The

University

yo, Of
Sheffield.

This is a repository copy of An isogeometric continuum shell element for non-linear
analysis.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/96204/

Version: Accepted Version

Article:

Hosseini, S., Remmers, J.J.C., Verhoosel, C.V. et al. (1 more author) (2014) An
isogeometric continuum shell element for non-linear analysis. Computer Methods in
Applied Mechanics and Engineering, 271. pp. 1-22. ISSN 0045-7825

https://doi.org/10.1016/j.cma.2013.11.023

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’'t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

An isogeometric continuum shell element for non-linearygsia

Saman HosseifiJoris J. C. RemmetsClemens V. VerhoosIRené de Borst

agindhoven University of Technology, Department of Meateritngineering, PO BOX 513, 5600 MB, Eindhoven, The Nethdsd.
buniversity of Glasgow, School of Engineering, Rankine dng, Oakfield Avenue, Glasgow G12 8LT, UK.

Abstract

An isogeometric continuum shell formulation is proposedvimich NURBS basis functions are used to construct the reéere
surface of the shell. Through-the-thickness behaviottespolated using a higher-order B-spline which is in costttathe standard
continuum shell (solid-like shell) formulation where adar Lagrange shape function is typically used in the thiskrdérection.
The present formulation yields a complete isogeometricaggntation of the continuum shell. The shell element idempnted in
a standard finite element code using Bézier extractionvacilitates numerical integration on the reference sigfaf the shell.
Through-the-thickness integration is done using a corivigcarray which determines the support of a B-spline b&sigtion over
an element. The formulation has been verified usirfedint linear and geometrically non-linear examples. Thityabf the
formulation in modelling buckling of static delaminatioinscomposite materials is also demonstrated.

Keywords: Isogeometric analysis, continuum shell element, sokd-$ihell element, Bézier extraction, delamination

1. Introduction

tation of the shell director [7]. Recently, the 7-paramestezl|
model [8] was cast in an isogeometric formulation in Ref. [9]

Isogeometric analysis (IGA) has recently received much at- A further benefit of basis functions that possess a higher de-
tention in the Computational mechanics Community. TheraSigree of Continuity is that the Computation of stresses i$|y/as
idea is to use splines, which are the functions commonly usefinproved. In shell analysis this can be particularly impaott
in computer-aided design (CAD) to describe the geometry, a§hen materially non-linear phenomena such as damage, or de-

the basis function for the analysis rather than the traudktih.a-
grange basis functions [1, 2]. Originally, Non-Uniform iat

lamination, which can occur in laminated structures, are in
cluded in the analysis. In the latter case the computati@nof

nal B-Splines (NURBS) have been used in isogeometric anaccurate three-dimensional stress field becomes mangaiaty

ysis, but their inability to achieve local refinement has/eni
their gradual replacement by T-splines [3].

solid-like shell elements become an obvious choice [10, 11]
This shell element is characterized by the absence of ooialti

~ A main advantage of isogeometric analysis is that the funcdegrees of freedom, which is convenient when stacking them,
tions used for the representation of the geometry are enyet possesses shell kinematics, and is rather insensitisrestar

ployed directly for the analysis, thereby by-passing thedne

for a sometimes elaborate meshing procedure. This imgortan

feature allows for a design-through-analysis procedurihvh
yields a significant reduction of the time needed for the arep
ration of the analysis model [2]. Indeed, the exact paraaeetr

tion of the geometry can have benefits for the numerical simu

lation of shell structures, which can be very sensitive tpem
fections in the geometry. Moreover, the higher-order canti
ity of the shape functions used in isogeometric analysisnel|
for a straightforward implementation of shell theories ethie-
quire C* continuity such as Kirchhé-Love models [4, 5]. A
Reissner-Mindlin shell formulation has been developed &y-B
sonet al.[6] using NURBS basis functions. Although conti-
nuity is then no requisite, good results and a high degree-of r
bustness were reported for large deformation problemsidiz a
tion, the exact geometry description allows for an exactmam
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locking and membrane locking,

A partially isogeometric solid-like shell element was deve
oped in Ref. [12]. This element combines the advantage of an
accurate geometric description of the shell mid-surfadk thie
three-dimensional stress representation of conventisolal-

like shell elements. The formulation adopts NURBS (or T-
spline) basis functions for the discretization of the sinilil-
surface, while in the thickness direction conventionaliaage
polynomials have been used. As a next step, in this contribu-
tion we adopt a higher-order interpolation in the thickneiss
rection, which makes use of B-spline basis functions. An im-
portant advantage of using B-spline basis functions is tisl-

ity to model weak and strong discontinuity in the displacete
field by knot insertion [13]. This is less straightforwardngs
conventional finite elements. Weak discontinuities arealigu
introduced by subdividing the shell in the thickness dicett

in multiple layers with each a piecewise polynomial intdggo
tion, e.g. References [14, 15]. Strong discontinuitiesa(aé
nations) can be modelled using interface elements, or inr@ mo
general manner, by exploiting the partition-of-unity peoty of
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Lagrange polynomials [16]. ¢
The continuum shell formulation is outlined in Section 2. In g
Section 3 we review the basic concepts of isogeometric analy
sis. Algorithmic and implementation aspects are discussed
Section 4. Section 5 contains a number of examples which ag
sess the performance of the isogeometric continuum shell fo
mulation. The numerical simulations demonstrate thetgtuifi
the formulation to model the mechanical behavior of conmeosi
structures, including buckling of delaminated panels.

undeformed deformed

2. Continuum shell formulation

In the solid-like shell element proposed by Parisch [10], an__ _ . . )

internal stretch term is added to obtain a quadratic term iff19uré 1: Geometry and kinematics of the shell in the unde-
the displacement field in the thickness direction. As a consgformed and in the deformed configurations.
quence, the normal strain varies linearly, which signifitan
reduces membrane locking. The element has been extenderlj] . . . .
. . . o ST wheret is the thickness of the shell. Now, using equation (1),
in[11, 16] for use in laminated composites, including ifesni- : : . o ;

S , . the covariant triad for any point within the shell body is ob-
nar delamination. In Ref. [12] we have described an |sogtiaometained as:
ric solid-like shell element (SLSBEZ) which utilizes NURBS '

or T-spline basis functions to construct the mid-surfacéhef G X

=E,+¢D, , a=12

shell. Through the thickness behavior was captured by stan- = 50

dard linear shape functions as it is in the conventionatisiite (4)
shell element. A complete isogeometric continuum shel ele Gz=D

ment (CSIGA) which is equipped with the B-spline basis func-

tions in the thickness direction is presented here. where the subscript comma denotes partifiedentiation.

The position of the material point in the deformed configura-

_ ) tion x(&,n, 0) is related toX (¢, 7, ) via the displacement field
2.1. Kinematics u(é, n, ¢) as:

Figure 1 shows the undeformed and the deformed configu- X =X u 5
rations of a continuum shell element. The reference sudéce (.. 8) = X(&.n.0) + u(gm. O ®)

the shell is denoted byO_S The variableg andy are the local  The displacement field can be of any order which is in con-
curvilinear coordinates in the two independent in-plamedi a5t to the standard solid-like shell formulation whereiran
tions, and/ is the local curvilinear coordinate in the thickness iarnal stretch term is added to obtain a quadratic term in the
direction. The position of a material point within the sHzdldy displacement field in the thickness direction. Similarlythe

in the undeformed configuration is written as a function & th yeformed configuration we can establish the covariant ag&d
three curvilinear coordinates:

OX

O = o~
X@En.) =XAEn) +{DE M, 0<¢<1 (1) ' 00
which convention will be used in the remainder. Using equa-

tions (4) and (6) the metric tensoaBandg can be determined
as:

:Gi+u,i y i=1,2,3 (6)

whereXO(¢&, n) is the projection of the point on the reference

surface of the shell and(¢, ) is the thickness director perpen-

dicular to the surfacg& at this point. .
In any material point, a local reference triad can be estab- Gij=Gi-Gj , gj=6-9 ., L]=123 ()

lished. The covariant base vectors are then obtained asthe phe contravariant basis vectors needed for the calculafitite

tial derivatives of the position vectors with respect to¢hevi-  gtrains can be derived as:

linear coordinate®' = [£,7,{]. First, we define a set of basis

vectors on the reference surface in the undeformed configura G = (G)'G; (8)

tion as:

aX° _ 19 5 where G)~!is the inverse of the metric tensor with components

o * YT (2) Gijj. The volume of the element in the undeformed configura-

so that the shell director can be written as: tion_ is evaluate.d using the covariant metric tenSdn the fol-

lowing manner:

E, =

_ _ E]_ X E2
Bs=D= e SEN ©) dQo = /detG) d¢ dn d7 9)



2.2. Strain measure with 6y andD(6y) defined as:

The Green-Lagrange strain tengds defined conventionally 1
in terms of deformation gradieft o%ij = E(gi $Ouj +6Uu; - g;) (18)
1, and 1
v=3F F-D (10) D(6yi) = 5(D(u))-6uj+éu- DU (19)
wherel is the unit tensor. The deformation gradient can be In anincremental iterative solution scheme, the straineinc
written in terms of the base vectors as: mentAy with respect to the previous converged solution is nor-
' mally needed. Using equations (13) and (6), it can be derived
F=g®G (11) as:

which leads to following representation of the Green-Lagea
strain tensor: Ayij = 7ij(U + Au) - ij(u)

1
. . =-(g-Auj+Au;-g; + Au; - Au; 20
y = ,yi]_GI ® G] W|th 7IJ — %(g” _ GIJ) (12) 2(gl 5] Bl g] Bl »J) ( )

where the summation convention has been used for repeat@d Isogeometric finite element discretization
indices. Substituting equations (4) and (6) @y andg;j into

) : . In this section we review some basic concepts of isogeomet-
this relation yields:

ric analysis. Next, the Bézier extraction technique wildut-
1 lined. This technique is utilized to make a finite elementdat
Yij = 5(Gi-uj+ui-Gy+ui-ug) (13)  structure for the spline basis functions.

3.1. Fundamentals of NURBS and B-splines
A B-spline is a piecewise polynomial curve composed of a
ear combination of B-spline basis functions:

2.3. Material law

In continuum shell elements the stresses are computed us-
ing a three-dimensional constitutive relation. Assumingal
strains, a linear relation between the rates of the Secanld-Pi 4
Kirchhoff stress tensd® and the Green-Lagrange strain tensor C©) = Z Nip(€)P; (21)
can be adopted: =1

DS=C: Dy (14) wherep is the order and is the number of the basis functions.
. . ) . . TheN; () represents a B-spline basis function and theffcoe
whereC is Fhe_mat_enal tan_gentlal ﬁ?mess_matr!x. _cientsP; are points in space, referred to as control points. B-
The strain field in equation (13) is defined in the parametriGypjines are defined over a knot vec®rwhich is a set of non-

[ i i . . . .
frame ofG', i = 1,2, 3, which are not necessarily orthonormal. decreasing real numbers representing coordinates in thenpa
In order to obtain the strains in the element local frame 6f re eter domain:

i -
erencel’, they must be transformed using: E = [£1, €20 oo bnepe] (22)

(15) Parametric coordinaté&sdivide the B-spline into sections. The
positive interval {1, £n.pe1] is called an element. If all knots are

For an orthotropic materiall! is the fiber direction.T? and  equally spaced, the knot vector is called uniform, or if taey

T2 are the in-plane and out-of-plane normal directions, respe unequally spaced, they are non-uniform. Between two distin

%Lj = yutitij » ti=G*- T

tively. knots (knot span), a B-spline basis function l@&scontinuity
while it reduces tacP-! across a knot. If a knot value appears
2.4. Virtual work and linearization k times, the knot is called a multiple knot. At this knot the

continuity isCP%. A B-spline is said to be open if its first and
last knots appeap + 1 times.

In one dimension, B-spline basis functions are defined using
the Cox-de Boor formulation [17, 18] starting with piecesvis

In a Total Lagrangian formulation the internal virtual wask
expressed in the reference configuratizn

OWint = f oy 1 SdQo (16)  constantsg = 0):
Qo
1 &< :
The resulting system of non-linear equations is typicadlyad Nio(é) = { Gi<¢ <.§'+l (23)
in an incremental-iterative manner, which requires coratoi 0 otherwise
of the tangential stiness matrix. This quantity is obtained by from which the higher-order functions= 1 are derived recur-
linearizing the internal virtual work, equation (16): sively using:
DISWe) = T. T . _ _E-& Sispr1 —&
(Wint) = | 0y 1 DS + D6y ) : 9dQ  (17) Nip(é) = 77— Nip-1(&) + 7———F—Nisppa(d) (24)
Qo §|+p =& §|+p+1 —&in1



1 for piecewise integration using quadrature rules. Basigfu
tions N; , have a local support over a knot intery&l, &, p+1},
which means that each element supportgedént basis func-
tions, see Figure 3. This is at variance with the finite eleémen

Nis method where numerical integration is done on a single paren
element. In order to blend isogeometric analysis into #dst
finite element computer programs, Bézier elements anieBéz

0 extraction operators are used to provide a finite elemeunt-str
0 711 % % 1.0 ture for B-splines, NURBS [19], and T-splines [20].
¢ 1

Figure 2: Third-order B-spline basis functions defined cwver

knot vectol= = [0,0,0,0,%,1,2,1,1,1,1].

Ni3 \

Figure 2 shows the B-spline basis functidfig, defined over
the knot vecto& = [0,0,0,0,2, 2,3 1 1,1,1]. Using tensor

products, B-spline surfaces c4an2 b[t—:‘ constructed using twb kn \\

Vectorsg = {£1,&2, ... énipeahy H = (01,72, s it} @Nd @ 0

set ofn x m control pointsP; ; known as the control net. By -1 9 1-1 9 11 9 11 9 1

defining univariate basis functid4 , and M, over these two & 3 3 3

knot vectors, the B-spline surface is then constructed as Figure 3: B-spline basis functions plotted overl[1]. The
nom basis functions are fferent per element which is in contrast

S(&,7) = Z N p(&)M;q()P; (25)  With standard finite elements.

i=1 j=1

In general, a degrep Bézier curve is defined by a linear
B-spline basis functions satisfy the partition of unity pro  combination ofp + 1 Bernstein basis functior(#) [21]. Sim-
erty. Also eachN;; has a local support which is contained in jiar to B-splines, by having an appropriate set of controhts
the interval §i, &i.p.1]. Generally, open B-splines are used in 5 Bezier curve is written a€(¢) = PTB. A Bézier extrac-
numerical analysis, since they are interpolatory at thendeu tjon operator maps a piecewise Bernstein polynomials basis
ary, which facilitates the application of Dirichlet boumgaon-  gnto a B-spline basis. This transformation makes it possibl

ditions. o - _ to use Bézier elements as the finite element representation
A drawback of B-splines is their inability to represent engi B-splines, NURBS, or T-splines.
neering objects such as conical sections exactly. Forgéasm,  The extraction operator can be obtained by means of knot

Non-Uniform Rational B-Splines (NURBS), which encapselat insertion. Consider a knot vectBirand a set of control points
B-splines and can represent such objects exactly, haverteco (p,n . By inserting a knot valug in the knot vector, a new
the standard in Computer Aided Design (CAD). NURBS areget of control points needs to be calculated. This new sebean

defined by augmenting each control point with a welht- 0 g|ated to the initial set of control points via:
asP; = (%,Vi,z, W). Such a point can be represented with ho-

mogeneous coordinat®®’ = (Wx;, Wy;, Wiz, W) in a projec- P = [Cl]Tp (27)
tive R* space. Accordingly, NURBS basis functions are defined
as: This relation ensures that the parametrization is not chdng
Rap = No.p(£)Wa (26) when an existing knot value is repeated, see [19, 21] for-algo
’ W) rithms to determine the operat@'. The knot insertion pro-

whereW(£) = Y7, Nip(&)W is the weighting function. Note C€€SS i§ rgpeated until aII_interior knots of the kn_oF vectth
that there is no summation implied over the repeated index & multiplicity equal top, with p the order of the original spline
and that a B-spline is recovered when all the weights arelequai€fined over the knot vect@. Next, the complete set of new
The NURBS surfaces are constructed by the weighted tens&@ntrol points{Pkl,, with m = nep + 1 andne the number of
product of B-spline functions, similar as done for B-spling- ~ €léments, is obtained as:

faces, see equation (25). B = [CNNT[CNNYT . [CT[CTP = CTP (28)
3.2. Bezier extraction Again, the parametrization remains unchanged upon the-inse
As noted in the previous section the parametric coordinateon of the additional knots. Hence, according to equatiit) (

& in a knot vector divide the parameter domain into elementsand using equation (28) it is expressed as:
Similar to the finite element method, these elements, wigeh r B
fer to the knot intervalgé;, &.1) with a positive length, allow C() =P'NE) =P'B@) = (C"TP)TB(®) (29)
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SinceP is arbitrary, the refined basis functioBsare related to  functions in the thickness direction can fully describeghell

the original basis functiond via: geometry in the undeformed configuration as in equation (1).
Therefore, any material point in the shell is obtained asma-su
N(£) = CB(¢é) (30)  mation of its projected position vector onto the referenge s

face,X° and its parametric thickness times the shell director,

Hence, every original basis function can be expressed as a li
ear combination of the Bernstein polynomials. By defining th
operatord_ ¢ andL  to select the basis functiom& andBg for
element, we have:

D.
We assume a higher-order interpolation of the displacement

in the thickness direction by using B-spline basis functiddy
using equation (24) for example, quadratic B-spline basisf
No=L.N . B=LgB, (31) tigns can be defined over a knot_ vector= [0,0,0,1,1,1,1].
Figure 5 shows the resulting basis functions.
Combining equations (30) and (31) leads to

Ne = LeCL ¢Be (32) 1
Theelemenextraction operatoC, is defined as:
Ne = CeBe (33) H;

which, using equation (32) can be elaborated as:

Ce=LeCLe (34) 0

0 0.5 1.0
As can be observed from Figure 4, the Bézier extraction-oper

: _ _ ; 4
ator of an elemen€e maps a piecewise Bernstein polynomial Figure 5: A quadratic B-spline basis function to be used for
basis onto a B-spline basis. through the thickness discretization in the deformed condig
tion. The order of the bas[iﬁi}i“:l can be chosen arbitrarily.

1 1

L . The total displacement field is now discretized as:
Bézier extraction

.

Nep

N, =CiB
Bi TP Nug un. ) = > NI Oa (35)
1=1
wherea, are the displacement degrees of freedom. We assume
0 0 thatn andm are the number of shape functions (or the control

10 1 10 1 points) in the reference surface and in the thickness dmect
7 7 respectively ., = nx m). Hence, the shape functiohs read:

Figure 4: Schematic representation of the Bézier exwadip- Ni (€. m,¢) = Si(&,mMH;(),
erator.
=i+ (j-1)n, (36)
The Bézier extraction operator for multivatriate B-spkn _ _
and NURBS can be computed by exploiting their tensor prod- tefl,...,n, jefl,...m.

uct structure, see [19] for details. For a detailed disausel whereS;(¢, ) is the basis function from the Bézier element and

Betzuir eﬁtracﬁlontf)or T;splmesz,(];or\'/:vmcht?] gIoIbaI ter;p% . H;({) is the B-spline function in the thickness direction. This
uct structure is absent, see [20]. From the element exbracti equation implies that the trivariate basis functiotisare de-

operator, Bezier elements and the global Bezier mesh ean k%omposed into a surface part and a thickness part which can

constructed. have diterent orders of interpolatiorps and py, respectively.
e . . As will be detailed below, the strains are subsequently com-
3.3. Isogeometric finite element implementation . . . ;
o . ) ] __ puted from these displacements using shell kinematics.

Similar to the previous work on the isogeometric solid-like  Agwe only model a surface of the shell rather than the com-
shell element [12], we start by modelling a reference serfac pjete geometry, it is assumed that every control point on the
S° of the shell, where in this Caﬁp is the bottom surface of  yeference surface has@n degrees of freedom, wheneis the
the shell, see Figure 1. Accordingly, the three-dimendi®@®  ymber of control points in the thickness direction. Theref

resentation of the shell reduces to a bivariate descriptsdng i, 5 Bezier mesh each control potcontains a vector of de-
Bézier elements, where the geometric and the kinematio-qua yrees of freedon;, as follows:

tities are approximated by NURBS functions. Bézier eletmen
for the surface of the shell in combination with linear shape ®; = [ay, &, al,..al a;“ amn’, i=12..n (37)

5



whereay,ay,a, denote the displacement components. Further- Next, we rewrite the linearized internal virtual work, equa
more, by combining equations (35) and (36) the displacemertton (17), in matrix form:

components can be written as follows:

UdEm0) = ) D A SIEMHE)

=1 i=1

(38)

where the subscrijtrefers to the 1, 2, 3 (ax, y, 2) directions.

3.4. Evaluation of internal force vectors andfgtess matrices

For the evaluation of the tangentialfftiess matrices we first
define the virtual strain vector:

§y" = [6y11, 6722, 6733, 20712, 26723, 26y 31] (39)

This vector is related to the control points degrees of foeed
- Sy = Bod (40)
Referring to equation (18) this equation is expanded as:
Sy = [B*B?---BMexan,, - [T @7 ---@M]3,  (41)
where
[Bj]6><3n . [q)j];n - [bjl bi2... bin] . [¢il ¢j2 e ¢jn]T (42)

In this equationb’” a 6x 3 matrix with the components:

bl = g1 - ikSieH;
bl = G2 - ikSiyHi
b}, = gs - ikSiHi,
) (43)
by = g1 - ikSiyHj + g2 - ikSigH;

bij'nik =02 ikSiHj’( +03- ikSi,nHj

bgk =01 ikSiHj’( +03- ikSinyj

whereiy,k = 1,2, 3 are the unit base vectors of the global co-
ordinate system, and
al (44)

¢l =[ala) al]

with ai'(' used in equation (38). As an example we will de-
rive the explicit expression for the virtual strain compotg

in Appendix A. It is emphasized that the virtual strains amel t
correspondind matrix in equation (40) are stated in the non-
orthonormal curvilinear base vectors which should be tran

The transforme® matrix is represented b, which is given
in Appendix B.

From the internal virtual work, equation (16), the internal
force vector is directly obtained as:

fint = f B! SdQo (45)
Qo

)
formed to the element local frame according to equation.(15)t

afint T
D = 6P 'K DD
6@2) 0 D

] _ T
_D(6Wnt) = 0D (46)

= 6@ (KM 4 K92 D

whereK represents the $ihness matrix decomposed in a ma-
terial partK™ and a geometric par9®°™ as usual. From
equation (17) these matrices can be obtained as:

oBT
—L3dQ,

47
5o (47)

Kma‘zf B{CBLdQy , K9°M=
Qo

The geometric part is the stress-dependent part of tffaess
matrix and is obtained through the derivatives of the virtua
strains, equation (19). Using the notation:
wi = it Sj; (48)
with S;; the components of the Second Piola-Kircfitsiress

tensor andy; defined in equation (15), the integrand of the ge-
ometrical part of the sfiness matrix can be written as:

aB!
—L -ATA 49
50 (49)
where
AT = [/ll, /12, T, /lm] 3Nepx3 (50)
with
A= [/ljl’ /11'2’ .. ’/ljn]gnxs (51)
and
A = [ S ¢Hj Vor + Si,Hj Vo + SiHj; Vo
+ (Si’ij + Si,nHj) Vwi2
+ (Si’,,Hj + SiHj,() Vw23
+ (Si,ij + SiHj,g) Vw13 ]| (52)

Herein,i refers to layer andl is the 3x 3 unit matrix.

4. Numerical aspects

The linearized internal virtual work relation derived inueq
tion (17) is discretized using B-spline basis functions. is-d
inction is made between the discretization of the in-plané
the out-of-plane displacement fields. Regarding the latter
will derive three variants. In the first variant, all layerstbe
shell element are represented by a single higher-ordetiBesp
in the thickness direction. In the second variant, interéaloe-
tween layers are represented by weak discontinuities. dn th

third version of the element a static delamination is madell

by introducing a strong discontinuity in the B-spline fuoat



4.1. In-surface and out-of-surface integration 4.2. Modelling weak and strong discontinuities in the disg

As mentioned in the formulation of B-splines and NURBS, ment field

the basis functions are defined over a parametric knot span, i

&n.0) <0, 1]3'_ In order to carry out the numerical integration s functions ar€P* continuous at a knot with multiplic-
the basis functions and their derivatives should be caledla ity k. This means that we are able to control the continuity of

locally at quadragture points defined over a parent element, i e pasis functions at a knot by arbitrarily selecting thetimu
(¢,7,¢) € [-1,1]°. Moreover the corresponding Jacobian de-pjicity. This property is useful in modelling traction-eracks

terminant of the mapping must be calculated. The mapping fo5q adhesive interfaces (strong discontinuity) and laysireic-
all the parametric coordinates is the same. For example for a5 withc? continuity between the layers (weak discontinu-

As has been mentioned in Section 3.1, B-spline and NURBS

thickness element o, ¢«.1] the mapping is (Figure 6): ity) [13].
. Gt — L Figure 8 shows the steps in order to make a discontinuity
(=t (C+)——— (53) in the thickness direction of a shell structure. Assume ¢hat

- _ ~quadratic B-spline basis functia; defined over a knot vec-
where( is the parent element coordinate. Therefore the kinetor 7~ = [0, 0, 0,1,1,1,1] has been used in the thickness of
matic parameters in terms of B-spline and NURBS parametrighe shell. This gives us four basis functions which areCall
equation (4) is rewritten as: composite shell consisting of two layers of equal thickness

The deformation of composite structures requires a unidgse d
X . Gt — G 3 placement at the interfaces andteient strain fields in the
Ge=—==Es+ (fk +({+ 1)7)D,& , =12 adjacent layers. In the example of Figure 8 this is simply
00 2 : . . ' : :
achieved by having a displacement field whiclkCfscontinu-

Ga = OX k1 —ng ous at the interfacé = % This leads to the new knot vector
STOE T 2 7 =10,0,0,1,1,1,1,1]. Henceforth, we will denote this el-

(54) ementas the layered CSIGA element. Subsequently, the com-
As we employ independent discretizations for the referencelete separation of the layers is obtained if we insert ticerse
surface of the shell and for the thickness direction, theemism  knot as: 7~ = [0,0,0,1, 1,1,1,1, 1], and this element will be
cal integration schemes in the in-plane and out-of-planecei denoted as the discontinuous CSIGA element. Figure 8 shows
tions will also be decoupled. Accordingly, the Bézier axtion  the corresponding basis functions through the knot inserti
operator will be used for the integration over the surfadestF  process.
the geometry of the reference surface is mapped to its corre- Itis important to note that if this method to introduce weak o
sponding NURBS parametric spacgsf) € [0,1]% see Fig- strong discontinuities is adopted in the construction dhgle
ure 7. Then, the second mapping is carried out to the Bézierolumetric B-spline or NURBS patch, the inserted discamtin
space where the parent elemef)fj) € [-1, 1]? and the extrac- ity will have a global influence, i.e. it will propagate thighout
tion operator are obtained. the patch. While this is not a problem for when weak discon-
Through the thickness integration is done by using the continuities are inserted to model layers, it can be restectiten
nectivity array (or IEN array). Using this array we determin used to model delamination by means of strong discontasuiti
which functions have a support in a given element. Assumén Section 5.6 we will demonstrate how linear constraints ca
that we use a quadratic B-spline defined over a knot vector dfe used to localize strong discontinuities in order to stali
7 =10,0,0, % 1,1,1], see also Figure 6. This definition leads cally mimic delaminations. In a further study we will devela
to two elements of [05] and [3, 1] over the thickness and four versatile method to localize strong discontintuities. sTban
global basis functions. Each element supgmrt 1 = 3 basis  potentially be achieved by adopting a localized definitidn o

of the global basis. The IEN array is: the basis functions — as is essentially done in T-splinesd- an
has already been demonstrated in the context of cohesive-zo

12 modelling [13].

[IEN Jnecpye1 = (2 2 j)m (55) 9[13]

The assembly of the elementfitiess matrices can also be dones. Numerical simulations
according to the shared basis functions (number 2 and 3sn thi

case). It starts from the strain-displacement masix The isogeometric continuum shell formulation is now veri-

fied and assessed througlfdient examples. We refer to the
[B] = [Bél» BZ +B3,. B3 +B2, Béz] (56)  proposed class of shell elements as CSIGA, see Table 1. In
this table we distinguish between three cases for the contin
which is subsequently used in the calculation of the mdteriauum shell element: (i) without® planes between the layers
part of the stfness matrixk ™ in equation (47). The same (lumped), (i) withC° planes between the layers (layered), and
steps are followed for the matrix in equation (50) for the cal- (i) with C~* planes to simulate static delamination (discontin-
culation of the geometrical part of theffitiess matrix< 9¢°™. uous). Diferent orders of interpolation can be used in the plane
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Figure 6: A quadratic B-spline basis function to be usedtootigh the thickness discretization in the deformed condigen. The
basis functions are defined over a knot vector 09[0, 3, 1, 1, 1] which gives two elements over,[8] and [3, 1]. The numerical
integration is done by defining the IEN-array which detemsiwhich functions have supportin a given element. It shbaldoted
that we do not consider any control point in the thicknessalion where the thickness directdrcan be calculated directly from

the in-surface base vectdes andE,.

as well as in the out-of-plane direction for each case. For in As areference value we consider the displacement at the free

stance, in the remainder "lumped(3,2)” will denote a CSIGAend according to the beam theosy= PL3/3EI which results

element withoutC® (weak discontinuity) planes between the in § = 0.004 m for this test. The numerical simulation is done

layers, with a third-order NURB3-spline interpolation in the with two meshes of 64 CSIGA lumped(2,2) and 64 CSIGA

plane, and a second-order B-spline in the thickness dinecti  lumped(3,2) elements. Figure 10 shows the obtained normal-
In the beginning we examine the locking problem which isized displacements for filerent ratios of |t. It is clear that

typical for shell elements. We proceed the simulations by a&mploying second order and third order NURBS basis func-

linear calculation on a composite panel, which aims to a&ptu tions for the in-plane discretization result in shear lockiree

the global and local behavior of the panel (deflection arekstr behaviour as the thickness of the plate reduces.

distribution, respectively). Then, the element will bet¢elsus-

ing some geometrically non-linear examples of a pinchedhem5.1.2. Membrane locking

sphere and pinched cylinder with inward and outward loads. Membrane locking can occur in curved structures [8, 9].

These simulations are followed by modelling buckling of de-Therefore, a cylindrical shell as shown in Figure 11 is mod-

laminated zones in layered panels. elled. The shell has a radius & = 10 m and a width of
_ b = 1 m. Young's modulus and Poission’s ratio are 1000 Pa
5.1. Locking andv = 0 respectively. The cylindrical shell is clamped at one

In this section we investigate shear locking and membranedge and subjected to a constant distributed loay ef 0.1t3.
locking which can occur when decreasing the thickness df sheAn analytical solution based on the Bernoulli beam theovegi
elements. A clamped plate and a cylindrical shell, both undea value of approximately.942 for the radial displacement.
bending loads are used to assess the locking phenomenon. The numerical results for various meshes and thicknesees ar

presented in Figure 12. In the figure, the mesh size shows the
5.1.1. Shear locking number of elements in the radial direction, while only ores el

Figure 9 shows the geometry of a plate subject to bendment has been used in the width direction. According to the
ing [11]. The plate has a Young's modul&s= 1.08 Pa and results, a low number of elements of order two, 16 CSIGA
a Poisson’s ratioo = 0.3. The dimensions of the plate are: lumped(2,2) elements, exhibit membrane locking. Keepireg t
L = 10 m,b = 1 m and the thicknegsvaries through the test. NURBS order fixed and increasing the number of elements to
The plate is clamped at one end and a transversegioad 003 64 removes locking. Employing 16 third-order NURBS ele-
is applied at the other end. ments the results are locking-free as well.
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Figure 7: Numerical integration on the reference surfacthefshell is done using the extraction operator. The gegnoétihe
reference surface is mapped to the corresponding NURBSgdiria space. A second mapping is made onto the Bézier space
where the extraction operator and the parent element aaéneloit
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Figure 8: Schematic representation of introducing a dioaity in the thickness direction of a shell. Weak and strdiscontinu-
ities between the layers of a composite shell are createdbyiksertion.

conventional shell models, these structures are oftenlatedl
with a single element in the thickness direction. This is-gen

The performance of the shell element is studied in the simerally suficient for calculating displacements, but it does not
ulation of the deflection of a multi-layer composite panei. |
9

5.2. Composite laminate



Table 1: Nomenclature of solid-like and continuum shelheats.

Model In-plane discretization Out-of-plane discretinati
SLS[10] Bor 2'9 order Lagrange $order Lagrange
SLSBEZ(p) [12] p™ order NURBY T-Spline PFlorder Lagrange
CSIGA(p, )
lumped p™ order NURBY T-Spline g™ order B-Spline
layered p" order NURBS/ T-Spline g™ order B-Spline withC® continuities at each interface

discontinuous  p™" order NURBY T-Spline

g™ order B-Spline with on€~* continuity to represent

a delamination. The other interfaces @%continuous.
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Figure 10: Normalized displacement of the plate under bendi
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Figure 11: Geometry of the cylindrical shell

allow for computing the stresses and strains in the inda&fdu
layers accurately.
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Figure 12: Cylindrical shell, displacemantfor different ratios
of R/t.
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Figure 13: Geometry, boundary conditions and loading of a
rectangular panel.

layers of a unidirectional material, with a stacking sedqeen
[0,90,0]s. Each layer is @ mm thick, so that the total thick-
ness of the shell is 1.2mm. The layers can be modelled as a
transversely isotropic material wity = 130 GPaFE,; = E3 =
7GPa,v12 = 0.33 andG;, = 5GPa. The panel is simply sup-
ported on all four sides and is loaded by a distributed load
3 . X . 7wy
gz = Qo Sin 3 sin D

with qo = 1 MPa.

The panel has been simulated for threffedent discretiza-
tions: second-order in the thickness direction, fourttieorin
the thickness direction, and second-order per layer withkwe
discontinuities at the boundaries between the layers.

The analytical solution can be obtained from classical lam-
inate theory. The deflection of the mid point of the panel is

We consider the square laminate shown in Figure 13. Thequal to—-2.62 x 10°m. Figure 14 showsryy in the mid-

panel has dimensiorssx b = 0.6 x 0.4m and consists of six

10

point of the panel as a function of the thickness coordinate



of the shell obtained for dierent discretizations. The results 0.6 S
from one second-order and one fourth-order B-spline elémen g 04l : 7 |
lumped(3,2) and lumped(3,4), respectively, lead to theesam = ™ l :
stress distribution as that of a second-order B-spline ggzrl % o02F Ed |
(weak discontinuities at layer boundaries). All the resalte in ;E / lumped(3.2
agreement with the analytical solution from the classiaalit ‘g o Ium rgg %% .
nated plate theory. Moreover, the deflection at the mid-ffin ° Ia ered(3,2
the panel is in agreement with the analytical solution. § —0.21 ] x )
4 T
L -04+ + —
0.6 = L S
—_ lumped(3, 2% & :
g lumped(3,4 -0.6 I I I I E | I I I
g 04r layered ?%+ . -250 -200 -150 -100 -50 O 50 100 150 200
o) P Stress, 0., [MPa]
E 02r 1
= Figure 15:0; at the mid-point as a function of the thickness of
g Or 7 the panel. The thickness of the panel is 1.2 mm (thin panel).
(5]
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Figure 14:0« at the mid-point as a function of the thickness of
the panel. The thickness of the plate is 1.2 mm.
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o
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|

Next, the ability of the shell element to compute interlaanin
1 1 el 1 H _6 L L
stresses is examined. This issue is of importance when damag -6, -~~~ _100 200 :
and failure of composite materials need to be considereugin t Stress, .. [Mpa
simulations. The normal stress; is presented in Figure 15 as

a function of thickness of the shell. By using third-ordedan Figure 16:0,, at the mid-point as a function of the thickness of

second-order B-splines per layer, layered(3,3) and |&(®82)  the panel. The thickness of the panel is 12 mm (thick panel).
elements, respectively, which a@® continuous at the inter-

faces, we can capturea,, distribution in the thickness direc-
tion, which is zero through most of the thickness and equalshell is subjected to two opposite point loads. The bottam ci
0o = 1 MPa at the top surface. Adopting just one element ofcumferential edge of the hemisphere is free. Due to the sym-
second-order and of fourth-order B-splines, lumped(3i®) a metry only a quarter of the shell needs to be modelled. The
lumped(3,4), respectively, for the discretization in thiekness  symmetric boundary conditions are applied by constraittieg
direction results in a fluctuation of the,, distribution. From  displacement degrees of freedom in the normal directiohef t
the results it is concluded that in order to compattg accu-  symmetry plane. The mesh and the applied boundary condi-
rately we need to enforag®-continuity of the basis functions tions are shown in Figure 17. ABAQUS has been used to gen-
at the interfaces. erate a standard finite element solution, using a1Bmesh
The simulations are now repeated for a ten times thickeconsisting of so-called S4R shell elements, which we witehe
panel withgp = 100 MPa. The results presented in Figure 16use as a reference solution.
show again that applying basis functions withcontinuity be-
tween the layers results stress distribution that can beate ~ 12ble 2: Geometric parameters and material propertieitor t
for a thick panel. The jump a = 0 is caused by the fact that Pinched hemisphere.

the displacement boundary conditiop = 0 at the edges has 5 " , T . —
been enforced a= 0. RadiusR Thicknesg® Young's modulu€E Poisson’s ratior

100 m 004 m 6825x 10’ Pa 03

5.3. Pinched hemispherical shell with a hole ) ) )
Figure 18 shows the load-displacement curves of the pinched
A pinched hemisphere with a hole at the top has beememisphere that have been obtained fdfelent meshes. A
used extensively as a benchmark problem for shell analysismiesh of 1&16 CSIGA elements of type lumped(3,2) leads to
to test the ability to describe nearly inextensional begdin results that are close to the traditional finite elementtsmiu
modes [22, 23, 24]. The geometric parameters and materidlising S4R elements). The graph also shows the result from a
properties employed in this test are summarized in Tabld2. T 16x16 mesh of SLSBEZ elements, which is slighthyff&l than

11



Figure 17: The mesh for a quarter model and the boundary con

2 Figure 19: Pinched cylinder with free ends
ditions.

mented in ABAQUS. The magnitude of the load is that for
the complete cylinder and the displacement is measureckat th
point where load is applied. From Figure 20 it can be seen that

those obtained with the CSIGA and S4R elements.

200 ‘
CSIGA —— the results from dferent elements are very close, however the
SLSBEZ
S4R —— CSIGA elements show a softer response.
150 :
z ey —
- | 35 SLSBEZ i
E 100 S4R—
= 30 i
50 - 1 z 5r i
T 201 A
Q
0 I I | | | | - 15F 4
0 0.5 1 15 2 25 3 3
Displacement [m] 10 ]
51 i
Figure 18: The loadP as a function of the displacement at point ‘ ‘ ‘

|
A for the pinched hemisphere. 0 0.5 1 15 2 25
Displacement [m)]

Figure 20: Load-Displacement diagram of pinched cylinder
with free ends.

The pinched cylinder with free ends shown in Figure 19 is
used next to assess the element performance. The cylinder ha
a lengthL = 10.35 m, a radiuR = 4.935 m, a thickness
t = 0.094 m, a Young’s modulug = 10500 MPa and a Pois-
son'’s ratiov = 0.3125. The cylinder has free edges at the ends, The problem of a pinched cylinder with a rigid diaphragm
and it is loaded by two centrally located diametrically oppd  at the ends has been studied by several authors [28, 29, 30] in
point forces, which pull in the outward direction. Due to sym order to test the convergence behaviour and non-lineaoperf
metry considerations only one-eight of the cylinder needsst mance of shell elements. Since large rotations occur thie-pro
modelled. lem provides a test for the finite rotation capability of tiels

The initial response is dominated by the bendingfretiss formulation. The cylinder has a length = 200 mm, a ra-
which induces large displacements at relatively low loadlle  diusR = 100 mm, a thickness= 1 mm, a Young’s modulus
This changes into a very ftresponse when the displacement E = 30000 Nmn? and a Poisson’s ratio = 0.3. The cylinder
become larger. Finite rotations occur afterwards, thusingak is loaded by two centrally located, diametrically opposenhp
the pinched cylinder with free ends a challenging test fer el forcesP, which push inwards. Using symmetry only one-eighth
ment performance [25, 26, 27]. of the structure needs to be modelled.

Figure 20 shows the load-displacement curves of this exam- Numerical simulation have been performed using CSIGA,
ple. The results have been obtained with a mesh ck1& SLSBEZ and S4R elements. Because of the need for mesh re-
CSIGA elements of type lumped(3,2), a mesh of186 SLS-  finement at the free edge T-spline functions have been used fo
BEZ elements and a mesh of ¥68 of S4R elements imple- the in-plane discretization for both the CSIGA and SLSBEZ el

12

5.4. Pinched cylinder with free ends

5.5. Pinched cylinder with rigid diaphragm



ements, see Figure 21. The use efplines at the left free edge The top layer is partially delaminated over a width of ®m.
has been discussed in Ref. [12]. This delamination is modelled by a strong discontinuityhia t
thickness direction.

initial delamination

d ~
Y VTN
X ~ Ox
Figure 21: Pinched cylinder with rigid diaphragm Figure 23: Geometry of the panel with a strip initial delaezin

tion, which is located between the two layers.

The results of the simulations are shown in Figure 22. The
magnitude of the load is that for the complete cylinder and We start by defining the through-the-thickness B-splinefun
the displacement is measured at the point where load is afions over a knot vector of~ = [0,0,0,0.9,0.9,0.9,1,1,1].
plied. The CSIGA elements integrated with a4} x 2 inte- This gives two layers in the thickness which are fully delam-
gration scheme show locking for displacement level highant inated. The area that is not delaminated can be modelled by
30 mm. Repeating the simulation with a2 x 2 integration ~ @pplying a linear constraint between the lower layer andifiie

scheme improves the results and compares well with those &' layer. Figure 24 shows the third-order NURBS meshes used
the SLSBEZ and S4R elements. for this example. In these meshes the control points arershow

in red and blue. Using equation (37) the vector of degrees of

3000 i int is wri :
CéIGA(4 Tix2) freedom®; for each control point is written as:
asoof  OARE XY 8 ® =[a 8.8, .8, a 8] , i=12..n (57)
2000k S4R _— | Thelinear constraint is now applied to the red control poas:
zZ —
3 15000 1 ay=ay,a=a ,a=a (58)
= ook | By doing so the degrees of freedom with the superscript 3 and 4
have the same values at the interface of the two layers. ilgho
500 i be noted that the linear constraint is not applied to the tdure
trol points. Referring to the basis functions shown in Fegp4,
0 | | | | | H 1 1 1
0 T 20 20 20 50 ; it can be seen that the basis functions corresponding tdiee b

control points have a support over the whole delaminatea are
in the parametric space. Therefore, by excluding theirezorr
Figure 22: Load-Displacement diagram of pinched cylindersponding degrees of freedom from the linear constraintespac
with rigid diaphragm. the delaminated area can be preserved.

An issue in delamination modelling is the proper selectibn o
the order of the continuity of the NURBS basis functions at th
delamination fronts. Figure 25 shows the results obtainia w
the third-order NURBS basis which a@ continuous at the

In the final examples, we will study the possibility to insert gejamination fronts. The figure presents the out-of-plase d
a delamination in layered structures by means of introdyain  pjacement versus the axial stresg; for different mesh sizes.
strong discontinuity through the thickness. The panelet&8  An analytical solution for the buckling stress of a clampadei
the examples are partially delaminated over a strip and @ver it thickness oh = 0.01m and length = 0.75m was formu-

Displacement [mm|]

5.6. Buckling of static delaminations

circular region, respectively. lated by Kachanov [31]:
2
5.6.1. Buckling of plate with initial strip delamination Oor = ”—EZ(D)Z _ 1284 MPa (50)
We consider the panel shown in Figure 23. The panel has unit 3(1-v)\I

dimensions and consists of two layers of an isotropic materi A very fine mesh of 192 elements is used as the reference so-
The material properties ar& = 2x 10 MPa andv = 0.3. The  lution. As can be seen, the results obtained by 16, 32 and 64
top layer has a thickness0d m and the bottom layer@ m.  element converge to the reference and the analytical sokuti
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Figure 26: Diagram of the axial stressy vsthe out-of-plane
displacement of the plate with an initial strip delaminatidhe
used meshes a@ at the delamination fronts.

tinuity at the delamination fronts. As it can be seen, for@He
case the fective length of the initial delaminatidg is larger
than that resulting from thé? mesh. Referring to the analytical

Figure 24: Thirdorder NURBS meshes used for the panel withsolution for the critical buckling stress i.e. equation)(58is

initial strip delamination. The left mesh us€$ continuous
basis at the delamination front while in the right m&$hcon-
tinuous basis functions are used at the delamination front.

45
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Stress, 0., [MPa]
N
o
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0 0.002 0.004 0.006 0.008 0.01

1
0.012 0.

Out-of-plane displacement [mm]

clear that the buckling load is proportional to the inverkthe
initial delamination lengti. Therefore, for an equal number
of elements, &° mesh at the delamination front will result in
a smaller critical buckling stress, which explains thietence
between the obtained results. However, the additiofiafteof
enforcingC® continuity probably does not outweigh the com-
putational gain, since with 622 continuous elements the same
result was obtained. This holds a fortiori when propagatieg
lamination fronts are considered.

c0_,c?
le > le

~C2
le

c0
le

Figure 27: Schematic representation of the delaminati@mop

ing obtained with meshes which a@ andC® continuous at

Figure 25: Diagram of the axial stressy vsthe out-of-plane o
the delamination front.

displacement of the plate with an initial strip delaminatidhe
used meshes a at the delamination fronts.

5.6.2. Glare panel with a circular delamination

We repeat the simulation using third-order NURBS basis In this section the buckling behavior of a Glare panel with
function, but with ac® continuity at the delamination fronts, initial circular delamination under uniaxial compressload
in order to exactly capture the Dirichlet boundary conditad  is examined. The specimen geometry is shown in Figure 28.
this position. Figure 26 shows that using 48 NURBS element3he panel consists of an aluminium layer with thicknkess=
the obtained critical stress is in agreement with the refegso- 0.2mm and a Glare ®0° prepreg layer with a thickness
lution of 192 elements and the analytical solution. Accoglly, = 0.3 mm. A circular delamination with radius 8 mm is assumed
by applyingC® continuous basis functions at the delaminationbetween the layers. In order to avoid global buckling, akhic
front we can properly capture the boundary condition, wigch layer of aluminum is attached to the panel. Table 3 conthias t
a basic assumption in the analytical expression for thelmgck material parameters of the Glare prepreg.
load. Figure 27 shows a schematic representation of thenlela ~ An advantage of using NURBS basis functions is that
nation opening resulting from meshes with and with@titon-  we are able to model an exact circular delamination shape.
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initial delamination

Figure 28: Geometry of the Glare panel with a circular ititia
delamination, which is located between the top aluminuraday Ni ﬁ ﬁ
and the Glare layer.

Table 3: Material parameters fof@0° Glare prepreg.

oA \
0 0.4 1
E;1 = 33170 MPa E,, = 33170 MPa Esz = 9400 MPa f
G2 =5500MPa  Gy3 = 5500 MPa Gj3 = 5500 MPa ) . Th d-ord h dfor th I
V12 = 0.195 Vo3 = 0,032 vis = 0,032 Figure 29: The second-order NURBS mesh used for the pane

with circular delamination. The basis function &®continu-
ous at delamination front.

Similar to the previous example the delamination is mod
elled by a strong discontinuity between the layers where a 600 —

; . . ! : 16 x 16 ——
linear constraint will preserve the adhesion at the remain- 32 % 32

der of the panel. In this case we define through the thick- 500~ )
ness B-spline basis functions over a knot vectorjof =

400 ) A
300 / A
200 A

Because of the symmetry only one quarter of the geometry 100 _
is analyzed. Figure 29 shows a second-order NURBS mesh for

[0,0,0,0.952 0.952 0.971,0.971,0.971,1,1,1]. Accordingly
the linear constraint is written as:

od. doaf -l (60

Stress, 0,, [MPa]
\
\

this example. The basis functions have been chosen @ be 05 o1 02 03 04 0
continuous at the delamination front. Figure 30 presergs th Out-of-plane displacement [mm]
out-of-plane displacemenss the axial stresgyx for two fine

NURBS meshes. Both meshes lead to the same result. Figure 30: Diagram of the axial stressx vsthe out-of-plane

displacement of the plate with an initial circular delantioa.

6. Concluding remarks

A continuum shell element has been formulated that is baseaind non-linear examples. First, the performance with redpe
on the isogeometric concept. NURBS basis functions havehear and membrane locking was examined for a straight and
been used to parametrize the reference surface, and ari& splifor a curved clamped strip. The element was found lockieg-fr
shape function has been employed in the thickness diredtion at least for length to thickness ratios up to 400 providetidha
this manner, a complete three-dimensional representatitie  bic splines were used for the in-plane discretization odgatic
shell is obtained. The shell formulation combines the advansplines with a sfficiently fine discretization. Next, a unidirec-
tages of a full, three-dimensional stress and strain reptas  tional composite panel consisting of six layers afd0, 0]s has
tion that allows for the straightforward implementatiorcoh-  been tested under a sinusoidal distributed pressure lbaasl
stitutive relations such as plasticity or damage, with ttheed-  shown that the global behavior of the panel, deflection aed th
tages of isogeometric analysis, including the exact deani  in-plane stress distribution, can be well captured by ugisg
of the geometry, the use of the design-through-analysisaman  one element of B-spline basis function in the thicknesscdire
and the accurate prediction of stress fields. The lattergstpp tion. Furthermore, the intralaminar stress distributiequires
is also important for the prediction of the onset of plasfici the through the thickness parametrization taC8econtinuous
damage, or delaminations due to high transverse stresses. at interfaces. This property was achieved by employing knot
In this paper, the performance of the isogeometric contimuu insertion in the thickness direction. Doing so, the transze
shell element has been assessed by means of a number of lin@earmal stress-,; as a function of the thickness of the panel was
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obtained.
As benchmark tests for geometrically ntmear perfor-

Appendix B. The local strain—displacement matrix, B

mance, a pinched hemisphere with a hole and a pinched cylin- The virtual strains and the correspondBgnatrix in equa-

der with free ends and with a rigid diaphragm were usedtion

(40) are stated in the non-orthonormal curvilinearibas

The results are in agreement with reference solutions by theectors which should be transformed to the element localdra
ABAQUS S4R shell element, provided that in the last exampleaccording to equation (15). The transfornidhatrix is repre-

a suficiently low order integration was used in the plane.

An important feature of the proposed element is its ability
to model static delamination buckling in composite materia
Delamination is modelled as a strong discontinuity betwben

sented byB, . Using the notation that:

frjl = tyitij (B.1)

layers by means of knot insertion in the through the thicknesthe columnN of the matrix which relates the virtual strains to
parametrization. To model bonding in a partially delamédat the virtual displacement in the local frame of referencevsiy

area, linear constraints were locally applied to the upper a by:
lower layers.

A panel with an initial strip delamination under axial com-
pressive load was studied. By employi@§ continuous ba-
sis functions at the delamination fronts it is possible tptaee
the Dirichlet boundary condition at these fronts. The atiedy
buckling load was reproduced accurately.

As a final example, the buckling behavior of a composite
panel with initial circular delamination was studied, wiéris
noted that the NURBS mesh results in an exact parametnizatio
of the circular shape of the delaminated area. The panel was
subjected to an axial compressive load. By using a NURBS
mesh withC® continuity at the delamination front the buckling

load was computed accurately. BL=
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Appendix A. Derivation of virtual strain terms

Using equation (18) the virtual strady;1, as an example, is [1]
written as:
[2]
dy11=01-0Us (A.1) @l
using equation (6) fog; where
(4]
0 =Gi+ug (A.2)
is calculated as a total value at the beginning of each Sejs 5l
calculated at each integration point using equation (5d)uan
is obtained using equation (38) as: [6]
U= ) Y SuEnH@O(al i) iy ral i) (A3
=1 i=1
Similarly, the virtual strain term is given as:
(8]

m

5U,1 = Z

=1 i=

n

Si¢(& mH j(g)(aaﬁ i+ oal iy +oa) -iz) (A.4)
1
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11 22 33 1/p12 21
blell + bZNfll + ngfll + b4N 2(511 + 511

1(p23 32 1(p31 13
+b5N§(€11 + 511) + bGNE(fll + 511

11 22 33 1/p12 21
el 2 b b2 )
+b5N§(522 + 522) + b6N§(€22 + 522

11 22 33 1/p12 21
oS - b+ b b5+ 2
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