
This is a repository copy of Value of travel time changes: theory and simulation to 
understand the connection between random valuation and random utility methods.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/96329/

Version: Accepted Version

Article:

Ojeda Cabral, MA and Chorus, CG (2016) Value of travel time changes: theory and 
simulation to understand the connection between random valuation and random utility 
methods. Transport Policy, 48. pp. 139-145. ISSN 0967-070X 

https://doi.org/10.1016/j.tranpol.2016.03.006

(c) 2016 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 1 

Value of travel time changes: theory and simulation to 2 

understand the connection between random valuation and 3 

random utility methods 4 

 5 

 6 

 7 

Manuel Ojeda-Cabral, Corresponding Author 8 
Institute for Transport Studies, University of Leeds 9 

30-40 University Rd, Leeds LS2 9JT,  10 
UK 11 

Tel: +44 (0)7834 738 505; Email: M.A.OjedaCabral@leeds.ac.uk 12 
 13 

Caspar G. Chorus 14 
Transport and Logistics Group, Delft University of Technology 15 

Faculteit Techniek Bestuur en Management 16 
Kamer B3.120, Jaffalaan 5 17 

2628 BX Delft 18 
Netherlands 19 

Tel. +31 (0) 15 27 88546; Email: c.g.chorus@tudelft.nl 20 

 21 

 22 

Abstract 23 

This paper identifies and illustrates the theoretical connection between the Random Valuation 24 
(RV) and Random Utility (RU) methods for Value of Travel Time Changes (VTTC) analysis. 25 
The RV method has become more and more popular recently, and has been found to lead to 26 
very different estimation results than conventional RU models. Previous studies have reported 27 
these differences but did not explain them, which limited the confidence in the RV model as a 28 
useful foundation for transport policy analysis. In this paper, we first analytically show in what 29 
way exactly the two models are different and why they may generate different estimation 30 
results. Based on this deeper understanding of the connection and difference between the two 31 
models, we formulate hypotheses regarding the conditions under which differences in 32 
estimation results are expected to be smaller or larger. Using synthetic data, we empirically test 33 
these expectations. Results provide strong support for our hypotheses, allowing us to derive a 34 
number of practical recommendations for analysts interested in using the RV and RU models 35 
in their VTTC-analysis.  36 

 37 
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1. Introduction 1 

The value of travel time changes (VTTC), which measures how people trade off travel  time 2 
changes against changes in travel costs1, is a crucial component of cost-benefit analyses and 3 
plays an important role in transport policy design and evaluation studies (Small, 2012; 4 
B̈rjesson and Eliasson, 2014). The large majority of VTTC-studies infer this trade off by 5 
means of estimating discrete choice models on data obtained from Stated Preference (SP) 6 
experiments, where participants to the experiment are asked to choose between a slower but 7 
cheaper, and a faster but more expensive route or travel mode (e.g. Mackie et al., 2003; 8 
Fosgerau et al., 2007; B̈rjesson and Eliasson, 2014). Traditionally, the adopted discrete choice 9 
model is of the Random Utility (RU) type (McFadden, 1974). 10 

However, quite recently an interesting alternative to RU has emerged: this so-called 11 
Random Valuation (RV) model has been gaining attention lately, after several empirical studies 12 
have found it to be superior to RU in terms of explaining respondents’ preferences (as measured 13 
in model fit). The RV model differs from the RU model in terms of how it conceptualizes 14 
behavior. The RV approach, in a context where a person can choose between a cheap but slow 15 
and a fast but expensive travel option, postulates that people decide as if they were in a “time 16 
market”: they choose the fast option when their valuation of the presented travel gain is larger 17 
than the implicit price of the travel gain which is embedded in the choice situation. The RV-18 
method2 was suggested by Cameron and James (1987) in an environmental economics context, 19 
although the use of the term “RV” can be attributed to Hultkranz et al. (1996). Fosgerau et al. 20 
(2007b) were the first to formally introduce the method in a VTTC-context. Since then, a 21 
number of studies have shown that there may be large differences in the VTTCs estimated by 22 
RU and RV respectively, on a given dataset; model fit differences have been found to be 23 
substantial as well (e.g., Ojeda-Cabral et al., 2016, Daly and Tsang, 2009)). These studies 24 
reported VTTCs that, in comparison with a VTTC from a RV model, were often around 1.5 or 25 
2 times greater when a RU model was estimated. Ojeda-Cabral et al. (2016) reported an 26 
extreme case where the RU estimate tripled the RV estimate. It goes without saying, that such 27 
differences have potentially very large implications for the evaluation of transport policies and 28 
infrastructure investments. 29 

Although the theoretical relationship between the RU and RV models has been discussed 30 
in previous papers (Fosgerau et al., 2007b; B̈rjesson and Eliasson, 2014; Hultkranz et al., 31 
1996, Ojeda-Cabral et al., 2016), this discussion is not complete, as we will argue below. As a 32 
consequence, the observed non-trivial empirical differences in model fit and estimated VTTC 33 
have so far come as a surprise, for which no full explanation is yet provided. Given that the RV 34 
approach is growing in popularity in the field of transport economics, we believe that a rigorous 35 
assessment of the connection and differences between the RU and RV approaches is needed. 36 
This paper provides such an in-depth exploration and interpretation of the connection between 37 
RU and RV through the use of analytical derivations and analyses on simulated data. Note that 38 
although at first sight, exploration of the differences between the two models might come 39 
across as a methodological exercise, it has clear and substantial policy relevance. More 40 
specifically, given that the differences and similarities between the two approaches have so far 41 
been ill understood at a conceptual level, there has been a hesitation to use the VTTC estimates 42 
produced by the relatively new and unknown RV model in cases where its empirical 43 

                                            
1 Most of the literature uses the term travel time savings. However, since many transport projects lead to travel 
time losses and, in fact, most studies do consider savings as well as losses, we use the more generic term travel 
time changes; see Ojeda-Cabral et al. (2016) for a more detailed overview of terminology. 
2 In this paper, we will use the terms ‘model’, ‘method’ and ‘approach’ when referring to RU or RV. 
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performance (e.g. model fit) turned out to be superior to that of the well-known RU model. As 1 
a consequence, the RV’s penetration in the transport policy discourse has been severely limited 2 
by the absence of a clear and unambiguous understanding of how and when the model and its 3 
VTTC output differ from RU and its VTTC. This goal of this paper is to lift the confusion 4 
which so far has surrounded the RV model, and as such provide a more solid foundation based 5 
on which researchers and analysts can make safe and well informed decisions regarding which 6 
model and VTTC estimates to use for transport policy analyses, based on the model’s empirical 7 
performance.  8 

In Section 2, we highlight the importance of an element which has been missing in 9 
previous studies: whereas those studies have argued that the two methods are equivalent in the 10 
deterministic domain (i.e., when error terms are excluded), we show that this equivalence only 11 
applies in an ordinal sense (i.e., preference orderings between two alternatives are the same in 12 
both models), but not in a cardinal sense (i.e., the extent to which an alternative is preferred 13 
over another one may vary substantially across the two model types). Since, in a discrete choice 14 
context, cardinal differences determine choice probabilities (after error terms have been 15 
included), this cardinal inequivalence between RU and RV causes differences in terms of 16 
model fit and VTTC estimates. Based on this insight, we are able to formulate hypotheses about 17 
the size of the difference between the RU and RV models that one would expect for various 18 
types of data, i.e., various types of SP designs and different levels of randomness in choice 19 
behavior. These hypotheses are subsequently tested based on empirical analyses on synthetic 20 
data. 21 

In section 3, we formulate hypotheses concerning their differences in terms of model fit 22 
and obtained VTTCs, for different types of data. We also present the construction of the 23 
simulated data sets, estimation of the RU and RV models, and the interpretation of estimation 24 
results. In section 4 we present overall conclusions, and we provide recommendations for future 25 
research; in addition, we discuss practical implications of the obtained insights. 26 

 27 

2. Random utility and random valuation: the theoretical connection 28 

The RU model assumes that a person faced with a choice between multiple options, chooses 29 
the option that offers the greatest total utility. This total utility is usually conceived in term of 30 
a summation of a deterministic (or: ‘systematic’, ‘observed’) utility and a random error. For 31 
sake of exposition, we initially focus only on this deterministic part of utility. Deterministic 32 
utility Vi of each option i is a usually linear-additive function of its observable characteristics 33 
(in our case, travel time and cost) and associated parameters: ܸ ൌ ܿߚ     are the estimable marginal utilities of travel time (t) and cost (c), respectively. The value of 35ߚ ௧ and 34ߚ , ; hereݐ௧ߚ
travel time changes (VTTC) is equal to the marginal rate of substitution between time and cost, 36 

which is of a convenient form when systematic utility is specified linearly, as above: ܸܶܶܥ ൌ37 ߲ܸ߲ݐ ߲߲ܸܿൗ ൌ ݐߚ Τܿߚ  . 38 

The Random Valuation (RV) model (Cameron and James, 1987; Hultkranz et al,, 1996, 39 
Fosgerau et al., 2007b) is applicable when, in the choice context, there is an implicit ‘price’ for 40 
the good we want to value such as in our case a change in travel time. This is the case in a 41 
binary choice context where alternatives are described in terms of a price attribute and a quality 42 
attribute (in our case travel time); note that many recent SP-experiments have adopted such a 43 
binary, two attribute choice context, including several European national VTTC studies, 44 
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including those in the UK, Denmark, Sweden and Norway (Mackie et al., 2003; Fosgerau et 1 
al., 2007; Ramjerdi et al, 2010; B̈rjesson and Eliasson, 2014). The implicit price (denoted 2 
Boundary VTTC or BVTTC) can then be defined as follows. Throughout the paper, we will 3 
assume a choice context in which option 1 is slower but cheaper than option 2 (i.e. faster and 4 
more expensive): i.e. t1>t2 and c1<c2. Then, the price threshold or BVTTC, is equal to: 5  BVTTC ൌ  ିሺଵିଶሻሺ௧ଵି௧ଶሻ ൌ െ οο௧ , where ∆t and ∆c are the differences in travel time and cost, 6 

respectively, between options 1 and 2. The RV model assumes that people choose whether they 7 
accept the price of time (BVTTC) which is implicitly embedded in the choice situation, or not. 8 
If the individual’s VTTC is larger than the BVVTC, the faster but more expensive option is 9 
chosen. As in the RU model, additive errors are introduced in the RV model to accommodate 10 
randomness; hence the individual’s choice probabilities will be driven by the difference 11 
between the VTTC and the BVTTC, such that ݕ ൌ ͳሼܸܶܶܥ ൏ BVTTC   ሽ (see further below 12ߝ
for details). 13 

The RV model has been said to be equivalent to the RU model in the deterministic 14 
domain, i.e. before randomness in the form of errors is introduced (Fosgerau, 2007; Ojeda-15 
Cabral et al., 2016). However, these studies implicitly referred to ordinal equivalence. Indeed, 16 
in the deterministic domain, the two models can easily be shown to be equivalent in an ordinal 17 

sense. To see this, consider an individual whose VTTC equals 
ఉఉ . Take the above described 18 

binary choice situation involving a cheap and slow alternative (1) and a fast but expensive 19 

alternative (2), with an implicit price that equals 
ିሺభିమሻሺ௧భି௧మሻ  . Now it can be easily seen that 20 ିሺభିమሻሺ௧భି௧మሻ  ఉఉ if and only if ߚ௧ݐଵ  ܿଵߚ  ଶݐ௧ߚ   ܿଶ. In other words, if BVTTC > VTTC in 21ߚ

the RV model this necessarily implies that ଵܸ  ଶܸ in the RU model; both inequalities imply 22 
that the cheaper but slower option is chosen. This makes the two models equivalent in an 23 
ordinal sense.  24 

Given the equivalence (in an ordinal sense) between RU and RV in the deterministic 25 
domain, previous research has related the observed differences between the two models in 26 
model fit and obtained VTTC-estimates, to the way in which randomness is introduced in the 27 
two models. However, here we show that the difference and connection between the two 28 
models in the deterministic domain is more subtle than the ordinal analysis directly above may 29 
suggest at first sight. Specifically, it has so far been overlooked that a difference between the 30 
two models arises when we consider a cardinal as opposed to ordinal perspective. To see this, 31 

consider again an individual whose VTTC equals 
ఉఉ . Take again the above described binary 32 

choice situation involving a cheap and slow alternative (1) and a fast but expensive alternative 33 

(2), with an implicit price for the travel time difference that equals 
ିሺభିమሻሺ௧భି௧మሻ  . Now, it can be 34 

seen that the cardinal difference between systematic utilities ଵܸ and ଶܸ in the RU model is not 35 
equal to the cardinal difference between price (BVTTC) and value (VTTC) in the RV model: 36 ߚ௧ݐଵ  ଶݐ௧ߚܿଵെ ሺߚ  ܿଶሻߚ ് ିሺభିమሻሺ௧భି௧మሻ െ ఉఉ ; or in other words: ଵܸ െ ଶܸ ് ܥܸܸܶܤ െ  37 .ܥܸܶܶ

Rather, one obtains 
   ఉ௧భାఉభି ሺఉ௧మାఉమሻఉሺ௧భି௧మሻ ൌ ఉఉ െ ିሺభିమሻሺ௧భି௧మሻ  ; or, equivalently, ଵܸ െ ଶܸ ൌ 38 ߚሺݐଵ െ ଶሻݐ ή [ܥܸܸܶܤ െ ଵݐሺߚ ሿ. The factorܥܸܶܶ െ  ଶሻ is the product of the marginal utility 39ݐ

of cost and the travel time difference between the two options. If the utilities in the RU model 40 
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are divided by this factor, it becomes a RV model3. Note that B̈rjesson and Eliasson (2014) 1 
and Ojeda-Cabral et al. (2016), in their comparisons of the RU and RV model, have also 2 
identified this factor as having role in scaling parameters and error terms. However, the factor’s 3 
crucial property (i.e., that it determines the connection between the two models in the 4 
deterministic domain, from a cardinal perspective) has been overlooked until now.  5 

In sum: both models, given a particular underlying value of travel time changes for an 6 
individual, always agree on which of the two alternatives (i.e., the cheap & slow or the 7 
expensive & fast alternative) is preferred by the individual. However, with the exception of 8 
some very specific conditions (see further below) the two models disagree on the extent to 9 
which one alternative is preferred over the other. To give one example for illustrative purposes: 10 
the RV model states that the extent to which one alternative is preferred over the other one, by 11 
an individual with a particular VTTC, remains constant as long as the implicit price (BVVTC) 12 
which is embedded in the choice situation remains the same. For example, for the RV model it 13 
does not matter if the fast alternative is 10 minutes faster and 2 pound more expensive than the 14 
slow one, or 5 minutes faster and 1 pound more expensive. In both cases, the BVVTC equals 15 
0.2 pounds per minute, and the difference between this value and the individual’s VTTC 16 
determines the extent to which the fast alternative is (not) preferred over the slow one. In 17 
contrast, the RU model postulates that when attribute differences between the alternatives 18 
become smaller, the extent to which one of the alternatives is preferred over the other one 19 
decreases as well, up to a point where the individual is assumed to become almost indifferent 20 
between the two alternatives when attribute differences become very small. So, in the above 21 
example the RU model predicts that – given a particular underlying VTTC – the extent to which 22 
the fast alternative is preferred by the individual over the slow one (or vice versa) is larger in 23 
the 10 minutes / 2 pound case than in the 5 minutes / 1 pound case. So, even though both models 24 
(RU and RV) would always agree on whether or not the fast alternative is to be preferred over 25 
the slow one, they may generate markedly different predictions in terms of the extent to which 26 
the most attractive alternative is preferred over the other one. It is this cardinal difference in 27 
preferences which gives rise to differences in choice probabilities in the stochastic domain. 28 
Although analysts may of course have theoretical preferences with respect to the different 29 
implicit behavioral premises underlying the two models (such as the ones discussed above), in 30 
the end it is of course an empirical question which of the two fits best with the collected choice 31 
data. 32 

We now proceed to the stochastic domain, by adding errors. We start with the RU model. 33 
To arrive at closed form Logit-type choice probabilities, the error term (İi) is assumed to follow 34 
a Gumbel distribution (type-I generalized extreme value distribution) with constant variance 35 
normalized at ߨଶ Τ , and is introduced additively (McFadden, 1974): 36 

 37 ܷ ൌ ܸ  ߝ ൌ ܿߚ  ݐ௧ߚ          (1) 38ߝ

 39 

In the context of a binary choice set containing alternatives 1 and 2, (as noted earlier, the RV 40 
method only works in the context of binary choices), choice probabilities are then given by:  41 

                                            
3 Note that, while it is intuitive to think about a monetary price of time (i.e. RV model), there is no principled 

reason why one should not divide by the cost difference instead, giving an (inverse) RV model in e.g. 

minutes/pence terms. This alternative model would be worthy of investigation, but it is outside of the scope of 

this paper.. 
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 1 ܲሺͳሻ ൌ ୣ୶୮ሺభሻୣ୶୮ሺభሻାୣ୶୮ሺమሻ ൌ ୣ୶୮ሺఉభାఉ௧భሻୣ୶୮ሺఉభାఉ௧భሻାୣ୶୮ሺఉమାఉ௧మሻ  ; with ܲሺʹሻ ൌ ͳ െ ܲሺͳሻ (2) 2 

 3 

Note that the difference in systematic utilities (Vi) between travel alternatives determines the 4 
choice probabilities derived from the RU model. 5 

In the RV model, like in the RU model, Gumbel errors with constant variance 6 
normalized at ߨଶ Τ  are added so as to allow for the derivation of closed form Logit type choice 7 
probabilities: 8 

 9 ൜ ଵܷ ൌ Ɋ ή BVTTC  ଵܷଶߝ ൌ Ɋ ή VTTC  ଶߝ          (3)4,  10 

 11 ܲሺͳሻ ൌ ୣ୶୮ ሺஜେሻୣ୶୮ሺஜେሻାୣ୶୮ ሺஜେሻ ; with ܲሺʹሻ ൌ ͳ െ ܲሺͳሻ    (4), 12 

 13 

 14 

Clearly, the difference between ߤ ήBVTTC and ߤ ήVTTC determines the choice probabilities 15 
derived from the RV model. Note that scale factor  ߤ is estimated in the RV approach, together 16 
with VTTC. Importantly, the RU model can be rewritten in what has been called Willingness 17 
to Pay space (Train and Weeks, 2006), by dividing and multiplying the time-parameter by the 18 
cost-parameter. In notation, ܸ ൌ ܿߚ    becomes 19ߚ . In this case, cost-parameterݐሻߚ௧Ȁߚሺߚ
a de facto scale parameter. This too would result in a model where scale of utility and VTTC 20 
are estimated. It is this variant of the RU model, which is fully equivalent to the formulation 21 
presented in (1) and (2), which we use in our empirical analysis, as it facilitates an easy 22 
comparison between RU and RV.  23 

Having specified choice probabilities, we can now start exploring why the two models – 24 
which we have shown to be ordinally equivalent yet cardinally different in the deterministic 25 
domain – are expected to lead to different model estimation outcomes (i.e., model fit and 26 
estimated VTTC) in the stochastic domain. The key to understanding this lies in the obvious 27 
fact that choice probabilities are determined by the difference ଵܸ െ ଶܸ in the RU model, and 28 
between ߤ ήBVTTC and ߤ ήVTTC in the RV model. Above, we have shown that ଵܸ െ ଶܸ ൌ 29 ߚሺݐଵ െ ଶሻݐ ή [ܥܸܸܶܤ െ  is estimated in the RV 30 ߤ ሿ. Now, given that scale parameterܥܸܶܶ
model, the two models would become equivalent in the stochastic domain when ߤ ൌ31 ߚሺݐଵ െ ଵݐଶሻ. However, when ሺݐ െ  ଶሻ differs between observations as is practically always the 32ݐ
case in real life SP-experiments, it is impossible to find one estimate for ߤ which makes the 33 
choice probabilities derived from the two models equivalent for every single observation in the 34 
dataset. This argument lies at the core of the differences in estimation results reported in 35 
previous studies, and it allows us to formulate hypotheses as to when the difference between 36 
the RU and RV models should be expected to be substantial.  37 

 38 

                                            
4 In this equation, BVTTC is observed in the data, while VTTC is estimated.  
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3. Formulation of hypotheses and empirical analysis based on synthetic data 1 

Previous work (Hultkranz et al., 1996; Daly and Tsang, 2009; Ojeda-Cabral et al., 2016) 2 
showed that there may be significant empirical differences between RU and RV model, both 3 
in the estimated VTTC as well as in model fit. In general, in these studies the RV model 4 
provided a much better model fit and a significantly lower valuation. However, as explained 5 
above, these sizeable differences remained not fully understood. It remained unclear if the RV 6 
model would often or always fit the data better or whether it would often or always provide 7 
lower VTTCs. Based on the derivations in the previous Section, explicit hypotheses can be 8 
formulated regarding what determines the differences in model estimation outcomes. More 9 
specifically, we identify two factors which determine the size of the difference between RU 10 
and RV estimation results (model fit and estimated VTTC): 11 

1) The variation of οݐ across cases, i.e., across choice tasks provided in the experiment: if 12 
only one level of οݐ was used in the design (e.g. the fast route was always 10 minutes faster 13 
than the slow route), the RU and RV models will generate the same results. The reason for 14 
this lies in the fact that under this condition, there exists a single scale factor in the RV 15 
model which leads to identical behavior between RV and RU models: ߤ ൌ ߚ כ οݐ. Under 16 
maximum likelihood estimation conditions, it is therefore impossible to obtain different 17 
model fits for the two models, or different VTTCs. To the extent that οݐ differs across cases 18 
/ choice tasks, the estimated value for ߤ will only be an imprecise proxy for ߚ כ οݐ for 19 
most cases. This implies that to the extent that οݐ differs across cases / choice tasks, there 20 
may be a better or worse model fit for the RV model compared to RU (depending of course 21 
on which of them mimics best the underlying data generating process); and both models 22 
will lead to different VTTCs. 23 

2) Level of randomness in choice behavior: when choices are such that in most cases there is 24 
always a very strong preference for one of the two options5, then both the RU and RV 25 
model will generate very high choice probabilities for the most attractive alternative, and 26 
there will be only small differences in model fit and estimated VTTC between RU and RV. 27 
The reason behind this, is that in such a situation, the ordinal equivalence of the two models 28 
is what counts (i.e., both will always agree on which alternative in a choice task is the most 29 
attractive one). Even if for example the RU model predicts a substantially larger or smaller 30 
utility difference than the RV model, this will hardly impact choice probabilities as these 31 
are close to 0/1 anyway. A different situation occurs when, from the analyst’s viewpoint, 32 
choices are more random in the sense that choices are more evenly distributed across the 33 
fast and slow routes. In that case, where choice probabilities generated by the two models 34 
are closer to 0.5, the fact that ଵܸ െ ଶܸ ܥܸܸܶܤ]് െ  ሿ does translate into relatively 35ܥܸܶܶ
large choice probability differences between RU and RV, due to the steeper slope of the 36 
Logit-curve around choice probabilities of 0.5. 37 

It goes without saying that most actual datasets will include substantial variation of οݐ across 38 
cases, and will feature fairly dispersed choice behavior in the sense that observed choice 39 
frequencies close to 0/1 are rare in SP-data. As a consequence, the above discussion already 40 
indicates that one should expect relatively substantial differences between RU- and RV-based 41 
model estimation results in the context of real data. In the remainder of this section, we will 42 
put the above two hypotheses to the test empirically, making use of synthetic data, as such data 43 

                                            
5 This can be due to either a particular combination of times and costs in the choice task, which makes one of the 
alternatives clearly superior to its competitor; or it can be due to a very strong dislike for times and costs in the 
population; or a combination of these two factors. 
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allow us efficiently, effectively and independently to control the variation of οݐ across cases 1 
and the level of randomness in choice behavior. Furthermore, in contrast to a real experiment, 2 
the synthetic set up allows us to control the true data generating process (DGP) in terms of 3 
decision rule (RU versus RV) and true underlying VTTC. That way, we can explain model fit 4 
differences in favor of one of the two models, and differences in VTTC, effectively. 5 

The structure of this synthetic data experiment is in the matrix shown directly below: 6 

 7 

Variation 
in ∆t 

across 
cases 

Much variation in 
∆t across cases 

C1 C2 C3 

Some variation in 
∆t across cases 

B1 B2 B3 

No variation in ∆t 
across cases 

A1 A2 A3 

  

Almost no 
randomness 

in choice 
behavior 

Some 
randomness 

in choice 
behavior 

Much 
randomness 

in choice 
behavior 

  
 

Degree of randomness in choice behavior 

 8 

Figure 1: Design of the synthetic data experiment 9 

 10 

In line with the discussion above, we hypothesize to find larger differences between the RU 11 
and RV models, when moving away from the lower left hand area or ‘origin' (the extreme case 12 
being A1) to the upper right hand area (C3 being the extreme case). The ordering of the table 13 
can be interpreted as a coordinate system where we have two axes x (randomness) and y (∆t), 14 
whose magnitudes increase from the origin (A1). For each cell of the matrix, we generate 15 
choices using RU and RV respectively as the true DGP; and then we estimate both models (i.e., 16 
RU model estimated on RU data, RU model estimated on RV data, RV model estimated on RU 17 
data, and RV model estimated on RV data). This implies that we generate 9*2=18 different 18 
datasets, and that we report a total of 9*4=36 model estimation results. Without loss of general 19 
applicability, each data set contains 10,004 choices made by as many individuals (i.e., each 20 
individual is assumed to make one choice). The reason for the rather odd number 10,004 is 21 
that, for the first simulated design, we removed all design rows where the BVTTC was greater 22 
than 100, retaining a total of 10,004 cases; we then adhered to that number for the other designs 23 
as well. 24 

The SP-design we use to generate choice data builds on two major national VTTC 25 
studies: the UK VTTC study (Mackie et al., 2003) and the Danish VTTC study (Fosgerau et 26 
al., 2007). This facilitates drawing comparisons with these real datasets. Both studies used a 27 
simple design where only two options and two attributes (time and cost) were presented in each 28 
choice scenario, allowing for application of the RV method. The Danish study was a pioneer 29 
in implementing a form of the RV model to estimate official VTTC measures for national level 30 
transport policy evaluation. Each choice task is designed to make sure that there is always a 31 
faster but more expensive option and a cheaper but slower one. The following design rules 32 
were applied (note that letters A, B, and C refer to Figure 1): 33 

 34 
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i) οݐǣ  1 
a. for design A, we used a travel time difference between the slow and fast option, of 2 

10 minutes; and kept this constant for all cases.  3 
b. For design B, travel time differences between the slow and fast option are randomly 4 

drawn, for each case, from a uniform distribution between 0 and 20 minutes6.  5 
c. For design C, travel time differences between the slow and fast option are randomly 6 

drawn, for each case, from a uniform distribution between 0 and 60 minutes7. 7 
ii) οܿǣ For all designs A, B and C, travel cost differences between the cheap and expensive 8 

option are randomly drawn, for each case, from a uniform distribution between 0 and 9 
300 pence8.  10 

 11 

Note that in the context of designs B and C, the combination of random draws for οݐ and οܿ 12 
generated a wide variation in BVTTCs. To avoid numerical issues, we ex post restricted the 13 
range of BVTTC to an upper limit of 100 pence per minute. Also note that these random draws 14 
did not influence choice behavior: each design (A, B and C) is a fixed input prior to the 15 
simulation of more or less random choices, just as it is in a real life choice experiment. 16 

For every design we simulated choices based on an RU- as well as based on an RV-17 
based decision process. These decision processes assume values for ߚ௧ and ߚ (RU model), as 18 

well as for for  
ఉఉ (i.e., VTTC) and ߤ (RV model). We made sure that both models were always 19 

based on the same underlying VTTC of 10 pence per minute, which holds for all simulation 20 
exercises (this homogeneity allows us to more easily interpret differences between the RU and 21 
RV model outcomes). By carefully selecting combinations of ߚ௧, ߚ and ߤ, while ensuring a 22 

constant ratio 
ఉఉ for both models, we were able to systematically vary the degree of randomness 23 

embedded in the simulated choices , while keeping constant the underlying VTTC (since the 24 
degree of randomness by definition decreases with the magnitude of the coefficients, ceteris 25 
paribus). In an iterative process, we obtained the following three levels of randomness (note 26 
that numbers 1, 2, and 3 refer to Figure 1): 27 

 28 

1) Almost no randomness: for both models, more than 9,600 out of 10,004 cases come with a 29 
predicted choice probability for the most attractive alternative which is higher than 90%. 30 
In other words, in the vast majority of cases, both models assign a very high choice 31 
probability to the most attractive option, making the dataset almost deterministic from the 32 
analyst’s viewpoint (and implying a very high rho-squared, i.e. implying a very good model 33 
fit, for both models). 34 

2) Some randomness: for both models, between 800 and 900 (out of 10,004) cases come with 35 
a predicted choice probability for the most attractive alternative which is higher than 90%. 36 
In other words, in some cases, both models assign a very high choice probability to the 37 
most attractive option, while in many other cases, the difference in choice probabilities 38 
between the two options is less pronounced. Note that the associated rho-squared of around 39 
0.175 is about the same size of what one would expect in a real dataset in the context of 40 
VTTC-estimation. 41 

                                            
6 This in fact is based on the values used for the 2003-UK VTTC study, where 20 was the maximum level.  
7 This in fact is based on the values used for the 2007-Danish VTTC study, where 60 was the maximum level. 
8 This in fact is based on the values used for the 2003-UK VTTC study, where 300 was the maximum level.  
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3) Much randomness: for both models, less than 70 (out of 10,004) cases come with a 1 
predicted choice probability for the most attractive alternative which is higher than 90%. 2 
In other words, only in some rare cases, do both models assign a very high choice 3 
probability to the most attractive option, while in the vast majority of cases, the difference 4 
in choice probabilities between the two options is much less pronounced, leading to a highly 5 
random dataset and very low levels of model fit.  6 

 7 

All models were estimated using Biogeme (Bierlaire, 2003). Table 1 shows estimation results 8 
for all 36 models, displaying parameter estimates and measures of model fit. Note that as 9 
discussed in the previous section, to estimate the RU model we have rearranged the parameters 10 
of the model to allow us to estimate VTTC directly instead of ߚ௧ (note that ߚ becomes a scale 11 
parameter, consequently denoted by ߤ in the table). This does not affect model fit in the context 12 
of MNL and facilitates comparison between RU and RV estimates. 13 

  14 
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Table 1. Estimation results 
   Almost no randomness in choice behavior Some randomness in choice behavior Much randomness in choice behavior 

  Preferences  True DGP: RU True DGP: RV True DGP: RU True DGP: RV True DGP: RU True DGP: RV 

Much 

variation 

ŝŶ ѐƚ 
across 

cases 

Model estimated RU RV RU RV RU RV RU RV RU RV RU RV 

Null LL -6934.24 -6934.24 -6934.24 

LL -113.9 -243.7 -200.1 -166.6 -5462.1 -5896.7 -5401.3 -4998.8 -6201.2 -6434.5 -6833.9 -6758.7 

AĚũ͘ ʌΔϮ 0.98 0.97 0.97 0.98 0.21 0.15 0.22 0.28 0.11 0.07 0.01 0.03 

Parameters C1 C2 C3 

VTTC  9.99 10 9.93 9.96 10.1 21 7.59 9.97 9.75 22.4 6.03 10.3 

µ  0.48 3.48 0.29 5.24 0.01 0.06 0.01 0.20 0.00 0.04 0.00 0.03 

VTTC (s.e.) 0.02 0.04 0.03 0.03 0.26 0.89 0.12 0.16 0.36 1.16 0.33 0.63 

µ (s.e.) 0.04 0.91 0.02 0.39 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

  Preferences  True DGP: RU True DGP: RV True DGP: RU True DGP: RV True DGP: RU True DGP: RV 

Some 

variation 

ŝŶ ѐƚ 
across 

cases 

Model estimated RU RV RU RV RU RV RU RV RU RV RU RV 

Null LL -6934.24 -6934.24 -6934.24 

LL -239.2 -391.4 -290.8 -252.3 -5418.4 -5907.4 -6233.9 -5976.1 -6771.7 -6828.6 -6742.2 -6666.6 

AĚũ͘ ʌΔϮ 0.97 0.94 0.96 0.96 0.22 0.15 0.10 0.14 0.02 0.02 0.03 0.04 

Parameters B1 B2 B3 

VTTC  10 10 10 10 10.1 10.7 9.63 10.3 10.5 11.3 10.1 11 

µ  0.50 2.99 0.41 4.71 0.01 0.07 0.01 0.06 0.00 0.02 0.00 0.03 

VTTC (s.e.) 0.02 0.03 0.03 0.02 0.15 0.33 0.24 0.37 0.48 1.45 0.45 0.87 

µ (s.e.) 0.03 0.35 0.03 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  Preferences  True DGP: RU True DGP: RV True DGP: RU True DGP: RV True DGP: RU True DGP: RV 

No 

variation 

ŝŶ ѐƚ 
across 

cases 

Model estimated RU RV RU RV RU RV RU RV RU RV RU RV 

Null LL -6934.24 -6934.24 -6934.24 

LL -236.1 -236.1 -236.1 -236.1 -5473.9 -5473.9 -5473.9 -5473.9 -6787.6 -6787.6 -6787.6 -6787.6 

AĚũ͘ ʌΔϮ 0.97 0.97 0.97 0.97 0.21 0.21 0.21 0.21 0.02 0.02 0.02 0.02 

Parameters A1 A2 A3 

VTTC  10 10 10 10 10.1 10.1 10.1 10.1 10.8 10.8 10.8 10.8 

µ  0.47 4.74 0.47 4.74 0.01 0.13 0.01 0.13 0.00 0.04 0.00 0.04 

VTTC (s.e.) 0.02 0.02 0.02 0.02 0.18 0.18 0.18 0.18 0.59 0.59 0.59 0.59 

µ (s.e.) 0.03 0.32 0.03 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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The table shows the results of 36 models estimated, organized in 9 big cells (3x3); it thus 
corresponds exactly to the experimental scheme provided in Figure 1 presented earlier. Each 
row corresponds to one SP-design (A, B and C), while each column corresponds to a degree of 
randomness in choices (the adj. ȡ2 being an indicator of it). For each cell, we show 4 sets of 
results: two models (RU and RV) are estimated on a dataset where the DGP was RU, and on a 
dataset where the DGP was RV. If the estimated model matches the DGP, we will refer to this 
as the ‘right’ model; a ‘wrong’ model is an estimated model that does not match the DGP. The 
mean and robust standard error (s.e.) of the VTTC and scale parameters are displayed, together 
with model fit measures (final Log-Likelihood (LL) and adj. ȡ2). It is directly seen, that 
obtained results match our expectations:  

 

Constant travel time differences ሺο࢚ ൌ ሻ 

 In the simplest design (A), where we assume that in every case, the travel time difference 
between the fast and slow option equals 10 minutes, both models yield identical results 
irrespectively of the underlying DGP. In all these cases the estimation results show that ߤ ൌ ߚ כ οݐ. The VTTC of 10 p/min. is recovered with great precision in A1 and A2. The 
great degree of randomness in A3 causes the VTTC estimation to deviate slightly (10.8 
p/min.) from the underlying true value, as one may expect. However, also then both models 
result in the exact same estimate for VTTC (and exactly the same final-LL). 

Hardly any randomness in choice behavior 

 If οݐ varies across cases, but choices are almost deterministic implying very high choice 
probabilities for the most attractive option, in almost every case – i.e., in cases B1 and C1 
– the RU and RV models are almost equivalent, as hypothesized. They both identify the 
true underlying VTTC, although model fit differences are significant in designs B1 and C1, 
in favor of the model that corresponds to the DGP.  

Entering the real world 

Cells B2, B3, C2 and C3 represent what is typically observed in real life experiments: choices 
are relatively random (from the analyst’s perspective) and experiments consider different levels 
of οݐ for different cases. 

 The right model is always able to recover the true underlying VTTC, although as expected 
the precision decreases (i.e., the Standard Error increases) as the level of randomness in the 
choices increases. 

 The wrong model is now always much worse in terms of model fit compared to the right 
one, even when it does not perform too badly in terms of recovering the true VTTC (e.g. 
case B2, where the wrong models give VTTC of 10.7 and 9.63 p./min respectively). 

 When the variation in οݐ is larger (design C), the wrong models estimate VTTCs that are 
very far from the underlying 10p./min, even when choices are not very random (see the 
VTTCs of 21 and 7.59 p./min in C2). 
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4. Conclusions, discussion and directions for further research 

This paper has identified the connection between the Random Valuation (RV) and Random 
Utility (RU) methods for Value of Travel Time Changes (VTTC) analysis. The RV method has 
become more and more popular recently, often leading to very different estimation results (i.e., 
model fit and estimated VTTC). Previous studies have reported these differences but did not 
explain their source; instead they pointed at the fact that the two models are equivalent in the 
deterministic domain, in the sense that they will always agree on which of the two options is 
the most attractive one in a given choice task. In this paper, we first analytically showed that 
the two models actually differ in the deterministic domain, from a cardinal perspective, in the 
sense that the extent to which one option is preferred over the other one may differ between 
RU and RV models. We then showed how this cardinal difference translates into differences 
in model estimation results. This deeper understanding of the connection and differences 
between the two models allowed us to formulate precise hypotheses regarding the conditions 
under which smaller or larger differences in estimation outcomes are to be found. We then 
employed a carefully constructed experiment based on synthetic data to test these hypotheses.  

Taken together, results obtained from that synthetic data experiment provided strong 
support for our hypotheses, and were also found to be in line with – and help explain – findings 
obtained in previous studies based on real data. In sum: to the extent that the choice 
probabilities of the fast and slow options are somewhat similar (i.e., both are relatively close 
to 0.5), and to the extent that travel time differences between the two options vary across 
cases/choice tasks, the RU and RV model should generate different results in terms of model 
fit and estimated VTTC. Only under the fairly unrealistic assumption that choice probabilities 
of the fast and slow options are always very close to 0 or 1, and/or in a (yet unexplored) context 
where travel time differences between the two options are constant across cases/choice tasks, 
do the RU and RV model become equal.  

Of course, in real life experiments, we never know the true underlying choice processes 
of the individuals, making it impossible to a priori select one model’s estimation results. Our 
results highlight the risk of getting completely wrong values if we fail to approximate the true 
underlying choice process by estimating a RU model when RV is much closer to the data 
generating process (DGP), or vice versa. The good news is that we can now safely argue in this 
RU-RV context that, if in real life a given model (RU or RV) gives better model fit, it is 
apparently a better explanation of the observed choices and we should prefer the VTTC 
estimate derived from it, even if it is very different from the other model’s VTTC. This may to 
some extent appear to be obvious, but note that in previous studies, given the incomplete 
assumption that the two models were equivalent in the deterministic realm, large differences 
in model fit and valuation came as a surprise (Ojeda-Cabral et al., 2016), making it difficult to 
argue that the VTTC of the best fitting model should in fact be preferred for transport policy 
analysis. It is this observation that carries the policy relevance of our analyses: by lifting the 
confusion surrounding the RV model, we provide a more solid base for researchers and policy 
analysts to select and trust the RV model and its VTTC in case its empirical performance is 
better than that of RU.  

Another source of policy relevance of this paper lies in the observation that evidence 
from previous studies on real data (Hultkranz et al., 1996; Daly and Tsang, 2009; Ojeda-Cabral 
et al., 2016) where RU and RV were compared empirically, suggested that RV consistently 
yielded lower VTTC-estimates. This turns out not to be the case in the context of our simulated 
datasets, where the RV often leads to higher VTTC estimates than those obtained by RU. 
Apparently, estimating the ‘wrong’ model can lead to failure in the recovery of the true 
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underlying VTTC, but with our current knowledge it is not possible to state a priori the 
direction of the bias. Based on our analyses (including our analytical identification of the 
similarities and differences between the RU and RV models) we can safely advise analysts to 
select the model (RU or RV) with best empirical performance, and trust its VTTC-estimate for 
policy analysis. 

In sum, this paper expands current knowledge concerning the RV model, being an 
alternative model to the classical RU model, which has been receiving increasing attention 
among scholars and practitioners during the last few years. Our work clarifies the relationship 
between these two models, thereby substantially increasing the scope for applying the RV 
model for transport policy analysis. 

Obviously, our study leaves considerable opportunities for further research, of which we 
here identify two: firstly, our empirical exercises assumed a unique VTTC for the full 
(artificial) population of respondents. This is not a realistic representation of real life, where 
the VTTC varies across individuals and even for the same person, across choice tasks. The 
replication of this work introducing distributions for the underlying VTTC seems an important 
direction for future research. Secondly, whereas our study focused on linear specifications of 
the RU and RV models (which is in line with the fact that the large majority of VTTCs used 
for policy analysis are obtained from linear models), some previous studies have been 
experimenting with log-specifications. Extending our results to such non-linear models is also 
an interesting avenue for further study.  
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