular, the beginning (ݐ଴) and the end (ݐே) of the time horizon (defined accordingly to 
the first and the last flight departure time from each airport) is indicated. The number of 
periods ܰ  is calculated assuming a duration  ൌ ͳͲ minutes for each period; therefore, ܰ ൌ ሺݐே െ -௝, a completion time ܶ௝ା for checkݐ ଴ሻȀ. For a given flight ݆ with departure timeݐ
in operations is determined. In particular, ௝ܶା is equal to ݐ௝ െ ௝ܦ , where ܦ௝  represents the time 
between the end of check-in operations and the departure time of the flight. We considered ܦ௝  equal to 30 and 60 minutes for national and international flights respectively. ௝ܶି  was 
determined subsequently, by assuming theoretical check-in windows equal to 120 and 240 
minutes for national and international flights. 
Demand for each flight ݀௧௝  has been randomly determined using a uniform distribution in the 
range ሾ݉ܽݔ௝Ȁʹǡ ݉ ௝ሿ, whereݔܽ݉  ௝ is the capacity of the aircraft assigned to flight ݆. Thisݔܽ
number is then distributed across the time window ൫ͳǡ ܶ൅݆൯ using passenger arrival profiles at 
the check-in area derived from a survey performed at Naples International Airport, taking 
into account the percentage of passengers from each flight requiring a physical check-in 
service (as they have not checked-in online) and their arrival profiles. The duration of single 
check-in operations ܽ௝  is fixed equal to 90 and 180 seconds for national and international 
flights respectively. Equation (16) is assumed as the objective function; the parameter  in 
constraints (14’) is assumed equal to 4, i.e. a maximum passengers’ waiting time of 40 
minutes is allowed. Table 7 shows that the computational times are extremely low in all the 
cases; indeed, all real-world cases are solved at optimality within 6 seconds. 
Furthermore, the model can be solved by varying its parameters (for instance ), this way 
providing useful information for the decision maker. 
With simple adaptations, the model can also be used to solve a dimensioning problem for 
automated check-in services, in which passengers have to access self-service kiosks for 
printing their boarding cards. 
___________________________________________________________________________ 

Insert Table 7 here 
__________________________________________________________________________________________ 
 
4.4 Remarks and Potential Further Applications 
The previous sub-sections have shown how the proposed models can be adapted to solve 

some real-world cases with limited computational efforts, thanks to the structural properties 

derived from the CLSP mathematical models. In addition, it has been shown that a wide set 

of logistics constraints can be reproduced, without losing the generality of the framework, 



just by including equations and conditions that have already been utilized in the extant 

literature. 
With a similar adaptation process, further dimensioning problems arising in logistic scenarios 
could be modelled, such as, for example: 

- dimensioning of airport security gates, in which the number of gates to be opened at 
specific time instants needs to be decided, keeping into account passengers waiting times; 

- dimensioning of motorways toll lanes, in which the number and the type (automated 
semi-automated, staff-attended) of tolling stations to be opened at specific time instants 
needs to be decided, keeping into account vehicles waiting times and staff costs; 

- optimization of railway transit terminals, in which the number of outbound services 
towards multiple destinations need to be decided, keeping into account demand profiles 
based on transiting passenger arrivals and their waiting times within the terminal. 

Nevertheless, stochastic queuing models can be integrated into the proposed optimization 

models in order to simulate demand profiles. 

Furthermore, the possibility of formulating logistic problems using the general framework of 
a CLSP permits to exploit the vast literature dedicated to this model. In particular it may be 
possible to consider results about complexity and reformulation aspects and to implement 
effective and well-established solution methods (exact and/or heuristic). 
 
5. Conclusions 
Inventory models have been widely employed in the academic literature and in corporate 
practice to solve a wide range of theoretical and real-world problems, mainly related to 
production planning and scheduling.  
However, if we look at Capacitated Lot-Sizing model as a general model of flow control, it is 
possible to use it to describe and formulate a wide variety of optimization problems. The aim 
of this paper has been highlighting opportunities of using, through simple adaptations of the 
basic version, this model to solve some practical logistics applications not strictly related to 
the manufacturing and production environment. In particular, we have illustrated how three 
different applications can be effectively formulated through this approach. The application of 
the implemented models to real-world case studies has shown the possibility of obtaining 
optimal solutions in reasonable computational times by utilizing a commercial solver.  
In addition to this aspect, many other advantages can be derived from the use of CLSP 
models: the possibility of immediately including operational constraints and conditions able 
to effectively describe real case situations; the availability of a vast developed literature 
which can be exploited to derive mathematical conditions to describe real-life constraints, to 
benefit from theoretical results and to implement effective and well-established solution 
methods (exact and/or heuristic). 
Future research could consider a more in-depth analysis of the described applications in order 
to verify the potential of this model framework to reproduce effectively more complex 
operational aspects that can occur in real cases; nevertheless, new contexts and fields in 
which the adaptation of this approach can be effective and useful could also be explored. 
 
 
 
 
 
 
 
 



Appendix A: Mathematical Models 
In this appendix, the different adaptations of the Capacitated Lot-Sizing models utilized to 
cope with the specific problems introduced are reported. Even though the adaptations are 
straightforward and detailed in Tables 2, 3 and 4, the models are reported here for the benefit 
of the reader.  
 
A.1 The Bus Terminal Schedule Optimization Problem Mathematical Model 
 
 
 min  ݖ ൌ ෍ ෍൫݄௧௝ݏ௧௝ ൅ ௧݂௝ݕ௧௝൯ெ

௝ୀଵ
ே

௧ୀଵ  (6) 

s.t.    
௧௝ݏ  ൌ ௧ିଵǡ௝ݏ െ ௧௝ݔ ൅ ݀௧௝ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (’7) ܯ
௧௝ݏ  ൌ Ͳ ݐ ൌ Ͳ and ݐ ൌ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (8)  ܯ
௧௝ݔ  ൑ ݐ ௧௝ݕܥ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (9)  ܯ
 ෍ ௧௝ெݕ

௝ୀଵ ൑ ݐ ܭ ൌ ͳǡ Ǥ Ǥ ǡ ܰ   (12) 

௧௝ݏ  ൑ ෍ ௧ା௞ǡ௝ఋݔ
௞ୀଵ ݐ  ൌ ͳǡ Ǥ Ǥ ǡ ܰ െ Ǣߜ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  ('14)  ܯ

௧௝ݏ  ൒ ͲǢ ௧௝ݔ ൒ ͲǢ ௧௝ݕ ൌ ͲȀͳ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (11)  ܯ
 
 
 
A.2 The Cross-Docking Operations Optimization Problem Mathematical Model   
 
 
 min  ݖ ൌ ෍ ෍൫݄௧௝ݏ௧௝ ൅ ௧݂௝ݕ௧௝൯ெ

௝ୀଵ
ே

௧ୀଵ  (6) 

s.t.    
௧௝ݏ  ൌ ௧ିଵǡ௝ݏ െ ௧௝ݔ ൅ ݀௧௝ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (’7)  ܯ
௧௝ݏ  ൌ Ͳ ݐ ൌ Ͳ and ݐ ൌ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (8)  ܯ
௧௝ݔ  ൑ ݐ ௧௝ݕܥ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (9)  ܯ
 ෍ ௧௝ெݕ

௝ୀଵ ൑ ݐ ܭ ൌ ͳǡ Ǥ Ǥ ǡ ܰ   (12) 

 ෍ ௧௝ெݏ
௝ୀଵ ൑ ݐ ܵ ൌ ͳǡ Ǥ Ǥ ǡ ܰ (13) 

௧௝ݏ  ൒ ͲǢ ௧௝ݔ ൒ ͲǢ ௧௝ݕ ൌ ͲȀͳ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (11)  ܯ
 
 
 
 
 
 
 
 



A.3 The Check-in Service Optimization Problem Mathematical Model   
 
 
 min  ݖ ൌ ෍ ෍൫݄௧௝ݏ௧௝ ൅ ௧݂௝ݕ௧௝൯ெ

௝ୀଵ
ே

௧ୀଵ  (6) 

s.t.    
௧௝ݏ  ൌ ௧ିଵǡ௝ݏ െ ௧௝ݔ ൅ ݀௧௝ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (’7)  ܯ
௧௝ݏ  ൌ ෍ ݀ఛ௝௧

ఛൌͲ ൌ ݐ  Ͳǡ Ǥ Ǥ ǡ ௝ܶି െ ͳǢ  ݆ ൌ ͳǡ Ǥ Ǥ  (’8) ܯ

௧௝ݏ  ൌ Ͳ  ݐ ൌ ܶ൅݆ǡ Ǥ Ǥ ǡ ܰǢ  ݆ ൌ ͳǡ Ǥ Ǥ  (’’8) ܯ
௧ାଵǡ௝ݕ  ൒ ݐ ௧௝ݕ ൌ ܶെ݆ǡ Ǥ Ǥ ǡ ܶ൅݆ െ ͳǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  ('16) ܯ
௧௝ݔ  ൑ ݐ ௧௝ݕ௝ܥ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (9)   ܯ
 ෍ ௝ܽெ

௝ୀଵ ௧௝ݔ ൑ ܴ௧ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰ  (10) 

௧௝ݏ  ൑ ෍ ௧ା௞ǡ௝ఋݔ
௞ୀଵ ݐ  ൌ ܶെ݆ െ ͳǡ Ǥ Ǥ ǡ ܶ൅݆ െ Ǣߜ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (''14)  ܯ

௧௝ݏ  ൒ ͲǢ ௧௝ݔ ൒ ͲǢ ௧௝ݕ ൌ ͲȀͳ ݐ ൌ ͳǡ Ǥ Ǥ ǡ ܰǢ ݆ ൌ ͳǡ Ǥ Ǥ ǡ  (11)  ܯ
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Figure 1 – Representation of a DLSP as network flow problem 
 

 

   

 

 

 

 

 

 

 

 

 

Figure 2 – Reverse representation of a DLSP as network flow problem 
 

 

 

Figure 3 – Bus departures (y%) variation against ߙǡ  and į parameters ߪ
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Figure 4 – Bus utilization rate ሺɊሻ variation against ߙǡ  and į parameters ߪ
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Figure 5 – Sensitivity analysis varying the dock capacity S and the truck capacity C 

  



  Basic Version  Logistics Adaptations 
P

a
ra

m
et

er
s 

 Demand for item j in period t ࢐࢚ࢊ Item Service ࢐
Units of demand (for instance, passengers or 
goods) for service j arising in period t ࢐࢚ࢌ Setup cost incurred for the production (or ordering) of 

item ݆  in period ݐ 
Cost associated with the activation of service ݆ 
in period ࢐࢚࢖ ݐ Unit production cost for item j in period ݐ 
Cost for satisfying a unit of demand for service ݆ in period ࢐࢚ࢎ ݐ Unit holding cost for item j at the end of period t  
Cost for maintaining (or storing) a unit of 
demand for service ݆ in queue (or in a storage 
facility) at the end of period ࢐࢚࡯ ݐ Maximum feasible lot size  Maximum number of units of demand for 
service ݆ that can be satisfied in period ࢚ࡾ ݐ Total available capacity in period t Total service capacity in period t ࢐ࢇ Unit capacity consumption for the production of item ݆ Capacity consumption for satisfying a unit of 
demand for service ݆  ࢐࢈ Capacity consumption for the setup of item ݆ Capacity consumption for the activation of 
service ݆ ࢚ࡷ Maximum number of setup in period t 
Maximum number of services that can be 
activated in period t ࢚ࡿ Maximum inventory level for period t 
Maximum demand still to be satisfied (i.e., in 
queue) at the end of period t ࢾ Maximum duration for the inventory level Maximum waiting time for service demand 

V
a

ri
a

b
le

s 

 Quantity to be produced or ordered during period t ࢐࢚࢞
Units of demand (for instance, passengers or 
goods) for service ݆ being processed in period ࢐࢚࢙ ݐ Stock at the end of period t 

Residual demand units (for instance, 
passengers or goods) for service ݆  waiting to 
be processed at the end of period ݐ 

 Binary variable concerning the production activation ࢐࢚࢟
(or the issuing of an order) (or not) of item j in period t 

Binary variable concerning the activation (or 
not) of service ݆ in period ݐ, and, therefore, the 
possibility (or not) of processing demand units 
for it. 

Table 1 – Adaptation of the CLSP model to a general logistics context 
  



Equation Meaning 
Variations from  
Original CLSP formulation 

(6) Total cost associated with the activation of departing buses 

௧௝݌ ൌ Ͳ                                            ݐ׊ǡ ݆ ௧݂௝ ൌ ݂ ൐ Ͳ                                    ݐ׊ǡ ݆ ݄௧௝ ൌ ǡݐ׊                                         ݂ߪ ݆ 
 

(7͛) Flow (Passengers) conservation constraint  

(8) 
Passengers waiting in the terminal at the beginning/end of 
the planning horizon  

(9) Capacity of available buses  ܥ௧௝ ൌ  ݆ݐ׊                                            ܥ
(12) 

Maximum number of buses that can leave the terminal in 
each time period ܭ ݐ௧ ൌ  ݐ׊                                             ܭ

(14͛) Limitation on waiting times of passengers in the terminal  

(11) Physical meaning of variables  

Table 2 – Adaptation of the CLSP to the Bus Terminal Schedule Optimization problem 

 

Equation Meaning 
Variations from  
Original CLSP formulation 

(6) Total activation cost of the scheduled outbound trucks 
௧௝݌ ൌ Ͳ                                            ݐ׊ǡ ݆ ௧݂௝ ൌ ݂ ൐ Ͳ                                    ݐ׊ǡ ݆ ݄௧௝ ൌ ǡݐ׊                                         ݂ߪ ݆ 

(7͛) Flow (Freights) conservation constraint  

(8) 
Freight stored in the cross-dock at the beginning/end of the 
planning horizon  

(9) Capacity of outbound vehicles  ܥ௧௝ ൌ ǡݐ׊                                            ܥ ݆ 
(12) 

Maximum number of trucks can leave the cross-dock during 
time period t ܭ௧ ൌ  ݐ׊                                            ܭ

(13) Maximum storage capacity of the cross-dock ௧ܵ ൌ  ݐ׊                                              ܵ

(11) Physical meaning of variables  

Table 3 – Adaptation of the CLSP to the Cross-Docking Operations Optimization problem 

 

Equation Meaning 
Variations from  
Original CLSP formulation 

(6) 
Number of check-in services activated over the planning 
horizon 

௧௝݌ ൌ Ͳ                                            ݐ׊ǡ ݆ ௧݂௝ ൌ ݂ ൐ Ͳ                                    ݐ׊ǡ ݆ ݄௧௝ ൌ ǡݐ׊                                         ݂ߪ ݆ 
 

(7’) Flow (Passenger) conservation constraint  

(8) 
Passengers waiting at check-in desks outside the check-in 
time window See Equations (8’,8’’) 

(9) Passengers that can be processed in time period  t for flight j ܥ௧௝ ൌ ௝ܥ ൒ ෍ ݀ఛ௝ఛୀଵǡǤǤǡே  ݆׊                   
(10) Overall available capacity in time period t  ௝ܾ ൌ Ͳ                                               ݆׊ 
(14’) Limit waiting times of passengers in queue at check-in desks See Equation (14’’) 

(16) Check-in services continuity See Equation (16’) 

(11) Physical meaning of variables  

Table 4 – Adaptation of the CLSP to the Check-in Service Optimization problem 

 



 

Destinations  
(M) 

Periods (N) 
12 24 36 

2 2.14 3.23 3.63 
4 2.80 4.10 5.18 
6 3.09 4.20 8.10 

Table 5 – Average computational times (in seconds) for test problems  
 

Destinations 
(M) 

Periods 
(N) 

Running Times (s) 
Average Maximum 

2 60 3.02 3.91 
4 60 4.30 7.21 
6 60 6.64 9.49 

Table 6 – Computational times (in seconds) for the considered test problems 
 

Airport 

Time 
horizon Periods 

(N) 
Flights 

(M) 
National International 

Running 
times 

(s) Start 
(to) 

End 
(tN) 

Alghero 06.00 22.00 96 22 14 8 4.13 
Bari 05.30 22.00 99 45 30 15 5.07 
Brindisi 05.30 22.00 99 37 28 9 4.98 
Cagliari 05.10 22.20 103 51 35 16 5.34 
Catania 04.50 23.00 109 89 50 39 6.36 
Lamezia 05.00 22.00 102 39 28 11 5.10 
Naples 05.10 22.20 103 76 42 34 6.03 
Olbia 05.30 22.00 99 30 19 11 4.78 
Palermo 05.00 22.00 103 60 38 22 5.58 
Reggio 
Calabria 

06.00 21.00 90 12 11 1 3.98 

Trapani 05.30 22.00 99 26 16 10 4.67 
Table 7 – Characteristics and computational times for the considered test problems 

 

 

 


