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Modelling Acceleration Decisions in Traffic Streams with Weak Lane 
Discipline: A Latent Leader Approach 

 

Abstract  

Acceleration is an important driving maneuver that has been modelled for decades as a critical 
element of the microscopic traffic simulation tools. The state-of-the art acceleration models have 
however primarily focused on lane based traffic. In lane based traffic, every driver has a single 
distinct lead vehicle in the front and the acceleration of the driver is typically modelled as a function 
of the relative speed, position and/or type of the corresponding leader. On the contrary, in a traffic 
stream with weak lane discipline, the subject driver may have multiple vehicles in the front. The 
subject driver is therefore subjected to multiple sources of stimulus for acceleration and reacts to the 
stimulus from the governing leader. Hence, only the applied accelerations are observed in the 
trajectory data, and the governing leader is unobserved or latent. The state-of-the-art models therefore 
cannot be directly applied to traffic streams with weak lane discipline. 

This prompts the current research where we present a latent leader acceleration model. The model has 
two components: a random utility based dynamic class membership model (latent leader component) 
and a class-specific acceleration model (acceleration component). The parameters of the model have 
been calibrated using detailed trajectory data collected from Dhaka, Bangladesh. Results indicate that 
the probability of a given front vehicle of being the governing leader can depend on the type of the 
lead vehicle and the extent of lateral overlap with the subject driver. The estimation results are 
compared against a simpler acceleration model (where the leader is determined deterministically) and 
a significant improvement in the goodness-of-fit is observed. The proposed models, when 
implemented in microscopic traffic simulation tools, are expected to result more realistic 
representation of traffic streams with weak lane discipline.  
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1. Background 

Microscopic traffic simulation tools, which model individual driver manoeuvres (e.g. longitudinal and 
lateral movements, route choice, etc.) and deduce the network condition from those, can be used as 
laboratories for testing the effectiveness of candidate traffic improvement initiatives before their 
actual field implementation. These tools are increasingly being popular worldwide for selecting the 
optimum transport scheme. In particular, they can potentially play a very significant role in the 
context of developing countries where the transport landscape is changing very rapidly but the 
resources are often constrained.  

Acceleration is an important driving manoeuvre and has been significantly modelled for several 
decades. However, majority of this research is conducted for homogeneous traffic conditions which 
prevail in developed countries. The developed models range from simple models with minimum 
parameters, to comparatively complex and comprehensive models with much detailed considerations 
and can be grouped as car-following models (e.g.1-10), psychophysical models (e.g. 11-13), fuzzy-
logic models (e.g. 14-16), cellular automata models (e.g. 17-19), and general acceleration models (e.g. 
20-23) . The state-of-the-art acceleration models however have several limitations. For example, as 
highlighted by Kim et al. (24) and Punzo and Simonelli (25), some acceleration models (e.g. 1-3, 5, 
20) are based on the assumption that drivers always follow the same driving decision rules. Whereas, 
in reality, these rules may differ among different drivers, for the same driver in different conditions, or 
even for same driver in similar or nearly identical situations (25). Other limitations include inadequate 
emphasis on the errors and uncertainty in the data used for calibrating the models (25), exclusion of 
factors beyond vehicle kinematics and surrounding conditions in the model framework, limited 
stochasticity, etc. Moreover, the most important setback of these models is that these are developed 
for homogeneous lane-based traffic (Figure 1a) and cannot be directly applied to heterogeneous traffic 
stream where the traffic characteristics are significantly different (Figure 1b). 

<Figure 1> 

The heterogeneous traffic scenarios have a mix of motorized and non-motorized vehicles which have 
wide differences in size, speed and acceleration-deceleration capabilities. The required driving skills 
for operating motorized and non-motorized vehicles are very different as well. Moreover, in most 
cases, there is an absence of strict lane discipline in such mixed traffic. In presence of weak lane 
discipline, a single lane can be occupied by multiple narrow vehicles. Also, even if there are lane-
markings, in congested conditions, drivers very often position themselves in between other vehicles in 
an attempt to make use of the entire available space and thus occupy multiple lanes.  

The research work on modelling such heterogeneous traffic stream is quite limited. In the earlier 
models for heterogeneous traffic, the acceleration models for homogenous traffic have been 
recalibrated using simulation runs (e.g. 26-28). Mallikarjuna and Rao (29) have focused on the 
analysis and modelling of heterogeneous traffic observed on mid-block sections of urban and rural 
roads in the context of India using a cellular automata approach. Some studies have identified 
significant effects of lead-vehicle size (e.g. 28, 30) and type of vehicle pair (e.g. 31) in vehicle-
following behaviour in mixed traffic streams. Lee and Polak (32) have developed a desired headway 
based model for motorcycles which are assumed to have the option to either decelerate or overtake a 
decelerating front vehicle. But the behaviour of other types of vehicles in presence of motorcycles is 
beyond the scope of their study. Gunay (33) has proposed a staggered car-following model which 
accounts for lateral discomfort while longitudinal movement is in action. Imran (34) has focused on 
development of car-following model for mixed traffic using fuzzy-logic inference system and in 



addition to vehicle types and composition, traffic factors (e.g. traffic density) have been identified as a 
factor affecting acceleration decisions. However, though these models address the issue of lead 
vehicle type and/or vehicle pair type and traffic factors in detail, there has not been much research on 
how the models can be extended when there are multiple candidate leaders and the governing leader 
cannot be determined deterministically. There is a marked research gap regarding identification of 
governing leader vehicle and the existing models are therefore not robust in the context of weak lane 
discipline. This has motivated this research where a latent leader model has been formulated and 
calibrated using detailed trajectory data.  

The rest of the paper is organized as follows: the model structure is presented first followed by the 
descriptions of the data. The estimation results are presented next. The findings are summarized in the 
concluding section with directions of future research.  

2. Model Structure 

In the state-of-the-art acceleration models, the observed actions of the lead vehicle in front of the 
driver have a significant role in predicting the acceleration/deceleration decisions of the subject 
driver. However, in traffic streams with weak lane discipline, there are often multiple candidate 
leaders in front of the subject driver (SD), particularly in congested situations (denoted by Front Left 
(FL), Front Direct (FD) and Front Right (FR) (Figure 2). Therefore, though the longitudinal 
acceleration/ deceleration of the subject driver are governed by the actions of one of these vehicles 
either consciously or inadvertently, the leader is often not distinctly observed (hence latent) in the 
data.  

The acceleration decision of the driver is thus modelled using a two level structure. The first level is a 
dynamic class membership model that predicts the probability of a front vehicle being the governing 
leader of the subject driver at a given time. The second level denotes the acceleration of the subject 
driver conditional on the specific leader vehicle (Figure 2). 

<Figure 2> 

The first level is formulated using a random utility based discrete choice framework where the choice-
set can consist of up to three vehicles (denoted by Front Left, Direct Front and Front Right). The 
probability of any front vehicle being the governing lead vehicle can be affected by the relative 
positions, speeds and types of the vehicles, etc. The second level is formulated using the state-of-the-
art, non-linear stimulus-response model, the GM Non-linear Model (proposed by researchers at 
General Motors (1) and extended by later researchers (2, 4-10). The parameters of the stimulus and 
sensitivity functions are allowed to vary depending on the type of the subject and leader vehicle.  The 
modelling challenge lies in the fact that only the acceleration decision of the driver is observed and 
the choice of the leader and thus the acceleration stimuli is unobserved or latent.  

The first level is thus a Latent Class membership model (35, 36). But the class membership is 
dynamic (the leader can change over time) and hence similar to Latent Plan models which have been 
used for modelling lane changing decisions for lane-based traffic (37,38) . The model components are 
further described below. 

2.1 Latent Leader Component 

As shown in Figure 2, a subject driver (SD) may have multiple vehicles in the front (FL, FD and/or 
FR), particularly in a congested traffic stream. The extent of influence of the leader can vary 



depending on the position (i.e. lateral overlap between the subject driver and the candidate leader, 
headway, etc.), type of the vehicles (e.g. if a front vehicle is a heavy vehicle, it may have a more 
dominating role in the behaviour of the subject driver), speed and accelerations of the candidate 
leaders ( e.g. a decelerating front vehicle may have a more dominating role than an accelerating one, a 
front vehicle moving much faster may have less impact than a front vehicle with similar relative 
speed, etc.). To account for these multiple factors, the probability of a front vehicle l being the 
governing leader of the subject driver n at time t can be modelled as a random utility based discrete 
choice model and expressed as follows: 

ܲ൫݈௡ሺݐሻ൯ ൌ ௘௫௣ቀఉ೗௑೙೗ ሺ௧ሻቁσ ୣ୶୮൬ఉ೗ᇲ௑೙೗ᇲሺ௧ሻ൰೗ᇲ       ݈ǡ ݈ᇱ א ௡ܥ ൌ ǡܮܨ ǡܦܨ  (1)                                                                      ܴܨ

Where: ܺ௡௟ ሺݐሻ  : Vector of explanatory variables associated with the front vehicle ݈ of driver n at time ߚ ݐ௟ǣ Vector of estimated parameters associated with front vehicle ݈ 
 
Candidate explanatory variables include proportion of lateral overlap between the subject driver and 
the front vehicle, headway, type of the front vehicle, type of the subject vehicle, speed and 
acceleration of the front vehicle, etc. 
 

2.2. Acceleration Component 

The stimulus-sensitivity framework proposed within the GM Model is adapted for the acceleration 
model component. In the GM Model framework, the acceleration of the subject driver is a response to 
the stimulus provided by the leader vehicle in the front. Hence, the acceleration of the subject driver is 
a direct function of the speed, position and characteristics of the leader vehicle. Following the 
framework, the acceleration driver n applies at time t is assumed to be a response to stimuli from the 
leader l: 

௡௟݁ݏ݊݋݌ݏ݁ݎ  ሺݐሻ ൌ ௡௟ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ  ሺݐሻ ൈ ௡௟ݏݑ݈ݑ݉݅ݐݏ  ሺݐ െ ߬௡ሻ                                (2) 

Where, ߬ ௡ is the reaction time of the driver and l denotes the leader. 

The stimulus is usually the relative speed of the subject relative to the leader (defined here as the 
speed of the leader less the speed of the subject vehicle). The sensitivity is a function of explanatory 
variables like the speed of the subject vehicle, headway, types of leader and subject vehicle, etc. The 
response to positive and negative stimuli may be different because of the different nature of these 
situations: the main consideration in the reaction to a negative leader relative speed is safety, whereas 
the acceleration applied in a positive leader relative speed situation may be affected by speed 
advantage considerations and by herd effect (i.e. human tendency to conform with the actions of 
others). To capture these differences, the explanatory variables and/or corresponding coefficients may 
vary depending on if the stimulus is positive (leading to acceleration) or negative (leading to 
deceleration). 

Based on relative speed of leader, the acceleration can thus be car-following acceleration or 
deceleration:  ܽ௡௟ ሺݐሻ ൌ ቊܽ௡௟ǡ௔௖௖ሺݐሻ       ݂݅ ο ௡ܸ௟ሺݐ െ ߬௡ሻ ൒ Ͳܽ௡௟ǡௗ௘௖ሺݐሻ    (3)                                  ݁ݏ݅ݓݎ݄݁ݐ݋ 

Where,  ο ௡ܸ௟ሺݐሻ ൌ  ௡ܸ௟ሺݐሻ െ ௡ܸ ሺݐሻ 



௡ܸ௟ሺݐሻ ൌ speed of leader at time t 

௡ܸ ሺݐሻ ൌspeed of subject driver at time t 

The general functional form of acceleration of driver n with respect to leader l at time t can therefore 
be expressed as follows: ܽ௡௟௝ሺݐሻ ൌ ௟ǡ௝ሾܺ௡௟ݏ ሺݐሻሿ݉௟௝ൣο ௡ܸ ௟ ሺݐ െ ߬௡ሻ൧ ൅  ሻ          (4)ݐ௡௟௝ሺߝ

Where, ݆ א ǡ݊݋݅ݐܽݎ݈݁݁ܿܿܽ ௡௟ܺ ݊݋݅ݐܽݎ݈݁ܿ݁݀ ሺݐሻ ൌ ௟ǡ௝ሾǤݏ ݈ ݎ݈݁݀ܽ݁ ݋ݐ ݀݁ݐ݈ܽ݁ݎ ݏ݈ܾ݁ܽ݅ݎܽݒ ݕݎ݋ݐ݈ܽ݊ܽ݌ݔ݁ ሿ ൌ ௟௝ሾǤ݉ ݈ ݎ݈݁݀ܽ݁ ݎ݋݂ ݊݋݅ݐܿ݊ݑ݂ ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ሿ ൌ ሻݐ௡௟௝ሺߝ ݈ ݎ݈݁݀ܽ݁ ݎ݋݂ ݊݋݅ݐܿ݊ݑ݂ ݏݑ݈ݑ݉݅ݐݏ ൌ  ݉ݎ݁ݐ ݎ݋ݎݎ݁ ݉݋݀݊ܽݎ

Assuming that the random error term is normally distributed,  ߝ௡௟௝ሺݐሻ̱ܰ൫Ͳǡ ௟௝ଶߪ ൯   , the probability 
density function of acceleration can be expressed as follows: ݂൫ܽ௡௟௝ሺݐሻȁ݈௡௧ǡ ߬௡൯ ൌ ଵఙ೗ೕ Ȱ ൬௔೙೗ೕሺ௧ሻି௦೗ǡೕൣ௑೙೗ ሺ௧ሻ൧௠೗ೕൣο௏೙ ೗ ሺ௧ିఛ೙ሻ൧ఙ೗ೕ ൰                    (5) 

 

In mixed traffic condition, the static and dynamic characteristics of the vehicles are often quite 
different and the type of the subject vehicle and/or the leader vehicle can affect the sensitivity 
function (either individual effect or pair-effect). Other candidate variables affecting sensitivity 
function include speed of the subject vehicle, spacing with the lead vehicle, traffic conditions (e.g. 
density) and composition, etc.    

2.3 Likelihood Function 

The trajectory data includes second by second lane changing and acceleration decisions of the driver. 
The only information about the driver/vehicle characteristics is the length of the vehicle. The 
following are therefore unobserved in the data: 

 The  leader( Front Left, Front Direct and Front Right)  

 Driver/vehicle characteristics (reflected in reaction time and correlation in the 
error terms) 

 
The joint probability density of the observed acceleration for driver n at time t, conditional on the 
individual specific reaction time is given by: ݂൫ܽ௡௟ ሺݐሻȁ߬௡൯ ൌ ݂൫ܽ௡௟ ሺݐሻȁ݈௡௧ǡ ߬௡൯ܲ൫݈௡ሺݐሻ൯                                                                                          (6) 

Where, ݂൫ܽ௡௟ ሺݐሻȁ߬௡൯ ܽ݊݀ ܲ൫݈௡ሺݐሻ൯ can be calculated by Equations 1, 3, and 5.  

The marginal probability can be written as follows: 

݂൫ܽ௡ ሺݐሻȁ߬௡൯ ൌ ෍ ݂൫ܽ௡௟ ሺݐሻȁ߬௡൯௟೙ ǡ ݈௡ א ǡܮܨ ǡܦܨ                                          ܴܨ



The behaviour of driver n is observed over a sequence of ௡ܶ consecutive time intervals. The joint 
probability of the sequence of observations is the product of the probabilities of individual 
observations: ݂ሺ܉ȁ߬௡ሻ ൌ ς ݂൫ܽ௡ ሺݐሻȁ߬௡൯೙்௧ୀଵ                        (7) 

Where, a is the sequences of observed accelerations of driver n. 

The unconditional individual likelihood function is deduced by integrating the conditional probability 
over the distributions of the individual specific variable: ܮ௡ ൌ ׬ ݂ఛ ሺ܉ȁ߬௡ሻ݀߬                        (8) 

Where, ݂ ሺ߬ሻ is assumed to follow double truncated normal distribution. 

Assuming that the observations of different drivers are independent, the log-likelihood function for all 
N drivers observed is given by: ܮ ൌ σ ln ሺே௡ୀଵ  ௡ሻ            (9)ܮ

For determining the maximum likelihood function, the probability density function (PDF) of the given 
observations is compared against the PDF of a normal distribution whose mean is specified by the 
coefficients (estimated) of the influencing variables and the standard deviation (estimated).  The set of 
parameters yielding the best goodness-of-fit is selected. The correlation in the error terms of the 
observations of the same driver is accounted for using a sandwich estimator (39). 

It may be noted that it has been assumed that conditional on the driver characteristics, the actions of a 
driver is independent over time and state-dependence among the consecutive decisions are not 
explicitly considered.  However, the values of explanatory variables that are derived from the 
positions and speeds of the subject vehicle and surrounding vehicles depend on earlier decisions made 
by the driver (e.g. the vehicle speed and position depend on past accelerations) and the inclusion of 
these variables in the model is expected to indirectly capture some of the effects of previous decisions. 
The model thus assumes partial independence.  

 
3. Data 

3.1  Location 

The trajectory data used for estimating the model parameters have been extracted from video 
recordings from an elevated pedestrian bridge in Mirpur road of Dhaka, Bangladesh (Figure 3a). The 
video covered the end of the morning peak (9:30-11:00) when the congestion levels are moderate. It 
may be noted that the site and the schedule have been selected based on a reconnaissance survey and 
governed by the following conditions:  

 Availability of suitable elevated pedestrian bridges 
 Presence of mixed traffic and weak lane discipline 
 Smaller share of large commercial vehicles (which can obstruct smaller vehicles and cause 

problems in the image processing) 
 Absence of curves 
 Minimal side friction and  

 Dominance of continuously moving traffic with a reasonable speed (i.e. not free flow or jam 
conditions)   

 



 
  

 
<Figure 3> 

The video was analysed by an image processing software named ‘TRAZER’ (40) and smoothed using 
Locally Weighted Regression Technique (41) using MATLAB. Some data had to be discarded due to 
high congestion levels (where the image processing software failed or gave unreasonable results) and 
in total about 45 minutes of usable data has been retained.  

3.2. Traffic Characteristics 

The cleaned and smoothed trajectory data consists of 895 vehicles. The composition is shown in 
Figure 4.  

As evident in Figure 4a, the traffic stream mostly consists of private cars (48.45%) followed by 
motorcycle (12.20%). CNG auto-rickshaw also has a fairly good percentage. The percentage of bus, 
microbus and SUVs are close and considerable. Non-motorized vehicles have a small share (non-
motorized vehicles are banned in most of the major roads of the city) and trucks have negligible share 
(trucks are not allowed in the city between 6am to 10pm).   

<Figure 4> 

The vehicles are grouped into the following 3 groups depending on size and dynamic characteristics 
as well as statistical tests of model parameters during the model estimation:  

 LMV : Private car,  Microbus, Human Hauler, CNG Auto-rickshaw 

 HMV : SUV, Bus, Truck1 
 2W : Motorcycle,  Bicycle, Cycle Rickshaw 

This infers that it is theoretically possible to have 9 types of vehicle pairs (e.g. LMV-LMV, LMV-
HMV, HMV-LMV, etc.)  

The cleaned data has 5507 observations. The average speed is 12.49 km/hr and the average 
acceleration and deceleration are 1.19m/s2 and 1.63m/s2 respectively.  

Analysis of lateral overlap of vehicles (Figure 4b) indicated that for majority of the vehicles, there is 
only a single front vehicle but a substantial portion (937 observations) has more than one front vehicle 
and multiple candidate leaders.  

4. Results 

The parameters of the model presented in Section 2, have been estimated using the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm using the software Oxmetrics 6 (42). Different model 
formulations have been tested using the candidate variables listed in Table 1. 

<Table 1> 

                                                           

1 Out of the 895 vehicles in the dataset, there were 74 buses (8%) and 6 trucks (0.67%).  Such proportions are 
largely representative of the traffic patterns in the Dhaka city (the heavy trucks can only enter the city 
between 10pm-6am). Due to the small proportions, these have been bunched together with SUVs in a 
common class Heavy Vehicles during model estimation purposes.  



 

The best model selected based on the coefficient values, robust t-statistics and goodness-of-fit values 
is presented in Table 2. 

<Table 2> 

4.1  Latent Leader 

This component predicts the probability of a front vehicle for being the governing leader of the 
subject driver. The choice set includes the front vehicles that have overlap in lateral coordinates and 
can consist up to three front vehicles: Front Left (FL), Front Direct (FD) and Front Right (FR) (Figure 
2).  

As presented in Table 2, all else being equal, the probability of a front vehicle being the governing 
leader is higher if it is a FD vehicle. The constants are however statistically insignificant. The 
probability also increases with the lateral overlap between the vehicle pair (expressed as a percentage 
of shared lateral coordinates between the subject vehicle and the front vehicle). The type of the front 
vehicle also has a significant effect on the probability of it being the governing leader. Estimation 
results indicate that the subject driver is more likely to be governed by the stimulus from a front 
vehicle if it is a heavy vehicle. The effect of the type of the subject vehicle has also been tested using 
a similarity dummy (which is 1 if the front vehicle and the subject vehicle type are the same), but the 
coefficient is non-intuitive and statistically insignificant. Therefore, the variable has not been included 
in the final model. 

The estimated utilities associated with the candidate front vehicles can be expressed as follows: ܷ௡ி௅ሺݐሻ ൌ െͳǤ͸ʹ͵ ൅ ʹǤͲͻͳ߱௡ி௅ሺݐሻ ൅ ͲǤʹͻͷߜ௡ி௅ሺݐሻ ൅ ሻݐሻ          ܷ௡ி஽ሺݐ௡ி௅ሺߝ ൌ                    ʹǤͲͻͳ߱௡ி஽ሺݐሻ ൅ ͲǤʹͻͷߜ௡ி஽ሺݐሻ ൅ ሻݐሻ                                                (10) ܷ௡ிோሺݐ௡ி஽ሺߝ ൌ െͳǤͶͷͳ ൅ ʹǤͲͻͳ߱௡ிோሺݐሻ ൅ ͲǤʹͻͷߜ௡ிோሺݐሻ ൅  ሻݐ௡ிோሺߝ

Where,  ߱௡௟ ሺݐሻ= Percentage of lateral overlap of the front vehicle l with the subject driver n at time t ߜ௡௟ ሺݐሻ= Heavy front vehicle dummy, 1 if the front vehicle l of subject driver n at time t is a heavy 
vehicle, 0 otherwise.  

The corresponding probabilities can be calculated using Equation 1. 

4.2  Acceleration 

As presented in Section 3.2, an extended version of the non-linear GM car following model is used in 
this component. The stimulus function of Equation 4 can be expressed as follows:  

݉௟௝ሾο ௡ܸ௟ሺݐ െ ߬௡ሻሿ ൌ หο ௡ܸ௟ሺݐ െ ߬௡ሻหఒ೗ೕ
 

Where, ߣ௟௝ ൌ parameter corresponding to relative speed of leader l.  

A positive correlation between the relative leader speed and the acceleration the driver is expected 
a-priori. The parameter ߣ௟௝is therefore, expected to be positive for both acceleration and 



deceleration. Estimation results indicate that ߣ௟௝ is indeed positive and significantly different for 
acceleration and deceleration. The stimulus can also have a different effect depending on the type 
of the front vehicle. This however is not supported in the estimation results and the difference in  ߣ௟௝ among different types of lead vehicles is found to be statistically insignificant. This implies that 
for a given magnitude of the relative speed, all types of lead vehicles (LMV, HMV and 2W) 
provide the same magnitude of stimulus to the subject driver. The effects of relative speed on the 
mean car following acceleration and deceleration are shown in Figures 5a and 6a respectively. 
  
<Figure 5>  
 

The constant terms of the sensitivity functions are positive and negative for car following acceleration 
and car following deceleration, respectively. The magnitude of sensitivity to a negative relative leader 
speed is found to be larger than the sensitivity to a positive one. This is expected since a negative 
relative speed stimulus may have safety implications whereas a positive relative leader speed stimulus 
only suggests a possible speed advantage to the driver. The sensitivity functions are also expected to 
vary depending on the type of the subject vehicle/ leader vehicle/ vehicle pair. For, the deceleration 
function, the constant terms of the sensitivity functions vary significantly depending on the type of the 
subject vehicle. All else being equal, the magnitude of deceleration is largest for 2W and smallest for 
HMV (Figure 6a). 

Candidate variables affecting the sensitivity function include the speed of the subject driver, the 
space headway, density, types of the subject driver and the leader, etc. However estimation results 
indicate that only the effect of space headway is statistically significant (both for acceleration and 
deceleration), the estimated coefficients being negative. This is in agreement with findings of 
previous researches (e.g. 43-44). For deceleration, this is expected since the underlying safety 
concern increases when the spacing is reduced. In the case of acceleration, it may be related to a 
reduced perception of the leader as a stimulus the driver needs to react to. Leader type specific and 
vehicle pair specific headway coefficients have been tested both for acceleration and declaration 
functions and found to have a statistically significant difference in case of the deceleration function 
only where the coefficients of space headway differs significantly depending on the type of the 
leader vehicle. This indicates that for a particular subject driver, given the headway and relative 
speed differences are same, the magnitude of deceleration varies significantly depending on the 
leader type. Except for small headways, the magnitude of deceleration is highest if the leader is an 
HMV and smallest if it is a 2W (Figure 6a). 

 
<Figure 6> 

The estimated acceleration function can be expressed as follows: ܽ௡௟ ௔௖௖ሺݐሻ ൌ ͲǤͲͷͳሾܪ௡௟ ሺݐሻሿି଴Ǥ଴ସଽ଼ൣο ௡ܸ ௟ ሺݐ െ ߬௡ሻ൧଴Ǥ଴ଶ଺ଽ
௡௟ ௔௖௖̱ܰሺͲǡߝ   ͲǤʹͶʹଶሻ  

The estimated deceleration functions are presented in Table 3. 

<Table 3>  

4.3  Model Comparison 

The latent leader specification was statistically compared with a reduced form/ or naïve model where 
acceleration is assumed to be influenced only by the vehicle with the highest lateral overlap. The 
goodness-of-fit of both models have been compared and presented in Table 4. 



<Table 4> 

As seen in the table, the latent leader model, in spite of having more parameters, has a statistically 
significant improvement compared to the reduced form model. 

5. Conclusions 

The paper presents a novel model structure for predicting acceleration behaviour in presence of weak 
lane discipline where the subject driver may have multiple vehicles in its front and there may not be a 
distinct leader vehicle. The estimated model parameters are intuitive and in agreement with previous 
studies. For instance, similar to acceleration models developed for homogenous traffic streams, the 
space headway is found to be a critical variable, especially in the context of declaration. 

Though there are some similarities in the model parameters, there are substantial differences as well. 
For instance, the vehicle pair specific coefficients capture the unique acceleration properties of the 
mixed traffic streams. Moreover, the flexibility offered by the latent leader framework as opposed to 
rule based identification of the governing leader makes the models widely applicable in different 
traffic scenarios of varying congestion levels including, but not limited to traffic streams with weak 
lane discipline. The improvements due to this additional flexibility are also supported by a significant 
improvement in the goodness-of-fit. When implemented in microscopic traffic simulation tools, the 
proposed model is expected to result more realistic representation of traffic streams in presence of 
weak lane discipline.  

However, the research has some limitations as well. For example, in this research, car-following 
acceleration has been investigated in isolation. Whereas, in reality there can be significant 
interdependency between the longitudinal movement and lateral movement decisions. The reaction 
time and desired headways can also be a function of the lead vehicle types and need to be explored in 
further detail.  Further, as mentioned in Seciton 2.3, the model assumes partial independence in 
calculation of the Maximum Likelihood Functions. Research on state-dependence in the context of 
lane-changing (45) has demonstrated that if there are significant correlations among the unobserved 
variables, the assumption of partial independence can result over estimation of the coefficients of the 
serial correlation term. In Choudhury 2007 (45) (and later in Toledo and Katz 2009 (46)), a Hidden-
Markov Framework has been used to explicitly capture the state-dependence among the lane-
changing decisions of merging vehicles. Similar formulations in the context of the latent leader 
acceleration model that allow efficient integration of Markovian processes in the context of leader 
choice may lead to further improvements in the results.  

Moreover, there may be large heterogeneity among the drivers in terms of reaction time, desired 
headway, comfortable acceleration/deceleration levels, etc. However, as in the other video trajectory 
based datasets, no driver specific information is available in the collected data. The effect of driver 
heterogeneity in this research is partially captured in this study by means of statistical distribution of 
the reaction time but better capturing the driver characteristics and associated human factors holds the 
promise to further enhance the models. It may be noted that in the context of lane-changing, alternate 
ways of data collection (e.g. focus group studies (e.g. 47, 48 ), “in-vehicle experiments” (e.g. 48-50), 
driving simulator studies (e.g. 51) have been successfully used in capturing the effects of driver 
characteristics in detail. Deploying similar techniques in the context of acceleration behaviour can be 
a very interesting direction of future research. 



Moreover, the estimated models are based on data from a single site with limited variation in 
congestion level. Transferability of the model parameters to other sites and time periods can be an 
interesting direction of future research.  
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