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for mechanical and poromechanical fracture problems
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LEindhoven University of Technology, Department of MedtelriEngineering, PO BOX 513, 5600 MB, Eindhoven, The
Netherlands.
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SUMMARY

Interface elements are a powerful tool for modelling diturities. Herein, we develop an interface element
that is based on the isogeometric analysis concept. ThrBagker extraction the novel interface element
can be cast in the same format as conventional interfacesaksnConsequently, the isogeometric interface
element can be implemented in a straightforward manner istieg finite element software by a mere
redefinition of the shape functions. The interface elemshise the advantages of isogeometric continuum
elements in that they can exactly model the geometry. On ther dvand, they inherit the simplicity of
conventional interface elements, but also some deficignigke the occurrence of traction oscillations when
a high interface stiffness is used. The extension towardegtasticity is rather straightforward, and in
this situation the smoother flow profiles and the ensuinggpvasion of local mass balance are additional
advantages. These are demonstrated at the hand of somelexaoaipems.

Copyright(© 2013 John Wiley & Sons, Ltd.
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KEY WORDS: Cohesive zone model, crack propagation, isogdoom analysis; B-splines; Bézier
extraction

1. INTRODUCTION

Zero-thickness interface elements have been an impoxahfdr modelling discontinuities such
as cracks, faults and shear bands since the early 1990s,[E.@, 3]. Their availability in
many commercial software packages and their easy use have tmaith popular for a range of
applications, including fracture in ductile and quasittgimaterials, delamination in composites,
and shear band formation in sand and other granular maeh&dre recently, they have been
extended to include fluid flow in fully saturated granular emetls in Referenced].

Interface elements are easy to use, but their applicaksligstricted to stationary discontinuities,
or to situations where the path along which the discontynwitl evolve is known a priori L], as in
lamellar materialsd, 6, 7]. A first step towards the arbitrary propagation of discouities, in which
the path along which the discontinuity can evolve is not knawadvance, was made by Xu and
Needlemand], who inserted interface elements betwedincontinuum elements. A more rigorous
approach is to apply remeshing at each load or time increnasnin P, 10]. The extension of
remeshing schemes to poroelasticity was made in Referédff the simulation of hydraulically

*Correspondence to: René de Borst, University of Glasgeiwp8l of Engineering, Oakfield Avenue, Rankine Building,
Glasgow G12 8LT, UK. E-mail: Rene.DeBorst@glasgow.ac.uk
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driven fracture propagation using linear elastic fractorechanics, and in Referencé?] for
modelling hydraulic cohesive crack growth.

Exploiting the partition of unity property of finite elemeshape functions, an elegant method
to allow for arbitrary crack propagation without remeshwmgs introduced by Belytschko and co-
workers [L3, 14] for linear elastic fracture mechanics, while the extensawards cohesive fracture
was made in]5, 16, 17, 18]. In a series of papers de Borst and co-workers showed hewetinicept
can be extended to crack and shear band propagation in 8tudased medialld, 20, 21, 22, 23].

Exploiting the possibility to simply lower the order of gpdi functions, Verhoosedt al. [24],
introduced arbitrary discontinuities in isogeometric lggis. The present paper builds upon this
development, and simplifies it in the sense that an isoge@rexjuivalent of interface elements
is developed, which is easy to implement in standard finiemeht software. This holds in
particular since it has been formulated using Bézier ekitva, which makes it compatible with
standard finite element datastructures, see Boetlah [25] for continua modelled using NURBS,
and Scottet al. [26] for the extension to T-splines. As indicated in the prengdifracture in
geotechnical engineering, petroleum engineering ancimechanical engineering usually involves
fluid-saturated porous media. For this reason, we have @atethe Bézier interface element to
situations where fluid flow in the interface and in the suraiog poroelastic medium become
important.

To provide a proper setting, we begin with a brief summaryhef televant physics in Section
2. In Section3 we review some fundamental concepts of isogeometric aisadysl the concept of
Bézier extraction, which enables to cast isogeometrityaigin a standard finite element format.
The weak form and the discretisation scheme are presengetiiond. It is shown that the Bézier
interface element inherits many properties of standagtfimte elements, but salient differences are
also pointed out. Numerical examples on mechanical andnpecbanical problems demonstrate
the possibilities of the approach in Secti&n

2. GOVERNING EQUATIONS

In this section, we briefly summarize the problem of intersd the governing equations. The
section is divided in two parts; one related to the desaniptif the mechanical problem, while the
next part describes the poromechanical problem. In thepfarst the discontinuity is introduced as an
internal boundary equipped with a traction-separatioati@h. In the second part, the behaviour of
the bulk material is modelled using an elementary poroeigastheory, while the traction-separation
relation over the interface is supplemented by a local makssbe equation to take into account the
fluid flow in the discontinuity.

2.1. Mechanical problem

We consider a bod$2 which is crossed by a discontinuityy. The displacement of the material

pointx € Q is described by the displacement vector fialdThe external boundary of the body is

composed of a boundalfy,, on which essential boundary conditions are provided, dmoladary

T'; with natural boundary conditions. The internal boundBgyrepresents an adhesive interface
between two parts of the domain.

Under the assumption of small displacements and smallatispient gradients, the deformation
of the solid matrix is described by the infinitesimal strangore = 1 (Vu + (Vu)™). The crack
openingv is defined as the difference between the displacement oereittle of the internal
boundanf’4. In the absence of body forces, the strong form of the quasie®quilibrium equations
for the solid material are given by:

V-o=0 xeN
u=1u xel,
- 1
n-o=t x eIy @
nr,-o=t(v) xeTly
Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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with o the Cauchy stress tensor amdis the vector normal to a boundary. The prescribed
displacement and traction at the boundary are givena bpdt, respectively.
We assume that the stress rate in the bulk materijag linearly related to the strain rat¢hrough
a linear stress-strain relation:
g=D:¢ (2)

whereD represents the fourth-order tangential stiffness tensthiedoulk material. In the examples,
alinear elastic, rate-independent constitutive relati@anbeen used. The traction at the discontinuity
I'4 is expressed in terms of the corresponding local displanejampsvy:

tq=Tq vq 3

wheretq denotes the tractions defined in a local coordinate systeihwik aligned with the
discontinuity andl4 is the tangent stiffness of the traction-separation ratati

Restricting the treatment to a two-dimensional configorgtihe tractions can be written ag:=
t,nr, + tstr,, wheret,, andt, are the normal traction and the shear traction. The locplatement
jumpvg4 is denoted bwy = v,nr, + vstr,, SO that the transformation of the constitutive relation
(3) to the global coordinate system results in:

t=RT.t4=RT-Ty-vq=R" T4-Rv=T-v 4)
with R the standard rotation tensor, e.87].

2.2. Poromechanical problem

Next, an isotropic fully saturated porous medium is cormgidewhich consists of a solid matrix
and an interstitial fluid. The balance of momentum, Equatignis now supplemented by the mass

balance:
aV-u+ M lps+V.-q=0 x€

pt=p XGFP (5)
n-q=g¢q xely
nry,-q=4qq x €Ty

with o the total stress tensor defined as:
o =0ex — apsl (6)

ando.g is the effective stress of the solid skeletanis the Biot-Willis coefficientp; is the pore
fluid pressure anilis the second-order unit tensor. Herein,

M~ = (o — ¢)/Ks + ¢/ K¢

is the constrained specific storage of the porous mediunthednverse of the Biot coefficiert/,
that is governed by the porosity of the medidgnand by the compressibility of the solid and fluid
constituents, denoted bi, and K¢, respectively. The flow of the pore fluid is assumed to obey

Darcy'’s relation:

k
I

with &k the intrinsic permeability of the porous medium ands the dynamic viscosity of the
interstitial fluid.
As in purely mechanical problems, the traction at the difioaity t4 = t4(vq4) is captured using
a traction-separation, or cohesive-surface relation &sgjiration 8). However, the traction from the
solid at the interface is now coupled to the pressure of thd.fAssuming stress continuity from
the cavity to the bulk, we have:
nr, - o =tq — pmr, (8)

When the mass balance, Equati&, (s interpreted as a global mass balance equation for the
entire body, and is cast into a weak format, a surface integhle internal discontinuitl/, arises

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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Figure 1. Local and global coordinate systems in the discoity.

with the integranchr, - g. This term can be quantified by averaging theal mass balance, which
is also given by Equatiorb}, over the opening of the discontinuityq, 20, 21, 22, 23:

" L1
/h(av-u—i—ﬂpf—i—v-q)dnzo. 9

In this equation2h is the normal opening of the discontinuity, see FigurBefining the locals, n)
coordinate system and taking into account that the crackingeas small compared to its length,
the integral can be approximated to give:

5‘q5 2h . aus
d~q72has ~ ¢ — 2ha s

with ¢, the relative fluid velocity in the tangential direction:

nr ) — 2ah. (10)

h2 apf

12, s (11)

ds =

and <%) represents the average value of the tangential accelerafithe solid phase at the
discontinuity faces. Upon substitution of Equatiohl) into (10) it can be observed that the
interfacial fluxnr, - q is proportional to the second spatial derivative of the guril pressure
ps.

3. ISOGEOMETRIC FINITE ELEMENT ANALYSIS

An advantage of isogeometric analysis over traditionatdielement analysis is the possibility to
control inter-element continuity conditions. This evitlgrfacilitates the discretisation of higher-
order differential equations as encountered in e.g. phade fhodels 28] or gradient-damage
models R9]. Besides the possibility to increase the inter-elemedéoof continuity, isogeometric
analysis also offers the possibility to (locally) reducestbtontinuity. In R4] it was demonstrated
how this concept can be used to model discrete cracks. Herbriefly review this isogeometric
analysis approach for creating discontinuities, and thempmpose a Bézier interface element as a
finite element data structure that can be incorporated idsta finite element programs.

3.1. Discontinuities in B-splines

The key idea of isogeometric analysis is to use the basiditimcused for the parametrisation of
the geometry in computer-aided design (CAD) also for dissmdon purposes. The introduction
of discontinuities in isogeometric analysis is here disedsfor B-splines. B-splines are the
fundamental technology underlying Non-Uniform Rationakfines (NURBS), which is the

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2013)
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industry standard technology in CAD, and many state-ofatiéechnologies such as e.g. T-splines.
We refer to B(] for a detailed discussion of introducing discontinuilieNURBS and T-splines.

A univariate B-spline is a piecewise polynomial defined oaefnon-decreasing) knot vector
E={&,%, - ,&upr1), With n and p denoting the number and ordeof basis functions,
respectively B1]. For analysis purposes open B-splines are generally wgieidh are constructed
by taking the multiplicity of the first and last knot value edjto p + 1. The knot vectoE partitions
the parameter domaifl, = (€1, &ntp+1], INtOm Segments of positive length, which are referred to
as elements. B-spline basis functions over this parameteaih of ordep, {N; ,}?_,, are defined
recursively, starting with the zeroth-ordgr= 0) functions

4 1 &G <E<Eim
Nio(€) = { 0  otherwise (12)
after which the higher-order basis functiopsX 0) are defined using the Cox-De Boor recursion
relation [32, 33

Nip(§) = gNi,pfl(g) + MNHL;)A(S) (13)
Citp — & Citp+1 — i1

In the context of modelling discontinuities, the primaryoperty of interest of B-spline basis
functions is their inter-element continuity. B-spline Isaiinctions areC?~! continuous over the
element boundaries corresponding to non-repeated intemogs, which is in contrast to standard
Lagrange finite element bases which are @ilgontinuous over the element boundaries (regardless
of their polynomial order). The number of continuous derixeg over a particular element boundary
is decreased by one by the duplication of the correspondirg. KAs a consequence, a weak
discontinuity C°) can be created by repeating a kpotimes, and a strong discontinuitg (')
by repeating itp + 1 times (Figure2). We refer to B1] for a complete overview of the properties
of B-splines, and to34] for a detailed discussion of the properties of interesthi@ tontext of
poroelasticity.

c! c°

¢ ¢

Figure 2. Second-order B-spline basis functions defined r owle knot vector E =
{0,0,0,1,2,2,2,3,4,4,5,5,5}, where the knot value of 2 is repeated three times to make #s&s b
discontinuous across the corresponding element boundary.

B-spline surfaces and volumes, referred to as patches, @rstracted as tensor products
of univariate B-splines. A surface patch, for example, idindel by the knot vectorE =
{61,8, &nerper1t @NdH = {n1,m2,- -+ , M, +p,+1}, OVEr which the sets of basis functions
{pr (6)}75, and (N, (n)}:2, are defined, respectively. Using a tensor product structue
neny bivariate basis functions are then defined as

Ni(€) = N (€N () with i = 1+ (5 — 1)ng and = (&, n). (14)
tAs is common in finite element literature, the terms "orderd adegree’ are used synonymously in this manuscript. It

is noted that in computer graphics literature it is commoddfine the order of a B-spline as the polynomial degree of
the curve plus one.

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2013)
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Note that the subscripis pe andp,, have been dropped for notational convenience. In the redeain
of this work we will consider equal orders in both parametiiections, i.ep: = p,, = p. The order
p will be clear from the context. The set of control poinfsX; € R} ,, associated with the
multivariate basis functions.{) is referred to as the control net.

27 _ _ _ -~
2%__9— | |
I | : 24! 23
| | 2 - ——
WA SO S
]
— 18 8%
16l A% = .
oS _
1l| 1é|? 1? ~_‘O——.Q
I | | 14 15
— 6?__7? ———— O- - _I |
1 1/3 2/3 lg | . 81 -0
Ns | | ! 9| 10'
yy, TR o-—ll )t |
3 T O=E
I &
T
@) (b)

Figure 3. The parameter domain and control net for a modddndeation test of a double cantilever

beam. (a) The parameter domain is partitioned by the globat kectorsE = {0, 0,0, %, %, 1,1,1} and

H =1{0,0,0,%,3,3,1,1,1}. The interface is inserted through the repeated knot vatug=a 3. The

bivariate basis functions for the B-spline patch are comstd as the tensor product of the univariate

basis functions in each parametric direction. (b) The @bntet defines the physical domain through

the isoparametric map. The discontinuity in thelirection permits the creation of discontinuities in the
geometry.

The tensor product structure of B-spline surfaces and vetuatiows for the creation of discrete
cracks by repeating a knot value in one of the tensorial tioes p + 1 times. The resulting
discontinuity in the univariate basis is then propagateduphout the complete specimen by
virtue of the tensor product structure of B-splines. Evitigerthis concept can be used directly
to mimic adhesive layers that run throughout the entire donia localise the discontinuity and
make the same strategy suitable for modelling propagatiegfaces T-splines can be used][ In
Figure3 we show an example of a B-spline surface with a discontinnggrted in a single tensorial
direction.

3.2. The Bzier mesh

Over the past few years it has been shown that the spline baskeslying isogeometric analysis
can be incorporated in standard finite element tools usiegieB extraction Z5]. The idea of
Bézier extraction is to represent the B-spline basis fonstas element-wise polynomials. In this
respect, the only difference between isogeometric arsabysi traditional finite element is that the
basis functions in isogeometric analysis are generalfemdint per element. However, the element-
specific basis functiongy“, can be constructed using a canonical set of polynomial@&himasis
functions,B, by means of a linear transformation:

N°¢=C°B (15)

The element-specific transformation matiiX;, is referred to as the Bézier extraction operator. For
the canonical set of basis functid8, in principle any basis for the polynomial space of the same
order as the B-spline can be used. A natural choice in thesgbof isogeometric analysis is to

use the Bernstein polynomials. We refer #&][for a detailed discussion on the construction of the

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2013)
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<Control _Poi nt s>
1 0.0 0.0
2 1.0 0.0;
30 6.0 2.0;

<Connectivity>
1 'Bulk 12 2 3 6 7 8 11 12 13;
2 'Bulk 2 3 4 7 8 9 12 13 14

6 'Bulk’ 18 19 20 23 24 25 28 29 30:

\Y%

<Extractio
1 [

2
@
=4

[cleololololoNoNe ol
=

ooocococouviuiow

OCOO0000000o8

n_
0
0
0
0
0
0
0
0
0

e e
CooLooero
CEOOOROOO
cooocococooo
Coooroooo
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el S s R e e
coocuimoooo
COERrDOOOOO
cooocococooo
OCroOoLOoOoLCoC
Ocoococococooo
CeOoLooL0oe
o000 O0O

Figure 4. Mesh file for the bulk part of the double cantileveaim of Figure3. The coordinates of the control
points are given after the labeCont r ol _Poi nt s>. The control point ID number is given first, followed
by the z- and y-coordinate of the point. The element connectivity is giveaxt. In this case, each bulk
element is supported by 9 control points. Finally, the etiom operator matrix for each of the 6 elements
is given. The dimension of these matricegdisc 9] and they are generally sparse. In this example, the full
matrices are stored. In order to reduce the length of thet filpuone can use a sparse format instead.

extraction operators for B-spline patches. Note that, ftheperspective of implementation, the
element extraction operators are implemented at the léussis function evaluations, and hence
do not need to appear in the model-specific parts of a finiteeh implementation. In this way, we
can utilize the spline functions without changing the model

Using Bézier extraction a finite element data structuresfidines can be constructed. An example
of this data structure, referred to as the Bézier meshpiasln Figure4. For the continuum domain,
the Bézier mesh consists of a set of control points, a cdivityctable (| EN-array) in which the
control points are listed that support a given element, hedetement extraction operatogs]. In
Figure4 the extraction operators are represented by full matricepractice, the sparsity of the
operators is exploited to reduce the size of the mesh fileseMer, the fact that the extraction
operators coincide for many elements can be exploited. Nigtrihte the Bézier extraction concept
in Figure5 for the B-spline patch introduced in FiguBeNote that the discontinuous basis is fully
represented by the Bézier extraction.

3.3. The Bzier interface element

In this contribution we demonstrate how the Bézier extoaotoncept can be used to provide a finite
element data structure for isogeometric interface elesa&inilar to the interface elements used in
traditional finite element models, an interface elemensageometric analysis essentially provides
an interpolation of the jump in the field variables over areiféce. As indicated in the previous
section, an interface in a B-spline patch is created by asing the multiplicity of a knot in one

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2013)
Prepared usingimeauth.cls DOI: 10.1002/nme



8 F.IRZAL, J.J.C. REMMERS, C.V. VERHOOSEL AND R. DE BORST

o ¢

Ce Q———O——“‘"’/

Parent element Physical element

Figure 5. The Bézier continuum element consists of a seasistfunctions defined over a parent element,

which are mapped to the physical domain by means of an ismedria map. It is noted in this paper that the

Bézier mesh is denoted in solid line, while the control isetdénoted in dash line, as described previously
on Figure3.

of the parametric directions. This interface is then patases by a lower dimensional spline (a
univariate spline in two dimensions or a bivariate splinéhiree dimensions).

As for the basis functions over the bulk material, the irgteef basis functions can also be
constructed using Bézier extraction. Again the idea is &pra canonical set of basis functions
defined over a parent element to a set of element-specifidiBedpasis functions, see Figufe
The interface extraction operators can either be congiwtitectly from the univariate knot vector
in the direction of the interface, or be inherited from thé&rastion operators of the neighbouring
bulk elements. A fundamental difference between a starideelement and an interface element
is that the interface element is connected to the surrognblink elements on two sides. Since
the isogeometric interface element is an isoparametrimehe, the consequence of this two-side
connectivity is that the geometry definition can be ambigudn the case that the geometry is
merely described in the undeformed configuration, the fiatercontrol points can be taken as the
control points on the boundary of the bulk material on eittide of the crack (e.g. points 1-3 in
Figure6). In the case of large deformations a common assumptionuisethe average of the control
points on the two sides of an interface, see e.f]. [

The isogeometric interface extraction for the B-splinepa Figure3 is shown schematically in
Figure?. The finite element data structure for the interface elensesttown in Figure. The control
points remain unaltered compared to the case of a bulk miesie, the interface is fully defined by
the bulk control points. The control point numbers on eiide of the interface are collected in the
connectivity table. Although it is possible that only thenttol points on one side of the interface are
used for the geometry parametrisation, it is an essengalife of the interface element to couple
the field variables on either side of the interface. The djmra required to interpolate the jump in
the field variables over the interface are discussed inldet&ection4.

4. WEAK FORM AND DISCRETISATION

A Bézier interface element is obtained by discretising ititernal boundary term of the linear
momentum equation are discretised using B-splines and threraéntioned Bézier extraction
technique. In addition, a concise derivation of a poromeid@ Bézier interface element is given.

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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AN ISOGEOMETRIC ANALYSIS BEZIER INTERFACE ELEMENT 9

1

01 1

¢

Parent element Physical elem

Figure 6. The Bézier interface element consists of a seteistfunctions defined over a parent element,

which are mapped to the physical domain by means of an iswgdria map. The interface element connects

the continuum basis functions on both sides of the interfabe O’s indicate the control points which
influence the location of Bézier points, indicatedig.

29 30 29 _ 30 29 _ 30
6. 21 -7 : 6 27 _ _ 28 =77 6 27 _ _ 28 ——=7 :
: : | 24 25 : : " 2! 25, : : I a5
21I__221__-33:— === | 21|__22_|_____33:_——"|’—I' 21|__221__,33:— -a
I [ | | _Zd. l ] | 1q zq I | | ah 2d
= SO s e AN
i 7o =~ __ 1T 8 - _ L
b 1§|} 14 18 b = &3 b s 141
L L_a_ | 0 | L_a_ __ 0 ]
&7 gy T -l 61 7, R el S 61 7, By T - == _ )
o | o 10 Lo | o 10 o | o 10
L - L L
T e : R

4 5 4 -5 2 5
1 1 1 1 1 1

- : - M
—_— —_— —_—
0 _ 0 0 _ 0 0 0
S 0 é 1/3 1§ 1 /36 2/3 -1g 1 2/3¢ 1
Interface element 1 Interface element 2 Interface element 3

Figure 7. The deformed state of quadratic Bézier interédements under mode-I loading condition, denoted

by the blue lines. For each elementhe O’s indicate the control points which influence the locatidn o

Bézier points, indicated bfl’'s. The Bézier extraction operat@®, e = 1,2, 3, maps a canonical set of
element functions, defined over the parent element, ontelément-specific basis functio®é®

4.1. Discretisation of the linear momentum equation

The derivation of the interface element follows the samesstep the derivation of a classical
interface element as presented by Schellekens and de Bjpr&the weak form of the balance
equation is obtained by multiplication of the linear momentequation 1) with an admissible
displacement fieldu and integrating over the product over the donfain

/ du-VodQ =0 (16)
Q

Applying Gauss theorem, using the symmetry of the Cauclegstiensor, introducing the internal
boundaryI’y and the corresponding admissible interface opedwgand using the boundary
conditions at the external bounddry gives: the product over

/V6u10d9+/ 6v-tdF:/ du-tdl (17)
Q Ta ry

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
Prepared usingmeauth.cls DOI: 10.1002/nme



10 F.IRZAL, J.J.C. REMMERS, C.V. VERHOOSEL AND R. DE BORST

<Connectivity>
7 ’'Interface’ 11 12 13 16 17 18;
8 ’'Interface’ 12 13 14 17 18 19;
9 ’'Interface’ 13 14 15 18 19 20;
<Extracti on_COperat or s>
7[[ 1.0 0.0 0.01],
0.0 1.0 0.51],
0.0 0.0 0.5171;
8 [[ 0.5 0.0 0.01],
0.5 1.0 0.5],
0.0 0.0 0.517];
9 [[ 0.5 0.0 0.01],
0.5 1.0 0.01],
0.0 0.0 0.117;

Figure 8. Mesh file for the interface elements of the doubletilever beam of Figure3. The interface
elements are supported by six control points, which have beéned in Figurel. The extraction operator
matrices have the dimensiofsx 3]

The first term of this equation is the weak form of the lineanmeatum of the bulk material. The last
term represents the external, distributed load, see Refeifg4]. In the remainder of this section, we
will confine attention to the derivation of the Bézier elersenf the second term of Equatioh),
the cohesive interface.

The interface is represented as a discontinuity in the miesh. discrete sense, it consists of
adjacent planes (or lines in a two-dimensional system) lwhre connected to the bulk elements,
see Figureb. Each plane has its own displacement field: the displacewfetite plane that is
associated to th@* part of the domain is denoted ", and the continuous displacement field of
the plane associated to the part of the domain, is denoted hwy . Both displacement fields can
be approximated in terms of the same, element-specific iBesphsis functions of a given element
e, N¢(¢), according to

wt =) Nf(©af,e s wt =) Ni(©af (18)
i=1 i=1

whereg is the parametric coordinate$ is the number of control pointghat construct a single face
of element anda¢ are the discrete displacements in these control pointeelicase of a quadratic
Bézier element, as depicted in Figuiien. is equal to 3. Note that an interface element consists of
two faces and therefore the total number of control pointsaépn..

The opening of the interface is defined as the relative displacement of a pginh both faces
of the element:

v(€) =ut(€) —u (¢ (19)
In the discrete version, this can be written as:
v(§) =H(a (20)

The matrixH (&) that maps the discrete displacements of the control pairitsetinterface opening
contains the element interpolation functions. In the cdsetao-dimensional element this matrix
has dimensionR x 4n°] and is structured as follows:

| -N¢ 0 —-N§ 0 .. —Nf 0 N 0 .. N O
HO=1 o _N o -N5 .. 0 -N% o0 Nf .. 0 N | @D
For the sake of brevity, the dependencedras been dropped in the matrix description above. The
opening of the interface elememtis transformed to the interface local frame of referencagisi

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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Equation §). In conventional interface elements, the rotation maRixs assumed to be constant
over the element and is constructed by evaluating the nafgtipns of the element, seg]| In the
case of Bézier elements, it is possible to construct a wnigtation matrix for each material point
of the element by using the continuous displacement fields.

To this end, we describe the position of the mid-surface efitterface element, denoted by the
dashed line in Figuré, in the deformed configuration

xa(6) = Xa(€) + 5 (u (€) +u(©)) (22)

The tangential vectasr, in this point is equal to the derivative of the spatial pasitivith respect

to the isoparametric coordinage
Ox4q

st () = gn (23)
3

The normal vectonr, is perpendicular to this vectair, - sp, = 0inthe case of a two-dimensional
implementation. Finally, the rotation matrix is equal to:

R = [n%:d ? S%d] (24)

Introducing the rotation matrix in the discretised intedanternal force vectcﬁ%‘(‘it yields:
i = / RTH"t4dl’ (25)
Ta
Straightforward linearisation of this equation gives:

Kr, = / RTH'T HRAI (26)
Ty

where the higher order terms that contain the derivativéiseofotation matriXR with respect to the

displacements have been omitted at the expense of a slgjbtler convergence. The matfly; is

the consistent tangent of the cohesive constitutive laviaéninterface local frame of reference, as

defined in Equationd).

4.2. Numerical integration

The spatial numerical integration is an important issue inveational interface elements when
applied in the context of cohesive surface models. They a#fersfrom spurious traction
oscillations, in particular in quasi-brittle fracture whethere is no compliant interface prior to
reaching the tensile strength. The magnitude of theselatboiis increases with an increasing
dummy stiffness, which is used prior to the opening of thecali¢inuity in order to ensure
continuity [6]. A solution that is generally accepted is to abandon Gatsgiiation of the interface
element and to resort to Newton-Cotes integration or to ksnmtegration techniques. This
approach suppresses the oscillations in classical zerkAdss interface elementg]] but also in
thin layer interface formulations such as in the cohesivelbaethod 35].

We now investigate whether the Bézier interface elementterit this deficiency. For this
purpose, we employ a notched three-point bending beam,rshowigure9, and used before in
Reference 7). The dimensions of the beam atie=125 mm andh=100mm, and is made of an
elastic, isotropic material with Young’s moduléis=20 000 MPa and a Poisson’s ratio=0.2. The
length of the notch is =20 mm. The applied external load is equalfe= 1000 N.

The model consists of a patch ®f x 16 cubic Bézier elements. The interface is represented by
Bézier interface elements. The notch, located-aty <20 mm, is traction free. Here, the tractions
tq and the tangent stiffness matfiX; vanish, irrespective of the magnitude of the strain field. At
the interface, i.e. whef0 <y < 100mm, an elastic 'dummy’ stiffness constitutive relation &ed.
The location of this region is determined by assigning a dymstiffness with a magnitude that is

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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lp

By

| v | v |
[ [ |

Figure 9. Geometry and boundary conditions of a notched beanthree-point bending test

based on the spatial position of the corresponding intiegrabint. Hence, the interface stiffness is
represented by the following cohesive relation:

0 VYy<20

(27)
D Yy>20

tq = Tqvq where Ty = diag(D, D) where D = {

Calculations have been carried out for different magnisuafethe dummy stiffnes®. The spatial
integration along the interface is done using either Gauskewton-Cotes integration. The traction
profiles at the interface are shown in Figui€sand11.

The results for the Bézier interface element confirm thdseined for a classical interface
element P] in the sense that traction oscillations are present wheraas& integration scheme
is used, and increase for larger values of the dummy stsfiiesAs a result of the higher order
interelement continuitiy of spline functions the oscilteis do not disappear when a Newton-Cotes
integration scheme is used, see Figlte

4.3. Poromechanical interface

One of the advantages of using isogeometric interpolateddiis the existence of higher order
derivatives of the shape functions. This allows to capthesDarcy flow in Equation1(0) exactly,
instead of enforcing the higher order derivatives in a wesadss only 23].

The extension towards a poromechanical interface elermstrdightforward. Similar to the linear
momentum equation, the mass balance equafipis (multiplied by the admissible pressure field
op:

/5paV~1'1dQ+/5pipfdﬂ+/5pv-qd9:0 (28)
Q o M Q

Applying Gauss’ theorem and introducing Darcy’s relati@) this equation can be rewritten as:
opnr, -qdI’ = / opn - qdI’

1 k
—/5paV-1'1dQ—/5p—pfdQ+/V(5p-—fodQ+/
Q o M Q K r Ty
(29)

Herein, we focus on the discretisation of the mass balamoefte the interface, the fourth term in
the left hand side of this equation. The discretisation efdther terms using a Bézier extraction
technigue has been discussed in detail in Referesve [

The discrete pressure field in the discontinuity is equal to:

d

pr=Y_ Nfb§ (30)
=1

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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(a) Bézier interface elements
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> 50 - _

40 - .

30 b

20

-50 0 50 100 150 20

tn [MPa]

(b) Standard interface elements

Figure 10. Interface tractiof), as a function of the position at the interface for differergmitudes of the
dummy stiffnesd for a Gauss integration scheme.

whereb$ are the nodal discrete pressures at the face of the intezfan®ent associated with tie
part of the domain. The pressure is weakly discontinuoubeatrtterface. Therefore, the pressure
degrees of freedom associated with the top surfaces aré&ramesl to those on the bottom surface,
such that the pressure in a specific material point on thecgirhssociated with™ is identical

to that in the corresponding material point on the surface. As a result, the pressurecan be
discretised using the pressuigst the knots that support tii&~ surface only:

pr = Nb (31)

whereN is
N = [N{, N5, ..., Ng] (32)

Similar to the linear momentum equation, we adopt a Bubnale&in formulation. Hence,
inserting the variation of the discretised pressure in® ititerface term of the weak forms as
described in Equatior2@) yields:

q‘Fn(f = NTandqu. (33)
Lq
This interfacial flux vectorti“dt can subsequently be elaborated in a similar manner to that in
ReferenceZ2]. The time integration is carried out using a backward Efifete difference scheme,
similar to [L9] and [34]. The non-linear system of equations is solved using a NevRaphson
procedure.
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80 T T T
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(a) Bézier interface elements
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D= 20,000 MMPa """

e 60 D = 200,000 MPa ----- -
£
> 50 I

40 - .
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20
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(b) Standard interface elements

Figure 11. Interface tractiot), as a function of the position at the interface for differergmitudes of the
dummy stiffnessD for a Newton Cotes integration scheme.

5. NUMERICAL EXAMPLES

To illustrate the wide range of problems that can be solvethbypresent approach, we simulate
some crack propagation problems in porous and non-porodsgamiehe first example shows the
robustness and the accuracy of the discretisation methodhéaleling crack propagation in a
standard solid medium. The second example illustratesapsility to analyse deformation and
flow in a cracked, fully saturated porous medium. The thirdregle focuses on crack propagation
in a porous medium, taking into account the fluid flow inside ¢hack.

5.1. Double cantilever beam

We consider the double cantilever beam shown in Figar& he beam has a lengih= 10 mm and

a thicknessh = 0.5 mm. It is composed of an elastic material with a Young’s mad# = 100
MPa and a Poisson’s ratio= 0.3. The beams are bonded by an adhesive with a strefygth1.0
MPa and a toughness. = 0.1 N/mm. The interface is modelled with a Xu-Needleman colesiv
relation B]. The length of the initial delamination is= 1 mm. Mesh convergence studies have been
carried out for meshes with6 x 2, 32 x 4, 64 x 8 and128 x 16 linear rectangular finite elements
and for quadratic and cubic Bézier elements.

The load displacement curve is given in Figlfefor cubic Bézier elements, which shows that
the converged solution is achieved for relatively coarsetras of cubic Bézier elements. The mesh
sensitivity analyses are shown in Figuré in which the loadP at a displacement =2 mm is
compared for various mesh size and for various degrees efpolation of the Bézier interface

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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%

Figure 12. Geometry of DCB Test

0.2 - T
A 128 x 16
64 X8 ------
0.16 -

32 x4 ----- -
16 x 2 - - - -

— 0.12
Z 0
~ 0.08
0.04
0
0 0.5 1 1.5 2

Figure 13. Load-displacement curve for the double cargildeam. Cubic Bézier interface elements have
been used with different levels of mesh refinement.

\GA =2
- =2 —%— |
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Ref. sol. FEA p=1—
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n O
0.08[ R
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0.07 Ll

103 10%
Degrees-of-freedom

Figure 14. Mesh sensitivity analyses for the double cardildbeam. The load at a displacemeni = 2

mm is compared for various levels of mesh refinement and fidows degrees of interpolation of standard

and Bézier interface elements. The reference solutiorbbas computed for a dense finite element mesh
with 33924 degrees of freedom.

elements and for standard interface elements. The reseltsompared with a reference solution
generated by a dense finite element mesh with 33924 degrdesedbm. From Figurd 4 it is
observed that the results of the Bézier interface elenmontgerge faster to the reference solution
and, moreover, result in a smooth traction profile along mherface, see Figurkb.
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t, [MPa]

x [mm]

Figure 15. A comparison of the traction profiles betweendsdgh linear interface elements (4464 degrees
of freedom) and cubic Bézier interface elements (1876ategof freedom) for a displacement= 2 mm.

-~ 250 mm

Figure 16. A square block of a fluid-saturated porous mdteita an initial crack.

5.2. Traction-free crack

Next, a square block of a fluid-saturated porous materialiijested to pure mode-| loading,
Figure 16. The material has a Young's modulds = 25.85GPa, a Poisson’s ratio = 0.18,

a porosity ¢ = 0.2, an intrinsic permeabilityk = 2.78 x 10~¥ mm? and a fluid viscosityu =

5 x 10719MPas. The bulk modulus of the solid materi&l, = 13.46 GPa, while for the fluid
K; = 2.3GPa. The Biot coefficient has been assumedras1. A velocity @ = 5. x 10~*mm/s
has been applied at the top and the bottom sides of the bladkadime stepAt = 1s has been
used.

The problem has been discretised using rectangular Bé&leerents and Bézier interface elements
with cubic B-spline basis functions. The mesh incorporatesfaces elements at= 125 mm. The
centre 50 millimeters of the discontinuity are tractiorefreepresenting a fully open crack, while at
the remaining part a dummy stiffnegs= 103 N/mm has been used to enforce no opening at the
discontinuity line. Mesh convergence studies have beeiedasut and three levels of discretisation
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Figure 17¢ = 50s: (a) pressure profile; and (b) relative fluid velocitiestfue area enclosed by the black
square box of (a).
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Figure 18. Mesh sensitivity analysis for the cubic Béziements

have been considered, namély x 16, 32 x 32 and 64 x 64 cubic Bézier elements, resulting in
1254, 3990 and 14070 degrees of freedom, respectively.

Figure17(a) shows the pressure profile of the block at 50s. At the crack tip a high suction
appears, which significantly affects the fluid flow. Indeeiguire 17(b) shows that the fluid flow is
sucked into the crack, and primarily at its tip. The relafiué velocity in the direction tangential to
the crack has been plotted in Figur&a). The fluid flows from the tip to the centre of the crack with
a velocity that depends on the crack opening. The leakagetihe surrounding porous medium is
shown in Figurel8(b). The smooth flow profile is obtained by virtue of the smoetts of the spline
functions.

5.3. Crack growth

The same setting as in Figui® has been used to analyse crack growth in a porous medium. A
50 millimeter long traction-free slit is inserted along therizontal centre line of the specimen. A
velocityw = 5.0 x 1073 mm/s has been applied at the top and the bottom of the blodktuat30s.

The displacement at the top and the bottom is then kept aunstéil ¢ = 500s. Atime stepAt = 1s

has been used throughout.
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In the interface elements that are not used to model thalitriéiction-free slit, a dummy stiffness
D =1 x 103 N/mn? has been inserted prior to the onset of cracking. After ciaitiation at
a tensile strengtty; = 2.7 MPa, a linear decohesion is applied with a fracture eng€kgy: 0.05
N/mm. Inside the crack a permeability has been assumed goaisthat of the surrounding bulk
prior to crack initation, while it increases progressivatcording to a cubic relation thereafter.

3 3
25
w20 !
Q—q | [
S15F ] 1
Sk | 116 x 16- - -
5 \ 182 %32
05 b e x 6 ——
0 \ l l \
0 50 100 150 200 250
¢ [mm]
(a) Traction profile at =30 s (b) Traction profile at = 500 s

Figure 19. Traction profiles for different levels of meshmefinent.

0.005 0.01
ﬁ0.004 ﬁ0.008
£0.003 £0.006
0.002 0.004
0.001 0.002
0 50 100 150 200 250 0 50 100 150 200 250
¢ [mm] & [mm]
(a) Crack opening profiles at= 30 s (b) Crack opening profiles at= 500 s

Figure 20. Crack opening profiles for different levels of mesfinement.

A mesh convergence analysis has been carried out using e sl@ments and for the same
levels of mesh refinement as in the previous subsection. dhdts are shown in Figurd® — 24,
and in Tabld. Figuresl9 and20show the traction and the opening profilesffes 30 s andt = 500
s, i.e., when the imposed displacement is kept constanin@this period, the redistribution of the
fluid along the interface increases the stress at the crackMinen the stress at the tip reaches the
tensile strengthy;, the crack will propagate. Tablequantifies the mesh sensitivity for the point
(0,125) mm and timet = 30 s, where the reference solution has been obtained usingse degsh
of cubic Bézier elements with 52662 degrees of freedom.

Figure21 and 22 show the evolution of the the pressure and the relative flaldaity profiles
tangential to the interface during the period that the inegodisplacement is kept constant. It
is noted that due to fluid redistribution along the interfatging this period the pressure at
the interface decreases in absolute value. Since the gtaafie¢he pressure along the crack also
decreases, we observe the same effect on the relative flladityealong the crack. Contour plots
of the pressure and the relative fluid velocity in thelirection are given in Figureg3 and 24,
respectively.
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mesh dofs | t, [MPa] | % error | q;[um/s] | % error
p=3 16x16 1254 1.748 0.0051 | 9.49e-4 | 9.1967
p=3 32x32 3990 1.752 0.0028 | 3.37e-4 | 2.6186
p=3 64x64 14070| 1.759 0.0011 | 1.92e-4| 1.0673
Ref. | p=3, 128x128| 52662| 1.757 - 9.30e-5 -
Table 1. Mesh sensitivity analyses for crack growth in perawedium at point0, 125) mm and time: = 30
s.
\ \
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(a) Pressure profiles at= 30 s (b) Pressure profiles at= 500 s
Figure 21. Pressure profiles for different levels of mesmegfient.
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(a) Relative fluid velocity profiles @t= 30 s (b) Relative fluid velocity profiles at= 500 s

Figure 22. Relative fluid velocity profiles along the crackddferent levels of mesh refinement.

6. CONCLUDING REMARKS

An isogeometric interface element has been formulatedplioés Bézier extraction, which makes
it fully compatible with existing finite element softwaredeed, the current isogemetric interface
element can be obtained by simply replacing the shape fumstf conventional interface elements.
Evidently, the shape functions are in principle now différfor each interface element.

The new interface element shares all the advantages ofdsugjec analysis, including the exact
description of the geometry and the easy mesh generatiothe/dame time, it inherits properties
from conventional interface elements such as the tractgmillations which occur when a very
high (dummy) interface stiffness is used to suppress deftioms in the interface prior to crack
initiation. An examination of a beam subject to three-pdiehding suggests, however, that the
higher smoothness of the spline functions used in isoge@@ratalysis prevents the decoupling
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Figure 23. Pressure contours at{a} 30 s and (b} = 500s
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Figure 24. Relative fluid velocity contours in thedirection at (a¥ = 30 s and (b} = 500s
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that is achieved using Newton-Cotes or nodal integratidrickvhas proven a simple remedy for
conventional interface elementy |

In a previous pape3H] it has been shown that isogeometric finite elements alse hdvantages
in poroelasticity, the natural preservation of the local srizeance being one of the most prominent.
For this reason, the isogeometric interface element bas@&&oier extraction has been extended to
fluid-saturated porous media, and examples have been etttodshow the easy use and versatility
of this element technology.
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