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Nucleotide signaling molecules are important messengers in key
pathways that allow cellular responses to changing environments.
Canonical secondary signaling molecules act through specific re-
ceptor proteins by direct binding to alter their activity. Cyclic
diadenosine monophosphate (c-di-AMP) is an essential signaling
molecule in bacteria that has only recently been discovered. Here,
we report on the identification of four Staphylococcus aureus c-
di-AMP receptor proteins that are also widely distributed among
other bacteria. Using an affinity pull-down assay, we identified
the potassium transporter-gating component KtrA as c-di-AMP
receptor protein and it was further shown that this protein, to-
gether with c-di-AMP, enables S. aureus to grow in low potassium
conditions. We defined the c-di-AMP binding activity within KtrA
to the RCK C (regulator of conductance of K+) domain. This domain
is also found in a second S. aureus protein, CpaA, which as we show
here also directly binds c-di-AMP. Since RCK C domains are found
in proteinaceous channels, transporters and antiporters from all
kingdoms of life, these findings have broad implications for the
regulation of different pathways through nucleotide-dependent
signaling. Using a genome-wide nucleotide protein interaction
screen, we further identified the histidine kinase protein KdpD that
in many bacteria is also involved in the regulation of potassium
transport and a PII-like signal transduction protein, which we re-
named PstA, as c-di-AMP binding proteins. With the identification
of these widely distributed c-di-AMP receptor proteins we link
the c-di-AMP signaling network to a central metabolic process in
bacteria.

c-di-AMP | receptor protein | Staphylococcus

Introduction. Nucleotide signaling molecules control funda-
mental processes in all forms of life. There is now a large body of
evidence linking nucleotides such as cyclic adenosine monophos-
phate (cAMP), cyclic guanosine monophosphate (cGMP) and
guanosine tetra-(ppGpp) and pentaphosphate (pppGpp) to the
control of fundamental metabolic pathways and stress response
processes in eukaryotic and prokaryotic cells (1-3). Cyclic-
dinucleotides in particular have recently gained increased atten-
tion with the identification of novel nucleotides such as cyclic
diadenosine monophosphate (c-di-AMP) and the hybrid c-AMP-
GMP molecule in bacterial cells (4-6), as well as the discovery
that cyclic dinucleotides are also produced by eukaryotic cells
(7-9). The dinucleotide cyclic diguanosine monophosphate (c-di-
GMP) and the molecular mechanisms by which it controls cellular
pathways has been well characterized and it is now recognized as
a central regulator in bacterial cells that controls the switch from
free-living planktonic to a sessile biofilm-associated lifestyles. In
pathogenic organisms this is often linked to colonization of the
human host and virulence (10). On the other hand, the function
and the pathways controlled by the novel signaling nucleotide c-
di-AMP are less clear, largely due to a gap in our knowledge of
specific receptor proteins.

Many Gram-positive bacteria, including the important hu-
man pathogens Staphylococcus aureus (11), Streptococcus pyo-
genes (12), Listeria monocytogenes (5) and Mycobacterium tuber-

culosis (13) produce c-di-AMP and it is likely that c-di-AMP is
also synthesized by several Gram-negative bacteria and a subset
of archaea (14). c-di-AMP is synthesized by DisA N domain-
containing proteins DacA, DisA and YojJ and degraded by the
DHH/ DHHA1 domain-containing phosphodiesterase enzyme
GdpP (4, 5, 11, 15-18). A variety of different phenotypes have
been linked to altered c-di-AMP levels; an increase in c-di-
AMP levels correlates with increased acid resistance (16, 19) and
altered antibiotic resistance including an increase in methicillin
resistance in S. aureus (11, 18, 20). Most notable, however, are the
findings that L. monocytogenes (5) and Bacillus subtilis (18) cannot
grow in the absence of c-di-AMP, showing that in contrast to
other signaling nucleotides, c-di-AMP controls essential cellular
pathways. The molecular basis for this is currently not known,
though it is assumed that, similar to other signalling molecules,
c-di-AMP interacts with a specific set of target proteins and
upon binding alters their activity or function. Currently only one
bacterial c-di-AMP receptor protein, the TetR-type transcription
factor DarR, has been identified in Mycobacterium smegmatis
(21). However, the absence of close DarR homologs in many
organisms that likely produce c-di-AMP implies that additional
c-di-AMP target proteins must exist.

In this study we have identified KtrA as c-di-AMP target
protein by using an affinity pull down assay. KtrA is a member
of the widely distributed RCK (regulator of conductance of K+)
protein family, known to be involved in the gating of ion channels.
Here we show that KtrA is required for the growth of S. aureus
under potassium limiting conditions. Through subsequent bind-
ing studies we show that c-di-AMP specifically interacts with the
C-terminal RCK C domain of KtrA. A second S. aureus RCK C
domain-containing protein CpaA, a predicted cation/proton an-
tiporter, was subsequently identified bioinformatically and its
interaction with c-di-AMP confirmed experimentally. Lastly, us-
ing a genome wide interaction screen, we identified the PII-like
signal transduction protein PstA and the histidine kinase KdpD
as additional c-di-AMP binding proteins. With the identification
of these four novel and widely distributed c-di-AMP binding
proteins we provide a link between c-di-AMP and a fundamental
cellular process in bacteria, namely ion transport.

Results
Identification of the c-di-AMP target protein KtrA. To identify c-
di-AMP receptor proteins, we performed an affinity pull down
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Submission PDFFig. 1. Identification of S. aureus KtrASA as a potential c-di-AMP binding
protein.(A)Silver stained polyacrylamide gel of cytoplasmic S. aureus pro-
teins retained on c-di-AMP-coupled (+) or uncoupled (-) beads. The protein
band enriched in the c-di-AMP lane (indicated with an asterisk) was iden-
tified by mass spectrometry as S. aureus protein SAUSA300 0988 (KtrASA).
(B)Illustration of Ktr-type potassium transport systems, which are composed
of a KtrB-type membrane component and a cytoplasmic KtrA-type gating
component. (C)Schematic representation of the KtrASA domain structure
with the RCK N domain (amino acids 4-126) indicated in blue and RCK C
domain (amino acids 135-219) shown in orange. The RCK N domain of the B.
subtilis KtrA homolog is known to bind to nucleotides including ATP, ADP,
NAD+ and NADH.

assay using c-di-AMP-coupled magnetic beads and protein ex-
tracts derived from the S. aureus strain LAC*. This strain is
an erythromycin sensitive derivative of the clinically relevant
community-acquired methicillin resistant USA300 strain LAC.
One protein band was enriched in samples obtained from c-
di-AMP-coupled beads (Fig. 1A) and identified by mass spec-
trometry as S. aureus protein SAUSA300 0988. This protein has
high similarity to the B. subtilis proteins KtrABS (51% identity)
and KtrCBS (63% identity) that together with their respective
membrane components KtrB and KtrD, form potassium trans-
porters (Fig. 1B) (22). SAUSA300 0988 is the only KtrA/C-type
protein in S. aureus and was renamed KtrASA. The cytoplasmic
components of Ktr-systems are part of the RCK (regulator of
conductance of K+) protein family and play an important role in
transporter gating (23, 24). KtrASA is a typical RCK protein with
an RCK N domain and an RCK C domain (Fig. 1C). Based on
a structural model, it is likely that KtrASA assumes a similar two-
lobed fold as the RCK domain in the potassium channel protein
MthK of Methanobacterium thermoautotrophicus (Fig. S1) (25,
26). Interestingly, a nucleotide-binding site for ATP and other
nucleotides has been identified previously in the RCK N domain
of the B. subtilis protein KtrA (23) and based on a structural
model the RCK N domain of the S. aureus protein is likely to
assume the same fold with the conserved GxGxxG motif forming
part of a nucleotide-binding site and with aspartic acid residues
D32 and D52 acting as crucial nucleotide-binding residues (Fig.
S1) (23).

c-di-AMP binds to the RCK C domain of KtrA. To confirm
the interaction between KtrASA and c-di-AMP and to define more
precisely the interaction domain, we adapted the differential
radial capillary action of ligand assay (DRaCALA), which was
previously used to study c-di-GMP-protein interactions (27). This
assay is based on the principle that free nucleotides migrate

outward when spotted on nitrocellulose membranes, whereas
bound ligand is sequestered to the protein and immobilized in a
tight spot on the membrane (Fig. 2A). The distribution of free and
bound ligand can be readily visualized and quantified using radi-
olabeled nucleotides. To determine if c-di-AMP-protein interac-
tions could be measured with this assay, we produced 32P-labeled
c-di-AMP (Fig. S2) and tested its interaction with purified S. au-
reus GdpP and B. subtilis DisA proteins, c-di-AMP degrading and
synthesizing enzymes, respectively. c-di-AMP-specific binding to
these control proteins was observed (Fig. S3), thus validating
DRaCALA as a method to study c-di-AMP-protein interactions.
Using this method, we next investigated the interaction between
c-di-AMP and purified His-KtrASA protein and determined an
interaction with a Kd of 64.4 ± 3.4 nM (Fig. 2B). Only an excess of
unlabeled c-di-AMP, but not the other nucleotides tested, includ-
ing ATP, competed for binding with labeled c-di-AMP (Fig. 2C).
This also indicated that c-di-AMP does not bind to the previously
described nucleotide-binding site in RCK N. Furthermore, c-di-
AMP bound to the KtrASA-D32A/D52A variant with alanine
substitutions of the two key nucleotide-binding residues within
RCK N (Fig. 2D). To determine more specifically which portion
of KtrASA interacts with c-di-AMP, the RCK N and RCK C do-
mains were produced and purified separately. While the RCK N
domain interacted, as expected, with ATP it did not bind c-di-
AMP (Fig. 2E). In contrast, the RCK C domain bound c-di-AMP
with a Kd of 369.0 ± 44.4 nM (Fig. 2E and 2F), thus showing
that the RCK C domain is the receptor domain of c-di-AMP. To
further validate the DRaCALA binding results, an interaction be-
tween c-di-AMP and KtrA or the RCK C domain in the nM range
was further confirmed by equilibrium dialysis (Fig. S4). Of note,
a specific interaction between c-di-AMP and the RCK C domain
of KtrA was also obtained when DRaCALAs were performed
using Escherichia coli extracts prepared from strains producing
different KtrASA variants in place of purified proteins (Fig. S5).
Furthermore, E. coli extracts containing the full-length B. subtilis
KtrA protein, but not an N-terminal fragment lacking the RCK C
domain, interacted with c-di-AMP (Fig. S5). Taken together,
these results show that KtrA is a bona fide bacterial c-di-AMP
receptor protein and support a model where the two domains
in Gram-positive KtrA-type proteins bind different nucleotides:
ATP, ADP, NAD+ or NADH with the RCK N and c-di-AMP
within the RCK C domain.

KtrA is important for the growth of S. aureus in low potas-
sium. To investigate the involvement of KtrASA and c-di-AMP in
the growth of S. aureus in low potassium conditions, the growth
of ktrA and gdpP mutant strains was compared to that of the
wildtype LAC* strain. The gdpP mutant strain has 15-fold higher
levels of intracellular c-di-AMP (11) and therefore KtrA should
be in the nucleotide-bound state under these conditions. Since
potassium uptake is especially important during osmotic stress,
the different S. aureus strains were grown on chemically defined
medium (CDM) plates containing 0.75 M NaCl. Under these
stress condition, a two to three log growth defect was observed
for both the ktrA and gdpP mutant strains, which could be comple-
mented either by the addition of potassium or by the introduction
of a functional copy of ktrA or gdpP, respectively (Fig. 3A and
3B). The ktrA mutant was also hyper-susceptible to the potassium
ionophore nigericin, which causes an exchange of intracellular K+

for extracellular H+ (Fig. 3C). The hypersensitivity to nigericin
could again be rescued by the addition of 250 mM potassium
or by genetic complementation (Fig. 3C and 3D). Similarly a
ktrA mutant strain in the methicillin sensitive S. aureus strain
background Newman was also more sensitive to nigericin and did
not grow as well as the wild-type strain under the osmotic stress
conditions unless potassium was added (Fig. S6). These results
suggest a function for KtrASA in potassium uptake in S. aureus
strains and that c-di-AMP binding to KtrASA might inactivate
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Fig. 2. Characterization of the c-di-AMP / KtrASA

interaction by DRaCALA. (A) Schematic representa-
tion of the differential radial capillary action of
ligand assay (DRaCALA) to study c-di-AMP protein
interactions. (B)Binding curve and Kd determina-
tion for c-di-AMP and purified His-KtrASA. Kd values
were determined from the curve as previously de-
scribed (27). (C)DRaCALAs with purified His-KtrASA

protein and 32P-labeled c-di-AMP and an excess
of cold competitor nucleotide as indicated above
each spot. (D) DRaCALAs with purified His-KtrASA,
His-KtrASA-D32A or His-KtrASA-D32A/D52A and 32P-
labeled c-di-AMP.(E)DRaCALAs with purified His-
KtrASA-1-140 (RCK N) or His-KtrASA-134-220 (RCK C)
and 32P-labeled c-di-AMP or 32P-labeled ATP as in-
dicated below the spots. (F)Binding curves and Kd

determination for c-di-AMP and purified His-KtrASA-
134-220 protein containing only the RCK C domain.
The data were plotted and the best-fit line was deter-
mined by non-linear regression incorporating the hill
equation using GraphPad Prism software.

Fig. 3. Effect of potassium on growth of wildtype
(WT), ktrA and gdpP S. aureus strains.(A) and (B), The
indicated S. aureus strains were grown overnight in
chemically defined medium (CDM) containing 2.5 mM
KCl. Next day serial dilutions of washed cells were
spotted onto CDM agar plates containing 0.75 M NaCl
and containing either 0 mM or 2.5 mM potassium. (C)
and (D), Nigericin sensitivity curves ofWT, ktrA mutan-
tand complemented S. aureus strains. The different
strains were grown in 96-well plates in CDM medium
supplemented with 2.5 mM or 250 mM potassium
and nigericin at the indicated concentration. OD600

readings were determined after 24 h growth and
plotted as % growth compared to the growth in the
absence of nigericin. Experiments were repeated a
minimum of 5 times. When grown in 2.5 mM KCl the
ktrA mutant consistently showed a two-fold reduced
MIC for each experiment. The MIC for all the strains
varied between experiments from 0.1-0.8 µM for the
wildtype and complemented strain and 0.05-0.4 µM
for the mutant strains.

channel activity, as the gdpP mutant strain, which has greatly
increased levels of c-di-AMP, displays a phenotype similar to the
ktrA mutant.

c-di-AMP interacts with CpaA, a second S. aureus RCK C
domain-containing protein. The identification of the RCK C do-
main as a c-di-AMP interacting domain allows the bioinformatic
prediction of other receptor proteins based on the presence of
an RCK C domain. In this manner we discovered the protein
SAUSA300 0911 in S. aureus strain LAC*, which we rename
CpaA. This protein is a predicted cation/proton antiporter that
is composed of an N-terminal transmembrane region followed by
an RCK domain (Fig. 4A). An interaction between its RCK C

domain and c-di-AMP was tested by performing DRaCALAs
with E. coli extracts prepared from strains either containing the
empty vector as a control, or expressing the complete RCK or
the RCK C domain of CpaA. 32P-labeled c-di-AMP interacted
specifically with both the RCK and the RCK C domain (Fig. 4B),
thus showing that CpaA is a second c-di-AMP target protein.

Identification of PstA and KdpD as specific di-AMP binding
proteins using a genome-wide open reading frame (ORFeome)
DRaCALA screen. The DRaCALA method can be used to iden-
tify nucleotide/protein interactions using crude whole-cell E. coli
lysates. This makes this assay ideally suited to perform a genome-
wide protein/nucleotide interaction screen. An S. aureus strain
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Fig. 4. Identification of CpaA as an additional c-di-AMP target protein
(A)Schematic representation of the predicted K+ or Na+ antiporter CpaA
(SAUSA300 0911), containing an N-terminal transmembrane (yellow) and
cytoplasmically located RCK N (blue) and RCK C (orange) domains. (B) DRa-
CALAswith 32P-labeled c-di-AMP and E. coli extracts prepared from the vector
control strain (pET28b) or strains overproducing His-CpaASA-402-614 (RCK N
and RCK C) or His-CpaASA-513-614 (RCK C). Cold c-di-AMP was added as a
competitor where indicated.

COL ORFeome Gateway library is available and we reasoned
that this library together with the DRaCALA method should
allow us to identify additional S. aureus c-di-AMP binding pro-
teins. The library contains 2,343 S. aureus ORFs (86% of all S.
aureus COL genes) within the Gateway entry vector pDONR221.
These ORFs were recombined into the pDEST17 protein expres-
sion vector, placing each ORF under the control of the IPTG-
inducible T7 promoter. With the exception of eight reactions that
failed, all other resulting plasmids were recovered in the E. coli
protein expression strain T7IQ. Four percent of the library strains
were subsequently analysed by PCR and all found to contain an
insert of the expected size. Next, protein expression was induced
and whole cell E. coli extracts prepared. Eight percent of these
extracts were analyzed by SDS-PAGE and coomassie staining and
visible protein overproduction was observed for approximately
70% of the lysates. Finally, these extracts, arrayed in twenty
five 96-well plates, were used in DRaCALAs and the fraction
of bound radiolabeled c-di-AMP determined for each spot. An
average fraction bound value was determined for each plate and
the cut off value for positive interactions was set at 1.4 times
this average fraction bound background value. Extracts derived
from strains expressing four different proteins gave c-di-AMP
fraction bound values above background using these criteria, one
of which was KtrA, thereby validating the DRaCALA ORFeome
screen. The other positive clones, SACOL0525, SACOL2070 and

SACOL2218, were confirmed by sequencing and renamed PstA
(PII-like signal transduction protein A), KdpD (a sensor histidine
kinase and annotated as KdpD in other S. aureus strains) and Adk
(adenylate kinase), respectively. To determine if these proteins
are indeed bona fide c-di-AMP binding proteins, the correspond-
ing genes were reamplified from S. aureus LAC* chromosomal
DNA and cloned into the E. coli expression vector pET28b for
overproduction as His-tag fusion proteins. Subsequently, extracts
were prepared and used in DRaCALAs (Fig. S7). Of note, while
the fraction bound values for PstA and KdpD were twice as
high as the background value in the initial whole genome screen,
the c-di-AMP fraction bound value obtained for Adk was only
1.45 times above background and so only just made the cut off
(Fig. 5A and S7). When no interaction was observed with Adk
after recloning, this protein was no longer regarded as a c-di-
AMP receptor protein (Fig S7). On the other hand, c-di-AMP
binding to PstA and KdpD was confirmed after recloning (Fig.
S7) and both proteins interacted specifically with c-di-AMP as
only the addition of an excess of cold c-di-AMP and not other
cold nucleotides prevented the binding of radiolabeled c-di-AMP
(Fig. 5B and 5C). CpaA was not identified in this screen as the
gene encoding for this protein is not present in the S. aureus COL
genome. Taken together, the genome-wide DRaCALA screen
identified two additional S. aureus proteins, PstA and KdpD, as
novel c-di-AMP receptor proteins.

Discussion

Since the discovery of c-di-AMP, it has been speculated that
this nucleotide binds to proteins to regulate their function. In
this study we identified four c-di-AMP receptor proteins, namely
KtrA, CpaA, KdpD and PstA by using an affinity pull down assay,
bioinformatics analysis and a genome-wide protein nucleotide in-
teraction screen (Figs. 1, 4 and 5). With the identification of three
proteins (KtrA, CpaA, and KdpD) that have been implicated in
potassium transport in other bacteria, we have linked c-di-AMP
signaling to potassium transport in S. aureus. Interestingly, this
distinguishes c-di-AMP from c-di-GMP, which regulates multiple
cellular processes that help bacteria to transition between dif-
ferent lifestyles, such as extracellular carbohydrate and adhesion
production, motility and biofilm formation. The link between c-
di-AMP and the ion transport may explain why c-di-AMP, in
contrast to other related signaling nucleotides, is essential for
growth in bacterial species. Individually ktrA, cpaA, pstA and
kdpD are not essential (28-30) however it is plausible that com-
bined mutations may be lethal. Alternatively the existence of an
as yet unidentified essential c-di-AMP receptor is also entirely
possible.

The c-di-AMP binding region in S. aureus KtrA and CpaA
was narrowed down to the RCK C domain (Figs. 2 and 4). This
domain is present in a large number of bacterial and archaeal
proteins and there is a good correlation between the distribution
of the c-di-AMP cyclase domain DisA N and the presence of
RCK C domains. Most bacteria and archaea that potentially
synthesize c-di-AMP also contain one or more proteins with an
RCK C domain. This raises the possibility that c-di-AMP may
contribute to the regulation of ion transport in a large number of
bacteria and archaea. The number of RCK C domains per organ-
ism usually exceeds the number of cyclases, perhaps suggesting
that c-di-AMP regulates the function of multiple proteins, which
is similar to what we found in S. aureus. However, the RCK C
domain is phylogenetically more widely distributed than the c-di-
AMP cyclase domain and is also found in some eukaryotes such
as green algae, in additional archaeal species and most notably
in a large number of Gram-negative proteobacteria where the
c-di-AMP cyclase domain is absent. We would predict that in
those organisms other small molecules interact with this domain
to regulate transport processes. The RCK C domain is associated
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Fig. 5. Identification of PstA and KdpD as specific c-di-AMP target proteins. (A) For the whole genome DRaCALA screen, 32P-labeled c-di-AMP was dispensed
into 96-well plates containing E. coli lysates and aliquots were subsequently spotted in duplicate onto nitrocellulose membrane. The fraction of bound c-di-
AMP was calculated for each well as described in Roelofs et al. (27) and the average values from the duplicate spots plotted. Plates 5, 11 and 25 with positive
interactions are shown. The average fraction bound value for plate 5 was 0.178 ± 0.029. Well A10 was spiked with a KtrA lysate and well E3 contained the
PstA lysate, which had a fraction bound value of 0.370 (2 x background). The average fraction bound value for plate 11 was 0.174 ± 0.032. Well B12 was
spiked with a KtrA lysate and well G11 contained the Adk lysate, which had a fraction bound value of 0.253 (1.45 x background). The average fraction bound
value for plate 25 was 0.122 ± 0.015. Well G2 contained the KdpD lysate, with a fraction bound value of 0.252 (2 x background). (B and C) DRaCALAs were
preformed with E. coli extracts prepared from strains overproducing His-PstA (B) or KdpD-His (C) and 32P-labeled c-di-AMP and an excess of cold competitor
nucleotide as indicated above each spot. Fraction of bound nucleotide was determined as described in Roelofs et al. (27) and values from three independent
experiments were plotted with standard deviations.

as a soluble domain with potassium transporters, or in some cases
directly linked to ion antiporters, such as in CpaA. However, this
domain is also associated with predicted amino acid antiporters,
citrate transporters and voltage-gated channels. This suggests
that c-di-AMP or other small molecules might regulate a range
of different transport processes, which have not been previously
associated with signaling networks.

Potassium is a major and essential intracellular ion and there-
fore bacteria have evolved several different types of uptake sys-
tems. The third c-di-AMP binding protein identified in this study
was KdpD, which is a widely distributed membrane embedded
sensor histidine kinase that in many bacteria controls, together
with its cognate response regulator KdpE, the expression of a
second type of potassium uptake system. This ATP-dependent
potassium uptake system has been best characterized in E. coli
and consists of four membrane components KdpABCF and the
two-component system KdpDE, which is required for KdpABCF
expression at a very low potassium concentration when the other
uptake systems are no longer sufficient to allow the cell to acquire
the necessary amount of ion (31). However, a recent study on
the S. aureus KdpDE system suggested that this two-component
system has a different function in this organism (32). The S.
aureus KdpDE two-component system, which still responds to the
extracellular potassium concentration, was found to be no longer
required for bacterial survival under low potassium conditions,
but instead to control the expression of several well-characterized
S. aureus virulence factors (32). However, additional work is
needed to fully understand the function of this two-component
system in S. aureus and other Gram-positive bacteria and based
on this study its interplay with cellular c-di-AMP levels.

The least characterized c-di-AMP receptor protein identi-
fied in this study is the DUF970 domain-containing PII-like
signal transduction protein, which belongs to the GlnB super-
family of proteins and was renamed PstA. PII-type proteins are
one of the most widely distributed signal transduction proteins
in nature that are present in bacteria as well as archea and
plants. DUF970 domain-containing PII-like proteins are not only
present in Staphylococcus species but widely distributed among
Firmicutes. Characterized proteins belonging to this GlnB su-
perfamily are the cation tolerance protein CutA1 (33) and the
ATP phosphoribosyltransferase HisG, the first enzyme of the

histidine pathway (34). However the best characterized proteins
belonging to the GlnB superfamily are PII nitrogen regulatory
proteins, which are key signal transduction protein that report
on the nitrogen and carbon status of cells by sensing glutamine
and 2-ketoglutarate levels (35). Since proteins belonging to this
superfamily are known to bind diverse ligands and function by
protein-protein interaction to control the activity of enzymes,
transcription factor or transport proteins, we would assume that
upon c-di-AMP binding or release the S. aureus PstA protein
interacts with other cellular proteins. However these still need to
be discovered.

This work demonstrates the feasibility of a DRaCALA-based
ORFeome screen as a high-throughput platform for identifying
c-di-AMP receptor proteins. While the DRaCALA ORFeome
screen will identify receptors whose binding site does not require
additional proteins, biochemical pull-down assays will only yield
receptors that are expressed in the assayed growth conditions.
Together the combination of biochemical pull-down assays, bioin-
formatic analysis and systematic screening of a whole genome
protein expression library by DRaCALA provides a powerful
synergistic approach for the systematic elucidation of protein-
metabolite interaction networks (36). The discovery of the four
different and widely distributed c-di-AMP receptor proteins al-
lows future research to determine the molecular mechanisms
underlying c-di-AMP dependent processes in prokaryotes.

Methods
Bacterial strains and culture conditions. E. coli strains were grown in LB
or LB-M9 (37), B. subtilis strains in LB and S. aureus strains in TSB or
chemically defined medium (CDM) at 37°C with aeration. CDM was prepared
as referenced (38), with the following modifications: KH2PO4 was substituted
with Na Phosphate buffer and KCl was added at concentrations stated in
the text. In addition, Gly 50mg/L; L-Ser 30 mg/L; L-Asp 90 mg/L; L-Lys 50
mg/L; L-Ala 60 mg/L; L-Trp 10 mg/L; L-Met 10 mg/L; L-His 20 mg/L; L-Ile 30
mg/L; L-Tyr 50 mg/L and thymine 20 mg/L were added. Information on strain
construction is provided in the SI section. Strains and primers used are listed
in Tables S1 and S2 and the S. aureus (MRSA), Strain COL Gateway® Clone
Set, Recombinant in Escherichia coli, Plates 1-25, NR-19277 were obtained
through BEI Resources, NIAID, NIH.

Affinity-pull down assay. 20 ml of an S. aureus LAC* culture with an
OD600 of 1 was harvested and suspended in 1 ml 10 mM Tris HCl pH 7.5, 50 mM
NaCl buffer containing EDTA-free complete protease inhibitor (Roche). Cells
were mixed with 0.1 mm glass beads and lysed in a Fast-Prep machine twice
for 45 sec. at setting 6 (MP Biomedicals). Samples were centrifuged for 5 min
at 17,000 x g and subsequently for 1 h at 100,000 x g to obtain cytoplasmic
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protein extracts. 40 ˩l streptavidin dynabeads (Invitrogen) coupled with 2.4
˩M biotinylated c-di-AMP (BioLog) were incubated with 1.2 mg cytoplasmic
proteins in 1.5 ml 10% glycerol, 1 mM MgCl2, 5 mM Tris pH 7.5, 230 mM
NaCl, 0.5 mM DTT, 4 mM EDTA containing 50 ˩g/ml BSA for 30 min at room
temperature. Samples were washed 4 times with the same buffer lacking
BSA and suspended in 50 ˩l protein sample buffer. Samples were boiled for
5 min, beads removed and 18 ˩l run on 12% SDS-PAGE gels. Gels were stained
using the SilverQuest kit (Invitrogen). Mass spectrometry was performed at
the Taplin Mass Spectrometry Facility (Harvard Medical School).

Protein purifications. Proteins were purified from 0.5-4 L E. coli cultures.
Cultures were grown to an OD600 0.5-0.7, protein expression induced with
0.5 mM IPTG and incubated overnight at 16oC. Protein purifications were
performed by nickel affinity and size exclusion chromatography as previously
described (11, 39). Protein concentrations were determined by A280 readings.

Minimum Inhibitory Concentrations. Overnight cultures of S. aureus
strains in CDM containing 2.5 mM KCl were adjusted to 5 x 105 bacteria/ml in
CDM supplemented with either 2.5 or 250 mM KCl. 100 ˩l of these sus-
pensions were incubated in 96 well plates with 2-fold dilutions of nigericin
starting at 6.25 ˩M. Plates were incubated at 37°C with shaking for 24 h.
MICs were determined as the antimicrobial concentration at which growth
was inhibited by >75% compared to growth without antimicrobial. Five
independent experiments were performed and one representative graph is
shown.

Bacterial Stress Testing. Overnight cultures of S. aureus strains in CDM
containing 2.5 mM KCl were washed three times in CDM lacking K+. Cultures
were adjusted to an OD600 of 0.05, serially diluted and 5 ˩l spotted onto CDM
agar plates containing an extra 0.75 M NaCl. Plates were incubated at 37°C
for 24-36 h.

Construction of the S. aureus ORFeome expression library. 2,343 E. coli
strains containing pDONR221 vectors with S. aureus strain COL ORFs (BEI
Resources, NIAID, NIH) were grown in 1.5 ml LB-M9 in 2 ml 96-well deep
dishes (Greiner) selecting for kanamycin resistance. The cultures were cen-
trifuged and the plasmids extracted using 96-well MultiScreenHTS PLASMID

plates (Millipore). The S. aureus gateway ORFeome library was shuttled from
the pDONR221 entry plasmids into the protein overexpression destination
vector pDEST17 using LR clonase enzyme II as per manufacturerಬs guidelines
(Invitrogen). Subsequently, the destination plasmid library was introduced
into E. coli strain T7IQ (NEB) selecting for carbenicillin resistance.

Preparation of E. coli whole cell lysates. BL21(DE3) pET28b-containing
strains or T7IQ pDEST17 containing library expression strains were grown in
LB-M9 medium overnight at 30°C and subsequently induced for 6 h with 1
mM IPTG for protein induction. Bacteria were collected by centrifugation and
suspended in 1/10th of their original volume in 40 mM Tris pH 7.5, 100 mM
NaCl, 10 mM MgCl2 binding buffer containing 2 mM PMSF, 20 ˩g/ml DNase
and 0.5 mg/ml lysozyme. Cells were lysed by 3 freeze/thaw cycles. Lysates
were directly used in binding assays or stored at -20oC.

Differential radial capillary action of ligand assay (DRaCALA). The prin-
ciple of the DRaCALA is described in Roelofs et al (27). Briefly, E. coli whole-
cell lysates, 20 ˩M purified protein (for standard assays) or 12.5 ˩M protein
(for competition assays) in binding buffer were mixed with approximately
1 nM 32P-labeled c-di-AMP, synthesized as described in the supplementary
information section, or 5.5 nM 32P-labeled ATP and incubated at room
temperature for 5 min. For the whole genome screen the 32P-labeled c-di-
AMP was dispensed into lysate-containing 96 well plates using a Multiflo
Microplate Dispenser (BioTek) and the mixture spotted onto nitrocellulose
membrane using a 96 well pin tool (V&P Scientific). For competition assays,
100 or 400 ˩M cold nucleotides (ATP, GTP, cAMP, cGMP, NAD, NADH,
NADP, NADPH; Sigma. c-di-AMP, c-di-GMP; BioLog) were added to the initial
mixture and 2.5 ˩l of reactions were spotted onto nitrocellulose membranes
(Amersham Hybond-ECL; GE Healthcare), air-dried and radioactivity signals
detected as described above. The fraction of ligand bound and Kd values
were calculated as previously described (27).
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