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An isogeometric continuum shell element for non-linear analysis
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Abstract

An isogeometric continuum shell formulation is proposed inwhich NURBS basis functions are used to construct the reference
surface of the shell. Through-the-thickness behavior is interpolated using a higher-order B-spline which is in contrast to the standard
continuum shell (solid-like shell) formulation where a linear Lagrange shape function is typically used in the thickness direction.
The present formulation yields a complete isogeometric representation of the continuum shell. The shell element is implemented in
a standard finite element code using Bézier extraction which facilitates numerical integration on the reference surface of the shell.
Through-the-thickness integration is done using a connectivity array which determines the support of a B-spline basisfunction over
an element. The formulation has been verified using different linear and geometrically non-linear examples. The ability of the
formulation in modelling buckling of static delaminationsin composite materials is also demonstrated.

Keywords: Isogeometric analysis, continuum shell element, solid-like shell element, Bézier extraction, delamination

1. Introduction

Isogeometric analysis (IGA) has recently received much at-
tention in the computational mechanics community. The basic
idea is to use splines, which are the functions commonly used
in computer-aided design (CAD) to describe the geometry, as
the basis function for the analysis rather than the traditional La-
grange basis functions [1, 2]. Originally, Non-Uniform Ratio-
nal B-Splines (NURBS) have been used in isogeometric anal-
ysis, but their inability to achieve local refinement has driven
their gradual replacement by T-splines [3].

A main advantage of isogeometric analysis is that the func-
tions used for the representation of the geometry are em-
ployed directly for the analysis, thereby by-passing the need
for a sometimes elaborate meshing procedure. This important
feature allows for a design-through-analysis procedure which
yields a significant reduction of the time needed for the prepa-
ration of the analysis model [2]. Indeed, the exact parametriza-
tion of the geometry can have benefits for the numerical simu-
lation of shell structures, which can be very sensitive to imper-
fections in the geometry. Moreover, the higher-order continu-
ity of the shape functions used in isogeometric analysis allows
for a straightforward implementation of shell theories which re-
quireC1 continuity such as Kirchhoff-Love models [4, 5]. A
Reissner-Mindlin shell formulation has been developed by Ben-
sonet al.[6] using NURBS basis functions. AlthoughC1 conti-
nuity is then no requisite, good results and a high degree of ro-
bustness were reported for large deformation problems. In addi-
tion, the exact geometry description allows for an exact compu-
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tation of the shell director [7]. Recently, the 7-parametershell
model [8] was cast in an isogeometric formulation in Ref. [9].

A further benefit of basis functions that possess a higher de-
gree of continuity is that the computation of stresses is vastly
improved. In shell analysis this can be particularly important
when materially non-linear phenomena such as damage, or de-
lamination, which can occur in laminated structures, are in-
cluded in the analysis. In the latter case the computation ofan
accurate three-dimensional stress field becomes mandatory, and
solid-like shell elements become an obvious choice [10, 11].
This shell element is characterized by the absence of rotational
degrees of freedom, which is convenient when stacking them,
yet possesses shell kinematics, and is rather insensitive to shear
locking and membrane locking,

A partially isogeometric solid-like shell element was devel-
oped in Ref. [12]. This element combines the advantage of an
accurate geometric description of the shell mid-surface with the
three-dimensional stress representation of conventionalsolid-
like shell elements. The formulation adopts NURBS (or T-
spline) basis functions for the discretization of the shellmid-
surface, while in the thickness direction conventional Lagrange
polynomials have been used. As a next step, in this contribu-
tion we adopt a higher-order interpolation in the thicknessdi-
rection, which makes use of B-spline basis functions. An im-
portant advantage of using B-spline basis functions is their abil-
ity to model weak and strong discontinuity in the displacement
field by knot insertion [13]. This is less straightforward using
conventional finite elements. Weak discontinuities are usually
introduced by subdividing the shell in the thickness direction
in multiple layers with each a piecewise polynomial interpola-
tion, e.g. References [14, 15]. Strong discontinuities (delami-
nations) can be modelled using interface elements, or in a more
general manner, by exploiting the partition-of-unity property of
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Lagrange polynomials [16].
The continuum shell formulation is outlined in Section 2. In

Section 3 we review the basic concepts of isogeometric analy-
sis. Algorithmic and implementation aspects are discussedin
Section 4. Section 5 contains a number of examples which as-
sess the performance of the isogeometric continuum shell for-
mulation. The numerical simulations demonstrate the ability of
the formulation to model the mechanical behavior of composite
structures, including buckling of delaminated panels.

2. Continuum shell formulation

In the solid-like shell element proposed by Parisch [10], an
internal stretch term is added to obtain a quadratic term in
the displacement field in the thickness direction. As a conse-
quence, the normal strain varies linearly, which significantly
reduces membrane locking. The element has been extended
in [11, 16] for use in laminated composites, including interlami-
nar delamination. In Ref. [12] we have described an isogeomet-
ric solid-like shell element (SLSBEZ) which utilizes NURBS
or T-spline basis functions to construct the mid-surface ofthe
shell. Through the thickness behavior was captured by stan-
dard linear shape functions as it is in the conventional solid-like
shell element. A complete isogeometric continuum shell ele-
ment (CSIGA) which is equipped with the B-spline basis func-
tions in the thickness direction is presented here.

2.1. Kinematics

Figure 1 shows the undeformed and the deformed configu-
rations of a continuum shell element. The reference surfaceof
the shell is denoted by S0. The variablesξ andη are the local
curvilinear coordinates in the two independent in-plane direc-
tions, andζ is the local curvilinear coordinate in the thickness
direction. The position of a material point within the shellbody
in the undeformed configuration is written as a function of the
three curvilinear coordinates:

X(ξ, η, ζ) = X0(ξ, η) + ζD(ξ, η) , 0 ≤ ζ ≤ 1 (1)

whereX0(ξ, η) is the projection of the point on the reference
surface of the shell andD(ξ, η) is the thickness director perpen-
dicular to the surfaceS0 at this point.

In any material point, a local reference triad can be estab-
lished. The covariant base vectors are then obtained as the par-
tial derivatives of the position vectors with respect to thecurvi-
linear coordinatesΘi = [ξ, η, ζ]. First, we define a set of basis
vectors on the reference surface in the undeformed configura-
tion as:

Eα =
∂X0

∂Θα
, α = 1, 2 (2)

so that the shell director can be written as:

E3 = D =
E1 × E2

||E1 × E2||
t (3)

ζ

η

ηξ

E2E1

i1

i2

i3

deformedundeformed

S0

ζ

g2

g3

ξ

x0

x
X

X0

uE3 = D g1

Figure 1: Geometry and kinematics of the shell in the unde-
formed and in the deformed configurations.

wheret is the thickness of the shell. Now, using equation (1),
the covariant triad for any point within the shell body is ob-
tained as:

Gα =
∂X
∂Θα

= Eα + ζD,α , α = 1, 2

G3 = D

(4)

where the subscript comma denotes partial differentiation.
The position of the material point in the deformed configura-

tion x(ξ, η, ζ) is related toX(ξ, η, ζ) via the displacement field
u(ξ, η, ζ) as:

x(ξ, η, ζ) = X(ξ, η, ζ) + u(ξ, η, ζ) (5)

The displacement fieldu can be of any order which is in con-
trast to the standard solid-like shell formulation where anin-
ternal stretch term is added to obtain a quadratic term in the
displacement field in the thickness direction. Similarly, in the
deformed configuration we can establish the covariant triadas:

gi =
∂x
∂Θi
= Gi + u,i , i = 1, 2, 3 (6)

which convention will be used in the remainder. Using equa-
tions (4) and (6) the metric tensorsG andg can be determined
as:

Gi j = Gi ·G j , gi j = gi · gj , i, j = 1, 2, 3 (7)

The contravariant basis vectors needed for the calculationof the
strains can be derived as:

Gi = (G)−1Gi (8)

where (G)−1 is the inverse of the metric tensor with components
Gi j . The volume of the element in the undeformed configura-
tion is evaluated using the covariant metric tensorG in the fol-
lowing manner:

dΩ0 =
√

det(G) dξ dη dζ (9)
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2.2. Strain measure

The Green-Lagrange strain tensorγ is defined conventionally
in terms of deformation gradientF:

γ =
1
2

(FT · F − I ) (10)

where I is the unit tensor. The deformation gradient can be
written in terms of the base vectors as:

F = gi ⊗Gi (11)

which leads to following representation of the Green-Lagrange
strain tensor:

γ = γi j Gi ⊗G j with γi j =
1
2

(gi j −Gi j ) (12)

where the summation convention has been used for repeated
indices. Substituting equations (4) and (6) forGi j andgi j into
this relation yields:

γi j =
1
2

(Gi · u, j + u,i ·G j + u,i · u, j) (13)

2.3. Material law

In continuum shell elements the stresses are computed us-
ing a three-dimensional constitutive relation. Assuming small
strains, a linear relation between the rates of the Second Piola-
Kirchhoff stress tensorS and the Green-Lagrange strain tensor
can be adopted:

DS= C : Dγ (14)

whereC is the material tangential stiffness matrix.
The strain field in equation (13) is defined in the parametric

frame ofGi , i = 1, 2, 3, which are not necessarily orthonormal.
In order to obtain the strains in the element local frame of ref-
erenceT i , they must be transformed using:

γL
i j = γkltkitl j , tki = Gk · T i (15)

For an orthotropic material,T1 is the fiber direction.T2 and
T3 are the in-plane and out-of-plane normal directions, respec-
tively.

2.4. Virtual work and linearization

In a Total Lagrangian formulation the internal virtual workis
expressed in the reference configurationΩ0:

δWint =

∫

Ω0

δγT : S dΩ0 (16)

The resulting system of non-linear equations is typically solved
in an incremental-iterative manner, which requires computation
of the tangential stiffness matrix. This quantity is obtained by
linearizing the internal virtual work, equation (16):

D(δWint) =
∫

Ω0

(δγT : DS + D(δγT) : S)dΩ0 (17)

with δγ andD(δγ) defined as:

δγi j =
1
2

(gi · δu, j + δu,i · gj) (18)

and

D(δγi j ) =
1
2

(D(u,i) · δu, j + δu,i · D(u, j)) (19)

In an incremental iterative solution scheme, the strain incre-
ment∆γ with respect to the previous converged solution is nor-
mally needed. Using equations (13) and (6), it can be derived
as:

∆γi j = γi j (u + ∆u) − γi j (u)

=
1
2

(gi · ∆u, j + ∆u,i · gj + ∆u,i · ∆u, j) (20)

3. Isogeometric finite element discretization

In this section we review some basic concepts of isogeomet-
ric analysis. Next, the Bézier extraction technique will be out-
lined. This technique is utilized to make a finite element data
structure for the spline basis functions.

3.1. Fundamentals of NURBS and B-splines
A B-spline is a piecewise polynomial curve composed of a

linear combination of B-spline basis functions:

C(ξ) =
n

∑

i=1

Ni,p(ξ)Pi (21)

wherep is the order andn is the number of the basis functions.
TheNi,p(ξ) represents a B-spline basis function and the coeffi-
cientsPi are points in space, referred to as control points. B-
splines are defined over a knot vector,ΞΞΞ, which is a set of non-
decreasing real numbers representing coordinates in the param-
eter domain:

ΞΞΞ = [ξ1, ξ2, ..., ξn+p+1] (22)

Parametric coordinatesξi divide the B-spline into sections. The
positive interval [ξ1, ξn+p+1] is called an element. If all knots are
equally spaced, the knot vector is called uniform, or if theyare
unequally spaced, they are non-uniform. Between two distinct
knots (knot span), a B-spline basis function hasC∞ continuity
while it reduces toCp−1 across a knot. If a knot value appears
k times, the knot is called a multiple knot. At this knot the
continuity isCp−k. A B-spline is said to be open if its first and
last knots appearp+ 1 times.

In one dimension, B-spline basis functions are defined using
the Cox-de Boor formulation [17, 18] starting with piecewise
constants (p = 0):

Ni,0(ξ) =















1 ξi ≤ ξ < ξi+1

0 otherwise
(23)

from which the higher-order functionsp ≥ 1 are derived recur-
sively using:

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (24)
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Figure 2: Third-order B-spline basis functions defined overa
knot vectorΞΞΞ = [0, 0, 0, 0, 1
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1
2 ,

3
4 , 1, 1, 1, 1].

Figure 2 shows the B-spline basis functionsNi,3, defined over
the knot vectorΞΞΞ = [0, 0, 0, 0, 1

4 ,
1
2 ,

3
4 , 1, 1, 1, 1]. Using tensor

products, B-spline surfaces can be constructed using two knot
vectorsΞΞΞ = {ξ1, ξ2, ..., ξn+p+1}, H = {η1, η2, ..., ηm+q+1} and a
set ofn × m control pointsPi, j known as the control net. By
defining univariate basis functionNi,p andM j,p over these two
knot vectors, the B-spline surface is then constructed as

S(ξ, η) =
n

∑

i=1

m
∑

j=1

Ni,p(ξ)M j,q(η)Pi, j (25)

B-spline basis functions satisfy the partition of unity prop-
erty. Also eachNi,p has a local support which is contained in
the interval [ξi , ξi+p+1]. Generally, open B-splines are used in
numerical analysis, since they are interpolatory at the bound-
ary, which facilitates the application of Dirichlet boundary con-
ditions.

A drawback of B-splines is their inability to represent engi-
neering objects such as conical sections exactly. For this reason,
Non-Uniform Rational B-Splines (NURBS), which encapsulate
B-splines and can represent such objects exactly, have become
the standard in Computer Aided Design (CAD). NURBS are
defined by augmenting each control point with a weightWi > 0
asPi = (xi , yi , zi ,Wi). Such a point can be represented with ho-
mogeneous coordinatesPw

i = (Wi xi ,Wiyi ,Wizi ,Wi) in a projec-
tiveR4 space. Accordingly, NURBS basis functions are defined
as:

Rα,p =
Nα,p(ξ)Wα
W(ξ)

(26)

whereW(ξ) =
∑n

i=1 Ni,p(ξ)Wi is the weighting function. Note
that there is no summation implied over the repeated indexα,
and that a B-spline is recovered when all the weights are equal.
The NURBS surfaces are constructed by the weighted tensor
product of B-spline functions, similar as done for B-splinesur-
faces, see equation (25).

3.2. Bézier extraction

As noted in the previous section the parametric coordinates
ξi in a knot vector divide the parameter domain into elements.
Similar to the finite element method, these elements, which re-
fer to the knot intervals{ξi , ξi+1} with a positive length, allow

for piecewise integration using quadrature rules. Basis func-
tions Ni,p have a local support over a knot interval{ξi , ξi+p+1},
which means that each element supports different basis func-
tions, see Figure 3. This is at variance with the finite element
method where numerical integration is done on a single parent
element. In order to blend isogeometric analysis into existing
finite element computer programs, Bézier elements and Bézier
extraction operators are used to provide a finite element struc-
ture for B-splines, NURBS [19], and T-splines [20].

0

1

ξ̃

Ni,3

0-1 1

ξ̃

0-1 1

ξ̃

0-1 1

ξ̃

0-1 1

Figure 3: B-spline basis functions plotted over [−1, 1]. The
basis functions are different per element which is in contrast
with standard finite elements.

In general, a degreep Bézier curve is defined by a linear
combination ofp+ 1 Bernstein basis functionsB(ξ) [21]. Sim-
ilar to B-splines, by having an appropriate set of control points,
a Bézier curve is written asC(ξ) = PTB. A Bézier extrac-
tion operator maps a piecewise Bernstein polynomials basis
onto a B-spline basis. This transformation makes it possible
to use Bézier elements as the finite element representationof
B-splines, NURBS, or T-splines.

The extraction operator can be obtained by means of knot
insertion. Consider a knot vectorΞΞΞ and a set of control points
{Pk}nk=1. By inserting a knot valuēξ in the knot vector, a new
set of control points needs to be calculated. This new set canbe
related to the initial set of control points via:

P̄ = [C1]TP (27)

This relation ensures that the parametrization is not changed
when an existing knot value is repeated, see [19, 21] for algo-
rithms to determine the operatorC1. The knot insertion pro-
cess is repeated until all interior knots of the knot vector have
a multiplicity equal top, with p the order of the original spline
defined over the knot vectorΞΞΞ. Next, the complete set of new
control points{P̄k}mk=1, with m = nep + 1 andne the number of
elements, is obtained as:

P̄ = [CN̄−N]T [CN̄−N−1]T · · · [C2]T [C1]TP = CTP (28)

Again, the parametrization remains unchanged upon the inser-
tion of the additional knots. Hence, according to equation (21)
and using equation (28) it is expressed as:

C(ξ) = PTN(ξ) = P̄TB(ξ) = (CTP)TB(ξ) (29)
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SinceP is arbitrary, the refined basis functionsB are related to
the original basis functionsN via:

N(ξ) = CB(ξ) (30)

Hence, every original basis function can be expressed as a lin-
ear combination of the Bernstein polynomials. By defining the
operatorsLe andL̄ e to select the basis functionsNe andBe for
elemente, we have:

Ne = L eN , B = L̄eBe (31)

Combining equations (30) and (31) leads to

Ne = LeCL̄ eBe (32)

Theelementextraction operatorCe is defined as:

Ne = CeBe (33)

which, using equation (32) can be elaborated as:

Ce = LeCL̄e (34)

As can be observed from Figure 4, the Bézier extraction oper-
ator of an elementCe maps a piecewise Bernstein polynomial
basis onto a B-spline basis.

0

1

ξ̃

Bi

0-1 1

Bézier extraction
✲

N1 = C1B

0

1

ξ̃

N1,3

0-1 1

Figure 4: Schematic representation of the Bézier extraction op-
erator.

The Bézier extraction operator for multivatriate B-splines
and NURBS can be computed by exploiting their tensor prod-
uct structure, see [19] for details. For a detailed discussion of
Bézier extraction for T-splines, for which a global tensorprod-
uct structure is absent, see [20]. From the element extraction
operator, Bézier elements and the global Bézier mesh can be
constructed.

3.3. Isogeometric finite element implementation

Similar to the previous work on the isogeometric solid-like
shell element [12], we start by modelling a reference surface
S0 of the shell, where in this caseS0 is the bottom surface of
the shell, see Figure 1. Accordingly, the three-dimensional rep-
resentation of the shell reduces to a bivariate descriptionusing
Bézier elements, where the geometric and the kinematic quan-
tities are approximated by NURBS functions. Bézier elements
for the surface of the shell in combination with linear shape

functions in the thickness direction can fully describe theshell
geometry in the undeformed configuration as in equation (1).
Therefore, any material point in the shell is obtained as a sum-
mation of its projected position vector onto the reference sur-
face,X0 and its parametric thickness times the shell director,
ζD.

We assume a higher-order interpolation of the displacement
in the thickness direction by using B-spline basis functions. By
using equation (24) for example, quadratic B-spline basis func-
tions can be defined over a knot vectorT = [0, 0, 0, 1

2 , 1, 1, 1].
Figure 5 shows the resulting basis functions.

ζ

Hi

0 0.5 1.0
0

1

Figure 5: A quadratic B-spline basis function to be used for
through the thickness discretization in the deformed configura-
tion. The order of the basis{Hi}4i=1 can be chosen arbitrarily.

The total displacement field is now discretized as:

u(ξ, η, ζ) =
ncp
∑

I=1

NI (ξ, η, ζ)aI (35)

whereaI are the displacement degrees of freedom. We assume
thatn andm are the number of shape functions (or the control
points) in the reference surface and in the thickness direction,
respectively (ncp = n×m). Hence, the shape functionsNI read:

NI (ξ, η, ζ) = Si(ξ, η)H j(ζ),

I = i + ( j − 1)n,

i ∈ {1, ..., n} , j ∈ {1, ...,m}.

(36)

whereSi(ξ, η) is the basis function from the Bézier element and
H j(ζ) is the B-spline function in the thickness direction. This
equation implies that the trivariate basis functionsNI are de-
composed into a surface part and a thickness part which can
have different orders of interpolation,ps and ph, respectively.
As will be detailed below, the strains are subsequently com-
puted from these displacements using shell kinematics.

As we only model a surface of the shell rather than the com-
plete geometry, it is assumed that every control point on the
reference surface has 3×mdegrees of freedom, wherem is the
number of control points in the thickness direction. Therefore,
in a Bézier mesh each control pointPi contains a vector of de-
grees of freedomΦi , as follows:

Φi = [a1
x, a

1
y, a

1
z, ..., a

m
x , a

m
y , a

m
z ]T , i = 1, 2, ..., n (37)

5



whereax,ay,az denote the displacement components. Further-
more, by combining equations (35) and (36) the displacement
components can be written as follows:

uk(ξ, η, ζ) =
m

∑

j=1

n
∑

i=1

a ji
k Si(ξ, η)H j(ζ) (38)

where the subscriptk refers to the 1, 2, 3 (orx, y, z) directions.

3.4. Evaluation of internal force vectors and stiffness matrices

For the evaluation of the tangential stiffness matrices we first
define the virtual strain vector:

δγT = [δγ11, δγ22, δγ33, 2δγ12, 2δγ23, 2δγ31] (39)

This vector is related to the control points degrees of freedom
as:

δγ = BδΦ (40)

Referring to equation (18) this equation is expanded as:

δγ = [B1 B2 · · ·Bm]6×3ncp · [Φ1
Φ

2 · · ·Φm]T
3ncp

(41)

where

[B j ]6×3n · [Φ j ]T
3n = [b j1 b j2 · · ·b jn] · [φ j1φ j2 · · ·φ jn]T (42)

In this equation,b ji a 6× 3 matrix with the components:

b ji
1k = g1 · ikSi,ξH j

b ji
2k = g2 · ikSi,ηH j

b ji
3k = g3 · ikSiH j,ζ

b ji
4k = g1 · ikSi,ηH j + g2 · ikSi,ξH j

b ji
5k = g2 · ikSiH j,ζ + g3 · ikSi,ηH j

b ji
6k = g1 · ikSiH j,ζ + g3 · ikSi,ξH j

(43)

whereik , k = 1, 2, 3 are the unit base vectors of the global co-
ordinate system, and

φT
ji = [a ji

x a ji
y a ji

z ] (44)

with a ji
k used in equation (38). As an example we will de-

rive the explicit expression for the virtual strain component γ11

in Appendix A. It is emphasized that the virtual strains and the
correspondingB matrix in equation (40) are stated in the non-
orthonormal curvilinear base vectors which should be trans-
formed to the element local frame according to equation (15).
The transformedB matrix is represented byBL, which is given
in Appendix B.

From the internal virtual work, equation (16), the internal
force vector is directly obtained as:

f int =

∫

Ω0

BT
LSdΩ0 (45)

Next, we rewrite the linearized internal virtual work, equa-
tion (17), in matrix form:

−D(δWint) = δΦT ∂f int

∂Φ
DΦ = δΦTK DΦ

= δΦT(Kmat+ Kgeom)DΦ
(46)

whereK represents the stiffness matrix decomposed in a ma-
terial partKmat and a geometric part,Kgeom, as usual. From
equation (17) these matrices can be obtained as:

Kmat =

∫

Ω0

BT
LCBL dΩ0 , Kgeom=

∫

Ω0

∂BT
L

∂Φ
SdΩ0 (47)

The geometric part is the stress-dependent part of the stiffness
matrix and is obtained through the derivatives of the virtual
strains, equation (19). Using the notation:

ωkl = tkitl j Si j (48)

with Si j the components of the Second Piola-Kirchhoff stress
tensor andtki defined in equation (15), the integrand of the ge-
ometrical part of the stiffness matrix can be written as:

∂BT
L

∂Φ
= ΛT

Λ (49)

where

Λ
T = [λ1, λ2, · · · , λm]3ncp×3 (50)

with

λ j = [λ j1, λ j2, · · · , λ jn]T
3n×3 (51)

and

λ ji =
[

Si,ξH j
√
ω11 + Si,ηH j

√
ω22 + Si H j,ζ

√
ω33

+
(

Si,ξH j + Si,ηH j
)√
ω12

+
(

Si,ηH j + SiH j,ζ
)√
ω23

+
(

Si,ξH j + SiH j,ζ
)√
ω13

]

I (52)

Herein,i refers to layeri andI is the 3× 3 unit matrix.

4. Numerical aspects

The linearized internal virtual work relation derived in equa-
tion (17) is discretized using B-spline basis functions. A dis-
tinction is made between the discretization of the in-planeand
the out-of-plane displacement fields. Regarding the latter, we
will derive three variants. In the first variant, all layers of the
shell element are represented by a single higher-order B-spline
in the thickness direction. In the second variant, interfaces be-
tween layers are represented by weak discontinuities. In the
third version of the element a static delamination is modelled
by introducing a strong discontinuity in the B-spline function.
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4.1. In-surface and out-of-surface integration

As mentioned in the formulation of B-splines and NURBS,
the basis functions are defined over a parametric knot span, i.e
(ξ, η, ζ) ∈ [0, 1]3. In order to carry out the numerical integration
the basis functions and their derivatives should be calculated
locally at quadrature points defined over a parent element, i.e
(ξ̃, η̃, ζ̃) ∈ [−1, 1]3. Moreover the corresponding Jacobian de-
terminant of the mapping must be calculated. The mapping for
all the parametric coordinates is the same. For example, fora
thickness element of [ζk, ζk+1] the mapping is (Figure 6):

ζ = ζk + (ζ̃ + 1)
ζk+1 − ζk

2
(53)

whereζ̃ is the parent element coordinate. Therefore the kine-
matic parameters in terms of B-spline and NURBS parametric
coordinate should be written in the right format. For instance,
equation (4) is rewritten as:

Gα =
∂X
∂Θα̃

= Eα̃ +
(

ζk + (ζ̃ + 1)
ζk+1 − ζk

2

)

D,α̃ , α̃ = 1, 2

G3 =
∂X

∂ζ̃
=
ζk+1 − ζk

2
D

(54)
As we employ independent discretizations for the reference

surface of the shell and for the thickness direction, the numeri-
cal integration schemes in the in-plane and out-of-plane direc-
tions will also be decoupled. Accordingly, the Bézier extraction
operator will be used for the integration over the surface. First,
the geometry of the reference surface is mapped to its corre-
sponding NURBS parametric space (ξ, η) ∈ [0, 1]2, see Fig-
ure 7. Then, the second mapping is carried out to the Bézier
space where the parent element (ξ̃, η̃) ∈ [−1, 1]2 and the extrac-
tion operator are obtained.

Through the thickness integration is done by using the con-
nectivity array (or IEN array). Using this array we determine
which functions have a support in a given element. Assume
that we use a quadratic B-spline defined over a knot vector of
T = [0, 0, 0, 1

2 , 1, 1, 1], see also Figure 6. This definition leads
to two elements of [0, 1

2] and [12 , 1] over the thickness and four
global basis functions. Each element supportph + 1 = 3 basis
of the global basis. The IEN array is:

[IEN ]ne×ph+1 =

(

1 2 3
2 3 4

)

2×3

(55)

The assembly of the element stiffness matrices can also be done
according to the shared basis functions (number 2 and 3 in this
case). It starts from the strain-displacement matrixB:

[B] =
[

B1
e1
, B2

e1
+ B2

e2
, B3

e1
+ B3

e2
, B4

e2

]

(56)

which is subsequently used in the calculation of the material
part of the stiffness matrixKmat in equation (47). The same
steps are followed for the matrixΛ in equation (50) for the cal-
culation of the geometrical part of the stiffness matrixKgeom.

4.2. Modelling weak and strong discontinuities in the displace-
ment field

As has been mentioned in Section 3.1, B-spline and NURBS
basis functions areCp−k continuous at a knot with multiplic-
ity k. This means that we are able to control the continuity of
the basis functions at a knot by arbitrarily selecting the multi-
plicity. This property is useful in modelling traction-free cracks
and adhesive interfaces (strong discontinuity) and layered struc-
tures withC0 continuity between the layers (weak discontinu-
ity) [13].

Figure 8 shows the steps in order to make a discontinuity
in the thickness direction of a shell structure. Assume thata
quadratic B-spline basis functionHi defined over a knot vec-
tor T = [0, 0, 0, 1

2 , 1, 1, 1] has been used in the thickness of
the shell. This gives us four basis functions which are allC1

continuous atζ = 1
2. Now suppose that we want to have a

composite shell consisting of two layers of equal thickness.
The deformation of composite structures requires a unique dis-
placement at the interfaces and different strain fields in the
adjacent layers. In the example of Figure 8 this is simply
achieved by having a displacement field which isC0 continu-
ous at the interfaceζ = 1

2. This leads to the new knot vector
T = [0, 0, 0, 1

2 ,
1
2 , 1, 1, 1]. Henceforth, we will denote this el-

ement as the layered CSIGA element. Subsequently, the com-
plete separation of the layers is obtained if we insert the second
knot as:T = [0, 0, 0, 1

2 ,
1
2 ,

1
2 , 1, 1, 1], and this element will be

denoted as the discontinuous CSIGA element. Figure 8 shows
the corresponding basis functions through the knot insertion
process.

It is important to note that if this method to introduce weak or
strong discontinuities is adopted in the construction of a single
volumetric B-spline or NURBS patch, the inserted discontinu-
ity will have a global influence, i.e. it will propagate throughout
the patch. While this is not a problem for when weak discon-
tinuities are inserted to model layers, it can be restrictive when
used to model delamination by means of strong discontinuities.
In Section 5.6 we will demonstrate how linear constraints can
be used to localize strong discontinuities in order to realisti-
cally mimic delaminations. In a further study we will develop a
versatile method to localize strong discontintuities. This can
potentially be achieved by adopting a localized definition of
the basis functions – as is essentially done in T-splines – and
has already been demonstrated in the context of cohesive-zone
modelling [13].

5. Numerical simulations

The isogeometric continuum shell formulation is now veri-
fied and assessed through different examples. We refer to the
proposed class of shell elements as CSIGA, see Table 1. In
this table we distinguish between three cases for the contin-
uum shell element: (i) withoutC0 planes between the layers
(lumped), (ii) withC0 planes between the layers (layered), and
(iii) with C−1 planes to simulate static delamination (discontin-
uous). Different orders of interpolation can be used in the plane

7



ζ

Z

E2

ζ̃

[IEN]ne×ph+1 =

(

1 2 3
2 3 4

)

E1

thickness mapping

D =
E1 × E2

||E1 × E2||
D

mapping to the parent element

ζ

Hi

0 0.5 1
0

1
element 1 element 2

H1 H2 H3 H4

Figure 6: A quadratic B-spline basis function to be used for through the thickness discretization in the deformed configuration. The
basis functions are defined over a knot vector of [0, 0, 0, 1

2 , 1, 1, 1] which gives two elements over [0, 1
2] and [12 , 1]. The numerical

integration is done by defining the IEN-array which determines which functions have support in a given element. It shouldbe noted
that we do not consider any control point in the thickness direction where the thickness directorD can be calculated directly from
the in-surface base vectorsE1 andE2.

as well as in the out-of-plane direction for each case. For in-
stance, in the remainder ”lumped(3,2)” will denote a CSIGA
element withoutC0 (weak discontinuity) planes between the
layers, with a third-order NURBS/T-spline interpolation in the
plane, and a second-order B-spline in the thickness direction.

In the beginning we examine the locking problem which is
typical for shell elements. We proceed the simulations by a
linear calculation on a composite panel, which aims to capture
the global and local behavior of the panel (deflection and stress
distribution, respectively). Then, the element will be tested us-
ing some geometrically non-linear examples of a pinched hemi-
sphere and pinched cylinder with inward and outward loads.
These simulations are followed by modelling buckling of de-
laminated zones in layered panels.

5.1. Locking

In this section we investigate shear locking and membrane
locking which can occur when decreasing the thickness of shell
elements. A clamped plate and a cylindrical shell, both under
bending loads are used to assess the locking phenomenon.

5.1.1. Shear locking
Figure 9 shows the geometry of a plate subject to bend-

ing [11]. The plate has a Young’s modulusE = 1.08 Pa and
a Poisson’s ratioν = 0.3. The dimensions of the plate are:
L = 10 m,b = 1 m and the thicknesst varies through the test.
The plate is clamped at one end and a transverse loadqz = 100t3

is applied at the other end.

As a reference value we consider the displacement at the free
end according to the beam theory,δ = PL3/3EI which results
in δ = 0.004 m for this test. The numerical simulation is done
with two meshes of 64 CSIGA lumped(2,2) and 64 CSIGA
lumped(3,2) elements. Figure 10 shows the obtained normal-
ized displacements for different ratios of L/t. It is clear that
employing second order and third order NURBS basis func-
tions for the in-plane discretization result in shear locking free
behaviour as the thickness of the plate reduces.

5.1.2. Membrane locking
Membrane locking can occur in curved structures [8, 9].

Therefore, a cylindrical shell as shown in Figure 11 is mod-
elled. The shell has a radius ofR = 10 m and a width of
b = 1 m. Young’s modulus and Poission’s ratio are 1000 Pa
andν = 0 respectively. The cylindrical shell is clamped at one
edge and subjected to a constant distributed load ofqx = 0.1t3.
An analytical solution based on the Bernoulli beam theory gives
a value of approximately 0.942 for the radial displacement.

The numerical results for various meshes and thicknesses are
presented in Figure 12. In the figure, the mesh size shows the
number of elements in the radial direction, while only one ele-
ment has been used in the width direction. According to the
results, a low number of elements of order two, 16 CSIGA
lumped(2,2) elements, exhibit membrane locking. Keeping the
NURBS order fixed and increasing the number of elements to
64 removes locking. Employing 16 third-order NURBS ele-
ments the results are locking-free as well.
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Figure 7: Numerical integration on the reference surface ofthe shell is done using the extraction operator. The geometry of the
reference surface is mapped to the corresponding NURBS parametric space. A second mapping is made onto the Bézier space
where the extraction operator and the parent element are obtained.
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Figure 8: Schematic representation of introducing a discontinuity in the thickness direction of a shell. Weak and strong discontinu-
ities between the layers of a composite shell are created by knot insertion.

5.2. Composite laminate

The performance of the shell element is studied in the sim-
ulation of the deflection of a multi-layer composite panel. In

conventional shell models, these structures are often simulated
with a single element in the thickness direction. This is gen-
erally sufficient for calculating displacements, but it does not
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Table 1: Nomenclature of solid-like and continuum shell elements.

Model In-plane discretization Out-of-plane discretization

SLS [10] 1st or 2nd order Lagrange 1st order Lagrange
SLSBEZ(p) [12] pth order NURBS/ T-Spline 1st order Lagrange
CSIGA(p, q)

lumped pth order NURBS/ T-Spline qth order B-Spline
layered pth order NURBS/ T-Spline qth order B-Spline withC0 continuities at each interface
discontinuous pth order NURBS/ T-Spline qth order B-Spline with oneC−1 continuity to represent

a delamination. The other interfaces areC0 continuous.
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Figure 9: Geometry of the clamped plate under bending.
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Figure 11: Geometry of the cylindrical shell

allow for computing the stresses and strains in the individual
layers accurately.

We consider the square laminate shown in Figure 13. The
panel has dimensionsa × b = 0.6 × 0.4 m and consists of six
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Figure 13: Geometry, boundary conditions and loading of a
rectangular panel.

layers of a unidirectional material, with a stacking sequence
[0, 90, 0]s. Each layer is 0.2 mm thick, so that the total thick-
ness of the shell is 1.2 mm. The layers can be modelled as a
transversely isotropic material withE1 = 130 GPa,E2 = E3 =

7 GPa,ν12 = 0.33 andG12 = 5 GPa. The panel is simply sup-
ported on all four sides and is loaded by a distributed load

qz = q0 sin
πx
a

sin
πy
b

with q0 = 1 MPa.
The panel has been simulated for three different discretiza-

tions: second-order in the thickness direction, fourth-order in
the thickness direction, and second-order per layer with weak
discontinuities at the boundaries between the layers.

The analytical solution can be obtained from classical lam-
inate theory. The deflection of the mid point of the panel is
equal to−2.62 × 10−5 m. Figure 14 showsσxx in the mid-
point of the panel as a function of the thickness coordinate
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of the shell obtained for different discretizations. The results
from one second-order and one fourth-order B-spline element,
lumped(3,2) and lumped(3,4), respectively, lead to the same
stress distribution as that of a second-order B-spline per layer
(weak discontinuities at layer boundaries). All the results are in
agreement with the analytical solution from the classical lami-
nated plate theory. Moreover, the deflection at the mid-point of
the panel is in agreement with the analytical solution.
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Figure 14:σxx at the mid-point as a function of the thickness of
the panel. The thickness of the plate is 1.2 mm.

Next, the ability of the shell element to compute interlaminar
stresses is examined. This issue is of importance when damage
and failure of composite materials need to be considered in the
simulations. The normal stressσzz is presented in Figure 15 as
a function of thickness of the shell. By using third-order and
second-order B-splines per layer, layered(3,3) and layered(3,2)
elements, respectively, which areC0 continuous at the inter-
faces, we can capture aσzz distribution in the thickness direc-
tion, which is zero through most of the thickness and equals
q0 = 1 MPa at the top surface. Adopting just one element of
second-order and of fourth-order B-splines, lumped(3,2) and
lumped(3,4), respectively, for the discretization in the thickness
direction results in a fluctuation of theσzz distribution. From
the results it is concluded that in order to computeσzz accu-
rately we need to enforceC0-continuity of the basis functions
at the interfaces.

The simulations are now repeated for a ten times thicker
panel withq0 = 100 MPa. The results presented in Figure 16
show again that applying basis functions withC0 continuity be-
tween the layers results stress distribution that can be expected
for a thick panel. The jump atz = 0 is caused by the fact that
the displacement boundary conditionuz = 0 at the edges has
been enforced atz= 0.

5.3. Pinched hemispherical shell with a hole

A pinched hemisphere with a hole at the top has been
used extensively as a benchmark problem for shell analysis
to test the ability to describe nearly inextensional bending
modes [22, 23, 24]. The geometric parameters and material
properties employed in this test are summarized in Table 2. The
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Figure 15:σzz at the mid-point as a function of the thickness of
the panel. The thickness of the panel is 1.2 mm (thin panel).
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Figure 16:σzz at the mid-point as a function of the thickness of
the panel. The thickness of the panel is 12 mm (thick panel).

shell is subjected to two opposite point loads. The bottom cir-
cumferential edge of the hemisphere is free. Due to the sym-
metry only a quarter of the shell needs to be modelled. The
symmetric boundary conditions are applied by constrainingthe
displacement degrees of freedom in the normal direction of the
symmetry plane. The mesh and the applied boundary condi-
tions are shown in Figure 17. ABAQUS has been used to gen-
erate a standard finite element solution, using a 16×16 mesh
consisting of so-called S4R shell elements, which we will here
use as a reference solution.

Table 2: Geometric parameters and material properties for the
pinched hemisphere.

RadiusR Thicknesst Young’s modulusE Poisson’s ratioν
10.0 m 0.04 m 6.825× 107 Pa 0.3

Figure 18 shows the load-displacement curves of the pinched
hemisphere that have been obtained for different meshes. A
mesh of 16×16 CSIGA elements of type lumped(3,2) leads to
results that are close to the traditional finite element solution
(using S4R elements). The graph also shows the result from a
16×16 mesh of SLSBEZ elements, which is slightly stiffer than
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Figure 17: The mesh for a quarter model and the boundary con-
ditions.

those obtained with the CSIGA and S4R elements.
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Figure 18: The loadP as a function of the displacement at point
A for the pinched hemisphere.

5.4. Pinched cylinder with free ends

The pinched cylinder with free ends shown in Figure 19 is
used next to assess the element performance. The cylinder has
a lengthL = 10.35 m, a radiusR = 4.935 m, a thickness
t = 0.094 m, a Young’s modulusE = 10500 MPa and a Pois-
son’s ratioν = 0.3125. The cylinder has free edges at the ends,
and it is loaded by two centrally located diametrically opposed
point forces, which pull in the outward direction. Due to sym-
metry considerations only one-eight of the cylinder needs to be
modelled.

The initial response is dominated by the bending stiffness
which induces large displacements at relatively low load levels.
This changes into a very stiff response when the displacement
become larger. Finite rotations occur afterwards, thus making
the pinched cylinder with free ends a challenging test for ele-
ment performance [25, 26, 27].

Figure 20 shows the load-displacement curves of this exam-
ple. The results have been obtained with a mesh of 16× 16
CSIGA elements of type lumped(3,2), a mesh of 16× 16 SLS-
BEZ elements and a mesh of 16× 8 of S4R elements imple-

Figure 19: Pinched cylinder with free ends

mented in ABAQUS. The magnitude of the load is that for
the complete cylinder and the displacement is measured at the
point where load is applied. From Figure 20 it can be seen that
the results from different elements are very close, however the
CSIGA elements show a softer response.
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Figure 20: Load-Displacement diagram of pinched cylinder
with free ends.

5.5. Pinched cylinder with rigid diaphragm

The problem of a pinched cylinder with a rigid diaphragm
at the ends has been studied by several authors [28, 29, 30] in
order to test the convergence behaviour and non-linear perfor-
mance of shell elements. Since large rotations occur the prob-
lem provides a test for the finite rotation capability of the shell
formulation. The cylinder has a lengthL = 200 mm, a ra-
diusR = 100 mm, a thicknesst = 1 mm, a Young’s modulus
E = 30000 N/mm2 and a Poisson’s ratioν = 0.3. The cylinder
is loaded by two centrally located, diametrically opposed point
forcesP, which push inwards. Using symmetry only one-eighth
of the structure needs to be modelled.

Numerical simulation have been performed using CSIGA,
SLSBEZ and S4R elements. Because of the need for mesh re-
finement at the free edge T-spline functions have been used for
the in-plane discretization for both the CSIGA and SLSBEZ el-
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ements, see Figure 21. The use of T-splines at the left free edge
has been discussed in Ref. [12].

Figure 21: Pinched cylinder with rigid diaphragm

The results of the simulations are shown in Figure 22. The
magnitude of the load is that for the complete cylinder and
the displacement is measured at the point where load is ap-
plied. The CSIGA elements integrated with a 4× 4 × 2 inte-
gration scheme show locking for displacement level higher than
30 mm. Repeating the simulation with a 2× 2 × 2 integration
scheme improves the results and compares well with those of
the SLSBEZ and S4R elements.
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Figure 22: Load-Displacement diagram of pinched cylinder
with rigid diaphragm.

5.6. Buckling of static delaminations

In the final examples, we will study the possibility to insert
a delamination in layered structures by means of introducing a
strong discontinuity through the thickness. The panels tested in
the examples are partially delaminated over a strip and overa
circular region, respectively.

5.6.1. Buckling of plate with initial strip delamination
We consider the panel shown in Figure 23. The panel has unit

dimensions and consists of two layers of an isotropic material.
The material properties are:E = 2× 104 MPa andν = 0.3. The
top layer has a thickness 0.01 m and the bottom layer 0.09 m.

The top layer is partially delaminated over a width of 0.75 m.
This delamination is modelled by a strong discontinuity in the
thickness direction.

Y
Z

σx

X σx

initial delamination

W
=1 mL=1 m

h1=0.09 m

h2=0.01 m

Figure 23: Geometry of the panel with a strip initial delamina-
tion, which is located between the two layers.

We start by defining the through-the-thickness B-spline func-
tions over a knot vector ofT = [0, 0, 0, 0.9, 0.9, 0.9, 1,1,1].
This gives two layers in the thickness which are fully delam-
inated. The area that is not delaminated can be modelled by
applying a linear constraint between the lower layer and theup-
per layer. Figure 24 shows the third-order NURBS meshes used
for this example. In these meshes the control points are shown
in red and blue. Using equation (37) the vector of degrees of
freedomΦi for each control point is written as:

Φi = [a1
x, a

1
y, a

1
z, ..., a

6
x, a

6
y, a

6
z]

T , i = 1, 2, ..., n (57)

The linear constraint is now applied to the red control points as:

a3
x = a4

x , a3
y = a4

y , a3
z = a4

z (58)

By doing so the degrees of freedom with the superscript 3 and 4
have the same values at the interface of the two layers. It should
be noted that the linear constraint is not applied to the bluecon-
trol points. Referring to the basis functions shown in Figure 24,
it can be seen that the basis functions corresponding to the blue
control points have a support over the whole delaminated area
in the parametric space. Therefore, by excluding their corre-
sponding degrees of freedom from the linear constraint space
the delaminated area can be preserved.

An issue in delamination modelling is the proper selection of
the order of the continuity of the NURBS basis functions at the
delamination fronts. Figure 25 shows the results obtained with
the third-order NURBS basis which areC2 continuous at the
delamination fronts. The figure presents the out-of-plane dis-
placement versus the axial stressσxx for different mesh sizes.
An analytical solution for the buckling stress of a clamped panel
with thickness ofh = 0.01m and lengthl = 0.75m was formu-
lated by Kachanov [31]:

σcr =
π2E

3(1− ν2)

(h
l

)2

= 12.84 MPa (59)

A very fine mesh of 192 elements is used as the reference so-
lution. As can be seen, the results obtained by 16, 32 and 64
element converge to the reference and the analytical solutions.
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displacement of the plate with an initial strip delamination. The
used meshes areC2 at the delamination fronts.

We repeat the simulation using third-order NURBS basis
function, but with aC0 continuity at the delamination fronts,
in order to exactly capture the Dirichlet boundary condition at
this position. Figure 26 shows that using 48 NURBS elements
the obtained critical stress is in agreement with the reference so-
lution of 192 elements and the analytical solution. Accordingly,
by applyingC0 continuous basis functions at the delamination
front we can properly capture the boundary condition, whichis
a basic assumption in the analytical expression for the buckling
load. Figure 27 shows a schematic representation of the delami-
nation opening resulting from meshes with and withoutC0 con-
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Figure 26: Diagram of the axial stressσxx vs the out-of-plane
displacement of the plate with an initial strip delamination. The
used meshes areC0 at the delamination fronts.

tinuity at the delamination fronts. As it can be seen, for theC0

case the effective length of the initial delaminationle is larger
than that resulting from theC2 mesh. Referring to the analytical
solution for the critical buckling stress i.e. equation (59), it is
clear that the buckling load is proportional to the inverse of the
initial delamination lengthl. Therefore, for an equal number
of elements, aC0 mesh at the delamination front will result in
a smaller critical buckling stress, which explains the difference
between the obtained results. However, the additional effort of
enforcingC0 continuity probably does not outweigh the com-
putational gain, since with 64C2 continuous elements the same
result was obtained. This holds a fortiori when propagatingde-
lamination fronts are considered.

l
C
0

e

≈ l
C
2

e

l
C
0

e
> l

C
2

e

Figure 27: Schematic representation of the delamination open-
ing obtained with meshes which areC2 andC0 continuous at
the delamination front.

5.6.2. Glare panel with a circular delamination
In this section the buckling behavior of a Glare panel with

initial circular delamination under uniaxial compressiveload
is examined. The specimen geometry is shown in Figure 28.
The panel consists of an aluminium layer with thicknessh1 =

0.2 mm and a Glare 0/90◦ prepreg layer with a thickness
0.3 mm. A circular delamination with radius 8 mm is assumed
between the layers. In order to avoid global buckling, a thick
layer of aluminum is attached to the panel. Table 3 contains the
material parameters of the Glare prepreg.

An advantage of using NURBS basis functions is that
we are able to model an exact circular delamination shape.
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Figure 28: Geometry of the Glare panel with a circular initial
delamination, which is located between the top aluminum layer
and the Glare layer.

Table 3: Material parameters for 0/90◦ Glare prepreg.

E11 = 33170 MPa E22 = 33170 MPa E33 = 9400 MPa
G12 = 5500 MPa G23 = 5500 MPa G13 = 5500 MPa
ν12 = 0.195 ν23 = 0.032 ν13 = 0.032

Similar to the previous example the delamination is mod-
elled by a strong discontinuity between the layers where a
linear constraint will preserve the adhesion at the remain-
der of the panel. In this case we define through the thick-
ness B-spline basis functions over a knot vector ofT =

[0, 0, 0, 0.952, 0.952,0.971, 0.971, 0.971,1,1, 1]. Accordingly
the linear constraint is written as:

a5
x = a6

x , a5
y = a6

y , a5
z = a6

z (60)

Because of the symmetry only one quarter of the geometry
is analyzed. Figure 29 shows a second-order NURBS mesh for
this example. The basis functions have been chosen to beC0

continuous at the delamination front. Figure 30 presents the
out-of-plane displacementvs the axial stressσxx for two fine
NURBS meshes. Both meshes lead to the same result.

6. Concluding remarks

A continuum shell element has been formulated that is based
on the isogeometric concept. NURBS basis functions have
been used to parametrize the reference surface, and a B-spline
shape function has been employed in the thickness direction. In
this manner, a complete three-dimensional representationof the
shell is obtained. The shell formulation combines the advan-
tages of a full, three-dimensional stress and strain representa-
tion that allows for the straightforward implementation ofcon-
stitutive relations such as plasticity or damage, with the advan-
tages of isogeometric analysis, including the exact description
of the geometry, the use of the design-through-analysis concept,
and the accurate prediction of stress fields. The latter property
is also important for the prediction of the onset of plasticity,
damage, or delaminations due to high transverse stresses.

In this paper, the performance of the isogeometric continuum
shell element has been assessed by means of a number of linear

ξ

Ni

0
0.4 10

1

Figure 29: The second-order NURBS mesh used for the panel
with circular delamination. The basis function areC0 continu-
ous at delamination front.
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Figure 30: Diagram of the axial stressσxx vs the out-of-plane
displacement of the plate with an initial circular delamination.

and non-linear examples. First, the performance with respect to
shear and membrane locking was examined for a straight and
for a curved clamped strip. The element was found locking-free
at least for length to thickness ratios up to 400 provided that cu-
bic splines were used for the in-plane discretization or quadratic
splines with a sufficiently fine discretization. Next, a unidirec-
tional composite panel consisting of six layers of [0, 90, 0]s has
been tested under a sinusoidal distributed pressure load. It was
shown that the global behavior of the panel, deflection and the
in-plane stress distribution, can be well captured by usingjust
one element of B-spline basis function in the thickness direc-
tion. Furthermore, the intralaminar stress distribution requires
the through the thickness parametrization to beC0 continuous
at interfaces. This property was achieved by employing knot
insertion in the thickness direction. Doing so, the transverse
normal stressσzz as a function of the thickness of the panel was
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obtained.
As benchmark tests for geometrically non-linear perfor-

mance, a pinched hemisphere with a hole and a pinched cylin-
der with free ends and with a rigid diaphragm were used.
The results are in agreement with reference solutions by the
ABAQUS S4R shell element, provided that in the last example
a sufficiently low order integration was used in the plane.

An important feature of the proposed element is its ability
to model static delamination buckling in composite materials.
Delamination is modelled as a strong discontinuity betweenthe
layers by means of knot insertion in the through the thickness
parametrization. To model bonding in a partially delaminated
area, linear constraints were locally applied to the upper and
lower layers.

A panel with an initial strip delamination under axial com-
pressive load was studied. By employingC0 continuous ba-
sis functions at the delamination fronts it is possible to capture
the Dirichlet boundary condition at these fronts. The analytical
buckling load was reproduced accurately.

As a final example, the buckling behavior of a composite
panel with initial circular delamination was studied, where it is
noted that the NURBS mesh results in an exact parametrization
of the circular shape of the delaminated area. The panel was
subjected to an axial compressive load. By using a NURBS
mesh withC0 continuity at the delamination front the buckling
load was computed accurately.
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Appendix A. Derivation of virtual strain terms

Using equation (18) the virtual strainδγ11, as an example, is
written as:

δγ11 = g1 · δu,1 (A.1)

using equation (6) forg1 where

g1 = G1 + u,1 (A.2)

is calculated as a total value at the beginning of each step.G1 is
calculated at each integration point using equation (54) and u,1
is obtained using equation (38) as:

u,1 =
m

∑

j=1

n
∑

i=1

Si,ξ(ξ, η)H j(ζ)
(

a ji
x · ix + a ji

y · iy + a ji
z · iz

)

(A.3)

Similarly, the virtual strain term is given as:

δu,1 =
m

∑

j=1

n
∑

i=1

Si,ξ(ξ, η)H j(ζ)
(

δa ji
x · ix+ δa

ji
y · iy+ δa ji

z · iz
)

(A.4)

Appendix B. The local strain–displacement matrix, BL

The virtual strains and the correspondingB matrix in equa-
tion (40) are stated in the non-orthonormal curvilinear basis
vectors which should be transformed to the element local frame
according to equation (15). The transformedB matrix is repre-
sented byBL. Using the notation that:

ℓkl
i j = tkitl j (B.1)

the columnN of the matrix which relates the virtual strains to
the virtual displacement in the local frame of reference is given
by:

BL =
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