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ABSTRACT  

This paper investigates the accuracy of the so-called Modified Manson-Coffin Curve Method 

(MMCCM) in estimating fatigue lifetime of metallic materials subjected to complex constant and 

variable amplitude multiaxial load histories. The MMCCM postulates that fatigue damage is 

maximised on  that  material  plane experiencing  the maximum shear strain amplitude. In  the 

present investigation, the orientation of the critical plane was determined through that direction 

along which the variance of the resolved shear strain reaches it maximum value. Under variable 

amplitude complex load histories, this direction was also used to count the resolved shear strain 

cycles via the classic Rain-Flow method. Further, the degree of multiaxiality and non- 

proportionality of the time-variable stress states at the assumed critical locations was directly 

quantified through a suitable stress ratio which accounts for (i) the mean value and the variance of 

the stress perpendicular to the critical plane as well as for (ii) the variance of the shear stress 

resolved along the direction experiencing the maximum variance of the resolved shear strain. The 

accuracy and reliability of the proposed approach was checked against approximately 650 

experimental data taken from the literature and generated by testing un-notched metallic materials 

under complex constant and variable amplitude multiaxial load histories. The sound agreement 

between estimates and experimental results which was obtained strongly supports the idea that the 

proposed design technique is a powerful engineering tool allowing metallic materials to be 

designed against constant and variable amplitude multiaxial fatigue by always reaching a 

remarkable level of accuracy. This approach offers a complete solution to the strain based 

multiaxial fatigue problem. 

 
Ke yw o rds : Multiaxial fatigue, Variable amplitude loading, Critical plane 
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1. In  tro ductio n 

In situations of practical interest, engineering components and structures are subjected to complex 

time-variable load histories, the applied time-dependent systems of forces/moments resulting in 

local variable amplitude (VA) multiaxial stress/strain states. Estimating fatigue strength of metallic 

materials subjected to VA multiaxial load histories is a complex design problem which must be 

addressed properly in order to avoid unwanted breakages during in-service operations. Owing to 

the high costs associated with fatigue failures, since the beginning of the last century a tremendous 

effort has been made by the international scientific community to devise appropriate engineering 

tools suitable for estimating fatigue damage under complex loading paths. If attention is focused on 

the low/medium-cycle fatigue regime, examination of the state of the art [1-7] suggests that, so far, 

this intractable design problem has being addressed mainly by trying to extend the use of well- 

known constant amplitude (CA) multiaxial fatigue criteria to those situations involving multiaxial 

VA load histories. In this context, among the methods which have been employed so far, certainly 

the SWT parameter [8, 9], Brown & Miller’s criterion [10, 11], and Fatemi & Socie’s critical plane 

approach [12, 13] deserve to be mentioned explicitly. 

As far as VA multiaxial load histories are concerned, accurately performing the cycle counting 

certainly represents one of the trickiest aspects, the scientific community being still debating to 

agree a commonly accepted strategy. As to the cycle counting issue, examination of the state of the 

art suggests that the most successful methodologies [11, 13-15] which have been formalised and 

validated so far are all based on the use of the classic Rain-Flow Method (this method being 

originally developed to address simple uniaxial situations [16]). 

When it comes to designing components and structures against VA multiaxial fatigue, another 

tricky problem that must be addressed properly is the definition of an appropriate rule suitable for 

estimating cumulative damage. Even though a variety of methods have been proposed so far [17], 

certainly, in situations of practical interest, the most used rule is still the linear one devised by 

Palmgren [18] and Miner [19]. According to this classic approach, fatigue failure takes place as 

soon as the damage sum becomes equal to unity. However, accurate experimental investigations 

have proven that the critical value of the damage sum, Dcr, vary in the range 0.02–5, its average 

value being equal to 0.27 for steel and to 0.37 for aluminium [20]. Further, given the material, Dcr 

is seen to vary as the geometry of the component, the degree of multiaxiality of the assessed VA 

load history, and the profile of the considered load spectrum change [20-22]. Thus, systematically 

taking the critical value of the damage sum equal to unity may lead, under particularly 

unfavourable circumstances, to non-conservative estimates. This suggests that Dcr can be evaluated 

accurately for the specific material/component/load history being assessed solely via expensive 

and time-consuming experimental trials. 

In this complex scenario, this paper reports on an attempt of extending the use of a multiaxial 

fatigue criterion we have recently proposed [23-25] - here called the Modified Manson-Coffin 
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Curve Method (MMCCM) - to those situations involving complex CA and VA loading paths. In 

more detail, such a strain based critical plane approach is attempted here to be applied along with 

the Maximum Variance concept [26-28] in order to formalise a robust fatigue assessment 

technique suitable for estimating fatigue lifetime of metallic materials subjected to complex CA and 

VA multiaxial load histories. 

 
2 . Fun dam e n tals o f th e MMCCM  

As far as CA loading paths are concerned, the MMCCM [23-25] postulates that fatigue damage in 

the low/medium-cycle fatigue regime can accurately be estimated via the stress and strain 

components acting on that material plane (i.e., the so-called critical plane) experiencing the 

maximum shear strain amplitude, a. The degree of multiaxiality and non-proportionality of the 

applied load history as well as the presence of non-zero mean stresses are quantified by the 

MMCCM via the shear stress amplitude, a, relative to the plane of maximum shear strain 

amplitude and the amplitude, n,a, and the mean value, n,m, of the stress normal to the critical 

plane. The definitions which are proposed here as being adopted to calculate the stress/strain 

quantities of interest not only under CA, but also under VA multiaxial fatigue loading will be 

discussed in the next section in great detail. 

The fatigue damage model on which the MMCCM is based is shown in Figure 1a. According to this 

schematisation, Stage I cracks are assumed to initiate on those crystallographic planes most closely 

aligned with the maximum shear strain direction [29]. The subsequent propagation phenomenon 

is strongly influenced by the stress perpendicular to the critical plane [9, 30]. In particular, the 

amplitude of the stress normal to the critical plane, n,a, favours the growth process by cyclically 

opening and closing the micro/meso fatigue cracks [31]. The propagation phase is also influenced 

by the mean stress, n,m, normal to the plane of maximum shear strain amplitude. In fact, a tensile 

superimposed static normal stress tends to keep the micro/meso fatigue cracks open by minimising 

the interactions amongst the crack surfaces’ asperities [9, 30]. This favours the effect of the cyclic 

shear stress which pushes the tips of the cracks themselves [32]. On the contrary, under 

compressive mean normal stresses, the resulting additional frictional phenomena between the 

crack surfaces [9, 30] mitigate the action of the cyclic shear stress [32], this resulting in a reduction 

of the crack growth rate. 

According to the fatigue damage model depicted in Figure 1a, the degree of multiaxiality and non- 

proportionality of the stress state damaging the assumed crack initiation locations is quantified by 

the MMCCM via the following critical plane stress ratio [23]: 

 
 

 n,m n,a 

a 


 n,max 

a 

 
(1) 
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In definition (1) a  is the shear stress amplitude relative to the critical plane, whilst n,m, n,a  and 

n,max are the mean value, the amplitude and the maximum value of the stress perpendicular to the 

plane of maximum shear strain amplitude, respectively. Ratio is seen to be capable of modelling 

not only the presence of superimposed static stresses, but also the degree of multiaxiality and non- 

proportionality of the applied load history [23, 31]. In particular, as suggested by Socie [9, 30], the 

effect of the stress components perpendicular to the critical plane can efficiently be modelled by 

simply using the maximum normal stress, since n,max=n,m+n,a. This simple strategy was followed 

by Socie himself to reformulate the SWT parameter to make it suitable for performing the 

multiaxial fatigue assessment of those metals whose mesoscopic cracking behaviour is mainly 

Mode I governed [9]. Similarly, the normal maximum stress, n,max, was employed by Fatemi and 

Socie to devise their shear strain based critical plane approach [12]. The well-known accuracy and 

reliability of these two criteria should fully support the idea that n,max is a stress quantity capable 

of accurately taking into account the mean stress effect in multiaxial fatigue. This holds true 

provided that n,max is consistently used with an appropriate fatigue damage model, the damage 

model on which the MMCCM is based being shown in Figure 1a. 

Turning back to definition (1), it is evident that under VA fatigue loading the value of ratio may 

vary cycle by cycle. Accordingly, appropriate definitions for the stress quantities of interest are 

required in order to consistently calculate the ratio also in the presence of complex VA multiaxial 

load history. The strategy we propose to address the VA problem will be discussed in Section 3 in 

detail. 

Under fatigue loading, there are always at least two planes experiencing the maximum shear strain 

amplitude, this holding true independently from the complexity of the assessed load history. 

Therefore, amongst all the potential critical planes, the one which must be considered to estimate 

fatigue lifetime is the one characterised by the largest value of ratio Ӿ  [31]. 

To quantify the fatigue damage extent, the MMCCM makes use of non-conventional Manson- 

Coffin curves, where the values of the required calibration constants vary as the critical plane stress 

ratio, , changes [5]. The way this method works can be depicted in a log-log diagram where the 

shear strain amplitude, a, relative to the critical plane is plotted against the number of reversals to 

failure, 2Nf (Fig. 1b). As shown in Figure 1b, different modified Manson-Coffin curves are obtained 

as ratio varies, each of these curves being described mathematically as follows: 

 

 'f () 2N
 

a G f 
b' () 2Nf c   

 
(2) f 
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f 

c 

 

Given the material, constants ’f(), ’f(), b() and c() can directly be derived from the fully- 

reversed uniaxial and torsional Manson-Coffin fatigue curves re-written according to Tresca’s 

hypotheses, i.e. [31]: 

 

a  1e 
'f 2N 

E f 
b 1 ' 2Nf  (Uniaxial case, =1) (3) 

 
'f  2N 

a G f 
b0  ' 2Nf c0 

 
(Torsional case, =0) (4) 

 
 

where e and p are Poisson’s ratio for elastic and plastic strain, respectively. By manipulating Eqs 

(3) and (4) under some simplifying hypotheses [23], the material constants in Eq. (1) can be 

expressed explicitly as follows [23, 31]: 

 
'f () 

1 'f 1  'f  
(5) 

G e     E G 
' 1  ' 1  ' (6) 

f 
 

b

p f f 
 

b b0 

 
 

(7) 

 
c

(b0 b)b 

c c0 

(c0 c)c 

 
 

(8) 

 
 

To conclude, it is worth observing that, according to the above definitions, the modified Manson- 

Coffin curves move upwards as ratio decreases (see Figure 1b). In other words, the MMCCM 

estimates fatigue lifetime by assuming that, for a given value of the shear strain amplitude acting 

on the critical plane, the fatigue damage extent increases with increasing of ratio : this explains 

why when  selecting the critical plane  amongst those experiencing the maximum  shear strain 

amplitude, the one to be used is that characterised by the largest value of ratio . 

 
3 . Th e Maxim um Varian ce co n ce pt  to de te rm  in e th e s tre s s / s train quan titie s re lative 

to the critical plan e 

In order to apply the MMCCM to estimate fatigue lifetime of metallic materials subjected to 

uniaxial/multiaxial fatigue loading, the first problem to be addressed is the determination of those 

stress/strain quantities relative to the critical plane which are required to quantify the fatigue 

damage extent. As discussed in what follows, in the present investigation such quantities are 

suggested as being estimated by taking full advantage of the maximum variance concept [26]. 

p 
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From a statistical point of view, the variance of a time-variable signal is equal to the expected value 

of the squared deviation from the mean. In other words, by definition, the variance quantifies the 

amount of variation (within the two extremes delimiting the maximum range) associated, over the 

time interval, T, of interest, with the signal being investigated. According to this definition, the 

variance is a statistical quantity which is independent from the mean value of the considered 

signal. If attention is focussed specifically on time-variable load histories, the variance of a 

stress/strain signal is seen be related to the amount of damage caused by the signal itself [33, 34]. 

The variance approach assumes that the damage in the candidate plane can be estimated from a 

root mean square calculation. It is well-known that the dependence between shear amplitudes and 

damage may involve exponents having value different from two. Accordingly, under very specific 

circumstances, more accurate estimates may be obtained by adopting higher central moments of 

the resolved shear strain history, instead of the second central moment. However, much 

experimental evidence (please, see Refs [26, 33, 34] and references reported therein) suggests that, 

in situation of practical interest, the use of the variance concept allows VA load histories to be post- 

processed by  always  reaching an  adequate  level  of accuracy.  Recently,  this  idea [27,  28]  has 

successfully been applied along with the stress based critical plane concept to estimate fatigue 

lifetime under uniaxial/multiaxial VA multiaxial fatigue loading [35-40]. In light of the high level 

of accuracy obtained in the long-life fatigue regime, the next logical step is then reformulating the 

maximum variance idea to make it suitable for being applied in terms of cyclic strains. The 

fundamental concepts on which the Shear Strain Maximum Variance Method (-MVM) is based are 

summarised in what follows, whereas its mathematical formalisation is discussed in detail in 

Appendix A. 

The -MVM takes as a starting point the assumption that the critical plane is that material plane 

containing the direction, MV, that experiences the maximum variance of the resolved shear strain, 

MV(t) – see Figures 2a and 2b. If this direction as well as the orientation of the associated material 

plane are known, direction MV together with the unit vector normal to the critical plane can 

directly be used to calculate the stress/strain quantities of interest. In more detail, under CA fatigue 

loading, the amplitudes and the mean values of the shear strain and shear stress component 

relative to the critical plane can directly be calculated as follows (see also Figure 2c): 

 

 
1 

a 2 

 
 
MV,max 

  
MV,
min 




(9) 

 
1 

m 2 

 
 

MV,max 

  
MV,
min 




(10) 
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
1 

a 2 

 
 

MV,max 

  
MV,
min 




(11) 
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T 

T 

T 

 

 
1 

m 2 

 
 
MV,max 

  
MV,
min 




(12) 

 
 

In definitions (9) and (10) MV,max and MV,min are the maximum and minimum value of MV(t), 

respectively. Similarly, in definitions (11) and (12) MV,max and MV,min denote the maximum and 

minimum value of the shear stress, MV(t), resolved along direction MV, respectively (Fig. 2c). 

By following the same strategy as above, under CA fatigue loading the amplitude, n,a, and the 

mean value, n,m, of the stress normal to the critical plane, n(t), can be calculated as follows: 

 

n,a 
1  
2 

 
 
n,max 

 

n,
mi
n 




(13) 

 
n,m 

 


1  
2 

 
 

n,max 

 
 n,min , (14) 

 
 

where n,max and n,min are used to denote the maximum and minimum value of normal stress n(t), 

respectively (Fig. 2c). 

Turning to VA situations, assume now that the critical point O in the component being assessed 

(Fig. 2a) is damaged by a stress/strain state whose components vary randomly in the time interval 

of interest, i.e., time interval [0, T]. As soon as the orientation of the direction, MV, experiencing 

the maximum variance of the resolved shear strain is known (Fig. 2b), the mean value and the 

variance of the shear strain and shear stress component relative to the critical plane can directly be 

determined as follows (see also Figure 2d): 

 

m  
1 T 

MV  (t) dt 
T 0 

 

(15) 

 

VarMV (t)
1 


T 0     
MV 

(t) m 2 dt 
 

(16) 

 
T 1 

m   MV (t) dt 
0 

(17) 

 

VarMV 
(t)1 


T 0     

MV 
(t) m 2   

dt 

 
(18) 
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The variance terms determined as above allow the equivalent amplitude of the shear stress and 

shear strain resolved along direction MV to be determined according to the following trivial 

relationships: 
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T 

 

a  

a  

2 VarMV (t)

2 VarMV (t)

(19) 

 
(20) 

 
 

In a similar way, the equivalent amplitude and the mean value of the stress perpendicular to the 

critical plane, n(t), can be determined as follows: 

 

n,a  

n,m  

2 Varn (t)
1 T 

n (t) dt 
T 0 

(21) 

 
(22) 

 
 

where: 
 

 

Varn (t)
1 


T 0 
n 
(t) 



n,m 2  

dt 

 
(23) 

 
 

To conclude, it is worth observing that the -MVM has two key advantages over the other existing 

methods. First, it is very efficient from a computational point of view. In fact, as soon as the 

variance and covariance terms of the components of the strain tensor being post-processed are 

known, the time required to determine the orientation of the critical plane is almost independent 

from the length of the assessed load history. Second, since MV(t) and MV(t) are monodimensional 

quantities, the cycle counting under multiaxial fatigue loading can be performed rigorously by 

using one of those techniques specifically devised by considering uniaxial fatigue situations (and, in 

particular, via the Rain-Flow counting method [16]). 

 
4 . Th e  MMCCM  to  e s tim ate  fatigue  life tim e  un de r  CA  an d  VA   m ultiaxial  fatigue 

lo adin g 

The last step in the formalisation of the proposed design technique is the definition of standard 

procedures suitable for using this approach in situations of practical interest to estimate lifetime of 

metallic materials subjected to in-service CA and VA load histories. 

Consider then the component sketched in Figure 3a which is assumed to be subjected to a CA load 

history. As soon as the direction experiencing the maximum variance of the resolved shear strain is 

known (Fig. 3b), the amplitude of the shear strain relative to the critical plane, a, can easily be 

determined according to definition (9) – see Figure 3c. Similarly, the shear stress amplitude, a, 

and the maximum normal stress, n,max, relative to the critical plane (Figs 3d and 3e) can directly be 

calculated through Eqs (11), (13) and (14). These stress quantities allow the critical plane stress 
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ratio, Eq. (1), characterising the load history being assessed to be determined unambiguously (Fig. 

3f). Through the calculated value for , the constants in the MMCCM can now be estimated (Fig. 

3g) from the fully-reversed uniaxial and torsional fatigue properties via relationships (5) to (8). 

These constants can then be used to derive, for the calculated value of , the required Modified 

Manson-Coffin curve (Fig. 3h). Finally, the shear strain amplitude relative to the critical plane, a, 

together with Eq. (2) allows the number of cycles to failure to be estimated directly (Fig. 3h). 

Turning to VA multiaxial fatigue situations, the first problem which has to be addressed is the 

formalisation of a strategy allowing the cycle counting to be performed so that the fatigue damage 

extent can be quantified accurately. As briefly discussed in Section 2, the MMCCM assumes that 

the critical plane is the one containing the direction experiencing the maximum variance of the 

resolved shear strain (Fig. 1a). According to Kanazawa, Miller and Brown [29], Stage I cracks form 

on  those  slip  planes  most  closely  aligned  to  the  macroscopic  planes  of  maximum  shear. 

Accordingly, the hypothesis can be formed that, under VA fatigue loading, the resolved shear 

strain, MV(t), is the strain quantity to be used to perform the cycle counting. Therefore, owing to 

the fact that MV(t) is a monodimensional strain quantity, given a load history, the corresponding 

cumulative shear strain spectrum can directly be determined by using the Rain-Flow method [16]. 

Having formed this initial hypothesis, consider now the component of Figure 4a which is assumed 

to be subjected to a complex system of time variable forces and moments which result in a local VA 

state of stress/strain at critical point O. As soon as the direction of maximum variance is known 

(Fig. 4b), the equivalent amplitude of the shear stress relative to the critical plane, a, can be 

determined according to definition (20), whereas the equivalent value of the maximum stress 

perpendicular to the critical plane can directly be estimated via definitions (21) and (22), where 

n,max=n,m+n,a (see Figures 4d and 4e). Stress quantities a and n,max allow then the critical plane 

stress ratio, , to be determined under VA fatigue loading via definition (1) – see Figure 4f. This 

ratio can now be used to estimate the constants in the MMCCM according to definitions (5) to (8) – 

see Figures 4g and 4h. In parallel, by taking full advantage of the Rain-Flow Method (Fig. 4i), 

signal MV(t) has to be post-processed in order to build the corresponding shear strain spectrum 

(Fig. 4j). This spectrum along with the estimated modified Manson-Coffin curve, Eq. (2), allow the 

damage content associated with any counted shear strain cycles to be quantified (see Figures 4h 

and 4k). Finally, the number of cycles to failure can directly be estimated as follows: 

 
j    n Dtot   i

 Nf ,e 
Dcr D 

j 

ni  
1 

 
. (24) 

i1 Nf ,i tot  i




where Dtot is the total value of the damage sum. Dcr is instead the critical value of the damage sum, 

i.e., the value of Dtot  resulting in the initiation of a fatigue crack in the metallic material being 
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assessed. It is worth observing here that according to the classic theory due to Palmgren [18] and 

Miner [19], Dcr should be invariably equal to unity. On the contrary, as observed by Sonsino [5], in 

situations of practical interest its value is seen to range in the interval 0.02-5. 

Under VA multiaxial fatigue loading, ratio is determined by post-processing the entire local load 

history projected along the direction of maximum variance of the resolved shear strain as well as 

along the direction perpendicular to the critical plane. The value for ratio calculated according to 

this strategy is then used to estimate the specific modified Manson-Coffin curve that has to be used 

to quantify the damage content associated with the counted cycles. This means that, given the 

material, different VA multiaxial load histories are assessed by using the same modified Manson- 

Coffin curve as long as they are characterised by the same value of ratio . However, even if is the 

same, in the most general case, different VA load histories are expected to result in different values 

of the estimated number of cycles to failure, this depending on the specific profile of the 

corresponding shear strain spectrum (Fig. 4j). Another important aspect is that the shear strain 

spectrum is built by post processing the actual strain history resolved along the direction 

experiencing the maximum variance of the resolved shear strain. This allows the sequence effect to 

be taken into account effectively. The above ideas represent the key concepts on which the 

proposed approach is based, the validity of this m odus operandi being checked in the next section 

by post-processing a large number of experimental results taken from the literature. 

To conclude, it is worth emphasising the fact that both under CA and VA fatigue loading the 

MMCCM must be applied by post-processing the actual elasto-plastic time-variable stresses and 

strains damaging the assumed critical location. This implies that appropriate techniques must be 

employed in order to perform the stress/strain analysis by accurately quantifying/modelling 

important phenomena such as strain hardening/softening, non-proportional hardening, 

ratcheting, memory effect, mean stress relaxation, etc. 

 
5 . Validatio n by e xpe rim e n tal data 

In order to check the accuracy and reliability of the proposed design methodology, about 650 

experimental results were selected from the technical literature. Table 1 summarises the static and 

fatigue properties of the investigated metallic materials. For the majority of the considered data 

sets, the required material properties were directly available in the original sources. In some cases, 

even though the required fatigue constants were not listed explicitly, K’, n’, ’f, ’f, b, c, ’f, ’f, b0, 

and c0 were directly calculated by post-processing the fully-reversed uniaxial and torsional 

experimental results being provided. In particular, given the population of data, the required 

parameters were determined, for a probability of survival equal to 50%, via a linear regression 

model (in a log-log representation) optimised by using the least-squares method [58]. The material 

parameters quantified according to this procedure are clearly indicated in Table 1. When solely the 

constants  of  the  fully-reversed  torsional  Manson-Coffin  curves  were  not  available,  they  were 
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f 

 

estimated from the corresponding uniaxial fatigue constants by using von Mises’ criterion [7, 31], 

i.e.: 

 

'f 
'f  ; '  

3 
3'f ; b0 b ; c0  c (25) 

 
 

All the considered data were generated by controlling the local deformations during testing, so that 

in the majority of the sources the corresponding stress histories were not given. In order to 

calculate the stress components relative to the critical plane when the relevant time-variable stress 

histories were not directly available, the required elasto-plastic stress states were estimated by 

using Jiang and Sehitoglu’s method [59, 60]. Finally, in those cases in which the values of the non- 

proportional cyclic strength coefficient, K’NP, and the non-proportional cyclic strain hardening 

exponent, n’NP, were not determined experimentally, non-proportional hardening was modelled by 

taking the constants in the corresponding Ramberg-Osgood type equation as follows [7]: 

 

K'NP 1.25 KNP ; n'NP n' (26) 
 
 

Since a number of assumptions were made to make the selected experimental data suitable for 

performing a systematic validation exercise, the first problem to address was the definition of a 

reference error band allowing the accuracy of the proposed fatigue design approach to be assessed 

quantitatively. The estimated, Nf,e, vs. experimental, Nf, number of cycles to failure diagram 

reported in Figure 6a shows the accuracy of the conventional approach due to Manson and Coffin 

in estimating the fatigue lifetime of the considered materials under pure axial and pure torsional 

fully-reversed loading, the corresponding loading paths being sketched in Figure 5. This chart 

shows that the experimental points fall within an error band of 3. Accordingly, such an error band 

will be used in what follows to quantify the accuracy of the proposed approach. This choice can be 

justified by observing that, from a statistical viewpoint, the systematic usage of a predictive method 

cannot obviously result in an accuracy level which is higher than the intrinsic scatter characterising 

the information used to calibrate the method itself. Another important aspect which deserves to be 

recalled here is that under non-proportional/complex loading paths the principal directions rotate 

during the loading cycle. This results in the simultaneous activation of several slip systems so that 

Stage I cracks tend to initiate on several material planes by subsequently propagating along certain 

paths whose orientation depends not only on the characteristics of the applied stress/strain history, 

but also on the local material morphology [29]. On the contrary, under proportional loading micro- 

cracks are seen to initiate on preferential material planes, resulting in smaller deviations of the 

propagation directions with respect to the one of maximum shear strain [29]. According to the 
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above considerations, complex/non-proportional load histories are expected to be characterised by 

a larger degree of scattering compared with the corresponding proportional/simple cases. 

In order to checked the accuracy of the MMCCM applied along with the -MVM, initially our 

fatigue assessment methodology was used to estimate fatigue lifetime under CA fatigue loading, the 

considered loading paths being shown in Figure 5. The error diagram reported in Figure 6b makes 

it evident that our approach was highly accurate, its systematic usage resulting in predictions 

failing mainly within the target error interval. It is worth observing that such a high level of 

accuracy was reached not only in the presence of proportional and non-proportional 

sinusoidal/triangular strain paths, but also under complex CA load histories. Further, the MMCCM 

used in conjunction with the -MVM was seen to be capable of accurately taking into account the 

effect of superimposed static strains as well (see Figure 6b). 

Subsequently, our fatigue assessment method was used to predict the fatigue lifetime of samples of 

Al7075-T651 [41], S460N [48] and 304SS [55] tested under combined CA axial and torsional 

sinusoidal/triangular strain signals of different frequencies. By focussing attention on the 

considered sinusoidal  load histories,  it is  possible to  observe  that under a ratio  between the 

frequency of the axial channel, Fx, and the frequency of the torsional channel, Fxy, equal to 2, the 

resulting stress/strain history relative to the critical plane was composed of one shear stress/strain 

cycle and two normal stress cycles (see Path F in Figure 7). On the contrary, the use of the proposed 

method resulted in two shear stress/strain cycles under a Fx to Fxy ratio equal to 0.5 (Path G in 

Figure 7) and in four shear stress/strain cycles under Fx/Fxy=0.25 (Path H in Figure 7). In other 

words, for these two loading paths one nominal cycle was composed of two and four shear cycles 

under a Fx to Fxy ratio equal to 0.5 and 0.25, respectively. Since a similar reasoning applies also to 

the triangular strain paths sketched in Figure 7 (see Paths I to M), this explains the reason why the 

error diagram in Figure 7 was plotted in terms of number of blocks to failure, one block 

corresponding to one nominal cycle. The Nf,e vs. Nf chart of Figure 7 shows that the proposed 

approach was highly accurate in modelling the damaging effect of combined CA axial and torsional 

strain signals of different frequencies. As to the obtained level of accuracy, it is important to point 

out that it was reached by taking the critical value of the damage sum, Dcr, equal to unity for 

Al7075-T651 [41] and S460N [48], whereas, as suggested by Sonsino [20], it was set equal to 0.27 

for 304SS [55]. 

Subsequently, attention was focussed on the accuracy of the proposed design approach in 

modelling the sequence effect. In particular, our method was attempted to be used to estimate the 

fatigue lifetime of specimens of 304SS [54], pure titanium [14], titanium BT9 [14], SNCM439 [55], 

SNCM630 (A) [56] and SNCM630 (B) [55] tested under different combinations of axial (A), torsion 

(T), in-phase (I) and 90° out-of-phase (O) axial/torsion cycles. Such load histories were built as a 

sequence of fully-reversed CA loading blocks containing a predefined number of cycles. Sequences 

AA  and  TT  were  formed  of  two  axial  and  two  torsional  blocks  characterised  by  different 
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amplitudes. The error diagram reported in Figure 8 confirms that the MMCCM applied along with 

the -MVM was capable of accurately predicting the sequence effect in fatigue, the critical value of 

the damage sum, Dcr, being taken equal to unity for all the investigated materials. 

The next step in the performed validation exercise was considering short VA load histories. The 

obtained results are summarised in the error diagram of Figure 9, whereas the profile of the 

considered nominal loading paths are sketched in Figure 5. In order to show how our design 

technique works in the presence of short VA loading blocks, the load histories re-calculated in 

terms of stress/strain quantities relative to the critical plane are reported in Figure 9 for Paths R01, 

R02 and R03. This figure makes it evident that, although Path R01 and R02 may appear very 

similar, in the case of Path R01 the use of our approach resulted in four shear cycles, whereas for 

Path R02 a nominal loading block contained one shear stress/strain cycle. The estimated vs. 

experimental number of blocks to failure diagram of Figure 9 confirms that the MWCM applied 

along with the -MVM was highly accurate also in estimating lifetime under short VA load 

histories, with predictions falling within the target error band. 

Subsequently, we focussed our attention on the results generated by Shamsaei, Fatemi and Socie 

[15] by testing thin-walled tubular specimens of 1050 QT and 304L stainless steel under the 

discriminating strain paths shown both in Figure 5 and in Figure 10. In more detail, Paths FR 

contained a series of fully-reversed in-phase axial/torsion cycles applied by making angle vary 

(see Figure 10). Both Path FRI and Path FRR were characterised by a step angle equal to 1°, with 

ranging in the interval 0°-360°. Paths FRI were generated by gradually increasing angle from 0° 

to 360°, whereas Paths FRR contained cycles applied in random order. Path FRI15 had =15° with 

0°≤≤360°, whereas for Path FRI90 was equal to 90°, with gradually increasing from 0° to 

270°. Paths PI contained pulsating axial/torsion in-phase cycles with =1° and 0°≤≤360°. 

Similarly, Paths PI90 was formed of four (=90°) pulsating in-phase axial/torsion cycles with 

0°≤≤270°. Some examples showing the resolved shear strain spectra determined by applying the 

-MVM are reported in Figure 10. The error diagram of Figure 10 confirms that the MMCCM was 

capable of estimates falling within the target error band. As to the made predictions, it is worth 

observing that a higher degree of conservatism could have been obtained by simply setting, as 

suggested by Sonsino [20], the critical value of the damage sum, Dcr, equal to 0.27. 

Finally, the accuracy of the MMCCM applied along with the -MVM was checked against the results 

generated by Vormwald and co-workers [49] by testing tubular samples of Al5083 and S460N 

under the in-phase and 90° out-of-phase strain spectrum reported in Figure 11. This linear 

spectrum with an omission level of 20% contained 4256 fully-reversed cycles, the ratio between the 

amplitude of the axial strain, x,a, and the amplitude of the shear strain, xy,a, being constant and 

equal to 0.577. In the strain spectrum reported in Figure 11 x,MAX, xy,MAX and MV,MAX are used to 

denote, for any tests, the corresponding maximum value in the applied loading blocks. The error 
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xy yz 
 

 

diagram of Figure 11 proves that the use of our multiaxial fatigue lifetime estimation technique 

resulted in estimates falling within the target error band. It is possible to conclude by observing 

that, as recommended by Sonsino [20], the above predictions were made by taking Dcr  equal to 

0.27 for S460N and equal to 0.37 for Al5083. 
 
 
6 . Co n clus io n s 

 The MMCCM applied along with the -MVM is seen to be highly successful in estimating 

lifetime of metallic materials subjected to CA and VA multiaxial load histories. 

 The use of the -MVM allows the computational time required to calculate the stress/strain 

quantities relative to the critical plane to be reduced remarkably: this can help to minimise 

the costs associated with the design process, this being done by always reaching a 

remarkable level of accuracy. 

 Under VA load histories, if the critical value of the damage sum cannot be determined 

experimentally, the proposed approach should be applied by taking Dcr equal to (or lower 

than) 0.27 for steel and 0.37 for aluminium. 

 As far as un-notched metallic materials are concerned, the MMCCM applied along with the 

-MVM offers a complete solution to the strain based multiaxial fatigue problem. 

 More works need to be done in this area to extend the use of the proposed multiaxial fatigue 

life estimation technique to metallic components containing notches. 

 

Appe n dix A. Mathe m atical fo rm  alisatio n o f the -MVM  

The body of Figure 2a is subjected to a complex system of forces and moments resulting in tri-axial 

time-variable states of stress and strain damaging internal reference point O. This point is used to 

define also a suitable local system of coordinates, Oxyz. The following tensors are used to 

summarise the states of stress and strain at point O (where t T ): 

 

x (t) 

(t) (t) 
xy (t) 

y (t) 

xz (t)
(t)




(A1) 

xz 



(t) yz 



(t) 
 
(t) 

z (t) 

(t) 
x 


(t) xy
 

2 
xz 2 

(t)xy (t) (t) yz (t)  (A2) 
 2 y 2 
(t) 
 xz 

yz (t ) 


z (t) 
 2 2 
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xz 

n 





In the above tensors i(t) and i(t) (i=x, y, x) are the normal stress and normal strain components, 

whereas ij(t) and ij(t) (i, j=x, y, x) are the shear stress and shear strain components. 

Angles and as shown in Figure A1 can be used to define the orientation of a generic material 

plane,  via its normal unit vector, n . According to the above schematisation,  is the angle 

between the projection of unit vector n on the x-y plane and the x-axis, whereas  is the angle 

between unit vector n and the z-axis. A second frame of reference, Oanb, can also be defined as 

shown in Figure A2, where the unit vectors giving the orientation of the three axes are as follows: 

 

nx  sincos ax  sin bx  coscos           
n ny sinsin; a a y cos; b by cossin (A3) 

n z   cos  a z   0  bz   sin 



Given a generic direction on the plane which passes through point O (Fig. A1), the associated unit 

vector, q , is as follows: 

 

qx  cossinsincoscos()    
q qy coscos sincossin() (A4) 

q z   sinsin 



In definition (A4) is the angle between direction q and the a-axis (Fig. A1). 

The instantaneous values of the stress, n(t), and strain, n(t), normal to the plane can directly be 

determined as: 

 

x (t) xy (t) xz (t)nx   
n (t) n x ny nz xy (t) 

(t) 
y (t) 

yz (t) 
yz (t)ny 
z (t) n z 

(A5) 

 


x 

 
(t) 

xy (t) xz 
(t) 


 2 2 nx 
xy (t) yz (t)    

n (t) n x ny nz  2
 y (t) 


2  y  (A6) 

xz (t) yz (t) 
n z 

z (t) 
 2 2 




The shear stress, q(t), and shear strain, q(t), resolved along direction q can instead be determined 

via the components of unit vector q , i.e.: 
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 







 



x 

2 



 

x (t) xy (t) xz (t)nx   
q (t) q x qy qz xy (t) 

xz (t) 

y (t) 

yz (t) 
yz (t)ny 
z (t) n z 

(A7) 

 


x 

 
(t) 

xy (t) xz 
(t) 


 2 2 nx q (t) xy (t) yz (t)  

q 
2 qy qz  2

 y (t) 2 ny n 
(A8) 

xz (t ) 

 2 

yz (t) 

2 

 z 
z (t) 





Alternatively, shear strain q(t) can also be expressed via the following scalar product: 
 
 

q t
d e t  , (A9) 

2 
 
 

where d is the vector of direction cosines: 
 

d n 
 
xqx 

 
n yqy 

 
nzqz 

 
n x qy 

 
 n yqx 

 
n xqz 

 
 nzqx 

 
n yqz 

 
 nzqy , (A10) 

 

 

and e (t) a six-dimensional vector process depending on the components of strain tensor [(t)], i.e.: 
 

 

et  t   y t   z t   xy t   xz t   yz t 
. (A11) 

 2 2 2 



Vector of direction cosines d can also be expressed through angles , and , as follows [27]: 
 
 

 

d 
1 sin()sin(2) cos() sin()sin(2) cos()2 1  

d   1 sin()sin(2) cos() sin()sin(2)sin()2 
2  2 d   1 

d d 3 
  sin()sin(2) 2 


. (A12) 

4 
d  
5 

1 
 sin()sin(2)sin(2) cos() cos(2)sin()  
2 

d6  



sin() cos() cos(2) cos()sin() cos() 
sin()sin() cos(2) cos() cos() cos() 




Therefore, the variance of the shear strain resolved along generic direction q can be expressed in 

the following simplified form: 

x 
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2 k 

C 

2 

 
 

q t Var Var d  e td d Cove t, e t


(A13) 
   k   k  i    j i j 

  i    j 

 
 

By defining symmetric matrix [C] as: 
 

 

 Vx 


Cx,y Cx,z Cx,xy Cx,xz 
Cx,yz 


Cx,y 

Vy Cy,z Cy,xy Cy,xz Cy,yz 
C 

[C] 
x,z 

Cy,z Vz C z,xy 
Cz,xz 

C 
z,yz  (A14) 

Cx,xy Cy,xy Cz,xy Vx
y 

Cxy,xz Cxy,yz 


x,xz 

Cy,xz Cz,xz Cxy,xz Vx
z 

C 
xz,yz 

Cx,yz 
Cy,yz Cz,yz Cxy,yz Cxy,yz Vyz   




where (for i, j=x, y, z): 
 

Vi Vari t


(A15) 

ij  
Vi  Var

t



(A16) 

2   

C CoVart , t  
(A17) 

i, j 
 
 
 

C 

i 
 
 
 

CoVar 

j 
 

ij    
t 




(A18) 

ij,i   t 
,  i  

2 


  t C CoVar   t ,  ij
 

 
(A19) 

i,ij  i 
 




Cij,ij  

ij  
CoVar

t ij  
, 

t 



(A20) 

2 2   



Eq. (A13) can easily be rewritten as follows: 
 

 

q 
Var

t
d

T [C]d . (A21) 
2   




The global maxima of Eq. (A21) allow the directions experiencing the maximum variance of the 

resolved shear stress to be determined directly. In particular, the problem to be solved is nothing 
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but a conventional optimisation problem which can easily be addressed by using standard 

methodologies such as the gradient ascent technique [27]. 

Amongst all the selected planes containing a direction experiencing the maximum variance of the 

resolved shear strain, according to the fatigue damage model depicted in Figure 1a, the critical 

plane is then the one associated with the largest value of ratio , Eq. (1). Finally, if *, * and * are 

used to denote the angles defining the orientation of this plane together with the associated critical 

direction MV, the stress and strain components relative to the critical plane can directly be 

determined via Eqs (A5) to (A8), where =*, =* and =*. 
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Table 1: Static and fatigue properties of the investigated materials Static and fatigue 

properties of the investigated materials (values in bold indicate the material 
constants being estimated; values in italic indicate the material constant being 
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under fully-reversed axial loading and fully-reversed torsion). 

Figure 1: Fatigue damage model (a) and modified Manson-Coffin diagram (b). 
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Figure 6 : Determination of the reference error band (a); accuracy of the MMCCM in 
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Figure 8 : Specimens of 304SS [48], pure titanium [14], titanium BT9 [14], SNCM439 
[55], SNCM630 (A) [56] and SNCM630 (B) [55] tested under fully-reversed 
sequential loading (A=Axial cyclic loading; T=torsional cyclic loading: I=in- 
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Figure 9 : Specimens of S45C [4], 304SS [53], SNCM439 [55], SNCM630 (A) [56] and 
SNCM630 (B) [55] subjected to short variable amplitude load histories. 

Figure 10 : Specimens of 1045 QT [15] and 304L [15] subjected to discriminating strain 
paths. 

Figure 11: Specimens of Al5083 [49] and S460N [49] subjected to short variable 
amplitude load histories. 

Figure A1:  Definition of angles , , and . 
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Mate rial  

E G K' 
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a] 

 
b 


c 
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' f 
' f 

Pa] 

 
b 0 

 
c0 

Al7075-T651 [41] 71.7 27 .5 790 0 .064 1104 0 .519 -0 .118 -0 .87 687 1.346 -0 .112 -0 .993 
Al5083 [42] 68 25 .6 544 0.075 780 1.153 -0.114 -0.861 4 51 1.9 9 7 -0 .114 -0 .8 6 1 

6061-T6 (A) [43] 71.5 28 .2 436 0 .069 369 0 .09 -0 .031 -0 .45 285 0 .3881 -0 .05 -0 .642 
6061-T6 (B) [43] 71.5 28 .2 436 0 .069 373 0 .104 -0 .033 -0 .473 245 1.4746 -0 .048 -0 .675 

S45C [4] 186 70 .6 1215 0.217 923 0 .359 -0 .099 -0 .519 685 0 .198 -0 .12 -0 .36 
45 Steel [44] 190 79 1258 0 .208 843 0 .327 -0 .105 -0 .546 559 0 .496 -0 .108 -0 .469 

SAE 1045 [45, 46] 204 80 .3 1258 0.208 930 0.298 -0.106 -0.49 505 0.413 -0.097 -0.445 

A533B [47] 193 76 .1 827 0 .13 847 1.201 -0 .083 -0 .64 586 1.554 -0 .115 -0 .615 
S460N [48, 49] 208.5 80 .2 1115 0.161 834 0.1572 -0.079 -0.493 529 0.213 -0.096 -0.418 

AISI 304 [9] 183 82 .8 1660 0.287 10 00 0.171 -0.114 -0.402 640 0.279 -0.124 -0.339 

1Cr-18Ni-9Ti [50] 193 74 .3 1115 0.1304 1124 0.8072 -0.091 -0.665 644 0.8118 -0.088 -0.533 

Inconel 718 [51, 52] 208.5 77 .8 1530 0.07 16 40 2.67 -0.06 -0.82 10 30 3.62 -0.074 -0.778 

304SS [53-55] 171 6 6 812 0.125 760 0.0763 -0.079 -0.36 627 0.193 -0.078 -0.369 

SNCM630 (A) [56] 196 7 7 1056 0.054 12 72 1.54 -0.073 -0.823 858 1.51 -0.061 -0.706 

1050 QT [15, 57] 203 8 1 - - 13 46 2.01 -0.062 -0.725 777 3 .4 8 1 -0 .0 6 2 -0 .72 5 
SNCM439 [55] 208 80 .2 1234 0.102 10 50 1.426 -0.054 -0.786 6 0 6 2 .4 7 -0 .0 54 -0 .78 6 

SNCM630 (B) [55] 196 7 7 926 0.032 10 08 1.168 -0.042 -0.792 58 2 2 .0 2 3 -0 .0 4 2 -0 .79 2 
304L Stainless Steel [15] 195 7 7 - - 12 87 0.122 -0.145 -0.394 74 3 0 .2 113 -0 .14 5 -0 .39 4 

Pure Titanium [14] 112 40 - - 647 0.548 -0.033 -0.646 485 0.417 -0.069 -0.523 

Titanium BT9 [14] 118 4 3 - - 1180 0.278 -0.025 -0.665 881 0.18 -0.082 -0.47 
 

Table 1: Static and fatigue properties of the investigated materials Static and fatigue properties of the investigated materials (values in bold 
indicate the material constants being estimated; values in italic indicate the material constant being determined by post-processing the 

provided experimental results generated under fully-reversed axial loading and fully-reversed torsion). 
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Figure 1: Fatigue damage model (a) and modified Manson-Coffin diagram (b). 
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Figure 2 : Adopted definitions to calculate the amplitude and the mean value of the stress components relative to the critical plane under 
both constant and variable amplitude fatigue loading. 
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Figure 3 : In-field use of the MMCCM applied along with the -MVM to estimate fatigue lifetime under constant amplitude fatigue loading. 
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Figure 4 : In-field use of the MMCCM applied along with the -MVM to estimate fatigue lifetime under variable amplitude fatigue loading. 
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Figure 5 : Reference loading paths (IPh=in-phase; OoPh=out-of-phase, ZMS=zero mean strain; 
N-ZMS=non-zero mean strain). 
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Figure 6 : Determination of the reference error band (a); accuracy of the MMCCM in 
predicting fatigue lifetime under CA nominal loading paths (b) – see also Figure 5. 
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Figure 7: Specimens of S460N [48], Al 7075-T651 [41] and 304SS [54] tested under combined axial and 
torsional CA strain signals of different frequencies. 
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Figure 8 : Specimens of 304SS [48], pure titanium [14], titanium BT9 [14], SNCM439 [55], 
SNCM630 (A) [56] and SNCM630 (B) [55] tested under fully-reversed sequential loading 
(A=Axial cyclic loading; T=torsional cyclic loading: I=in-phase axial loading and torsion: 

O=90° out-of-phase axial loading and torsion). 
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Figure 9 : Specimens of S45C [4], 304SS [53], SNCM439 [55], SNCM630 (A) [56] and 
SNCM630 (B) [55] subjected to short variable amplitude load histories. 
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Figure 10 : Specimens of 1045 QT [15] and 304L [15] subjected to discriminating strain 
paths. 
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Figure 11: Specimens of Al5083 [49] and S460N [49] subjected to short variable amplitude load histories. 
 
 

 

Figure A1: Definition of angles , , and . 
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