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Modelling Acceleration Decisions in Traffic Streams with Weak Lane
Discipline: A Latent Leader Approach

Abstract

Acceleration is an important driving maneuver that has been modelled for decadesritisal
element of the microscopic traffic simulation tools. The state-of-thectleration models have
however primarily focused on lane based traffic. In lane based traffic, evepr thag a single
distinct lead vehicle in the front and the acceleratibthe driver is typically modelled as a function
of the relative speed, position and/or type of the corresponding leader. On tlycanta traffic
stream with weak lane discipline, the subject driver may have meultghicles in the front. The
subject driver is therefore subjected to multiple sources of stimuleteteration and reacts to the
stimulus from the governing leader. Hence, only the applied accelerations areedbgerhe
trajectory data, and the governing leader is unobserved or latent. Thefdtae-art models therefore
cannot be directly applied to traffic streams with weak lane discipline.

This prompts the current research where we present a latent leader acoaievdeéh The model has
two components: a random utility based dynamic class membership model (latentdeapenent)

and a class-specific acceleration model (acceleration component). The parametersaafethieave
been calibrated using detailed trajectory data collected from Dhaka, Bangladsslhs idicate that

the probability of a given front vehiclef being the governing leader can depend on the type of the
lead vehicle and the extent of lateral overlap with the subject driver.eStimation results are
compared againstsimpler acceleration model (where the leader is determined determihyistical

a significant improvement in the goodness-of-fit is observed. The proposettlsn when
implemented in microscopic traffic simulation tools, are expected to result nealéstic
representation of traffic streams with weak lane discipline.
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1. Background

Microscopic traffic simulation tools, which model individual driver manoeuvresl@ngitudinal and
lateral movements, route choice, etc.) and deduce the network condition &reen ¢hn be used as
laboratories for testing the effectiveness of candidate traffic imprenetnitiatives before their
actual field implementation. These tools are increasingly being popular worldwidelécting the
optimum transport scheme. In particular, they can potentially play a very sighifiaa in the
context of developing countries where the transport landscape is changing very bapidhe
resources are often constrained.

Acceleration is an important driving manoeuvre and has been significantly motwlledveral
decades. However, majority of this reseagbonducted for homogeneous traffic conditions which
prevail in developed countries. The developed models range from simple models withurminim
parameters, to comparatively complex and comprehensive models with much detailed comsideratio
and can be grouped as car-following models (el@)1psychophysical modele.g. 11-13), fuzzy-
logic models (e.g. 14-16), cellular automata models (e.g. 17-19), and geneexagiccemodels (e.qg.
20-23) . The state-of-the-art acceleration models however have severaldmsit&or example, as
highlighted by Kim et al. (24) and Punzo and Simonelli (25), some acceleration madel$-8, 5,

20) are based on the assumption that drivers always follow the same drivingndedes. Whereas,

in reality, these rules may differ among different drivers, for the same drivéfeiredt conditions, or
even for same driven similar or nearly identical situations (2®)ther limitations include inadequate
emphasis on the errors and uncertainty in the data used for calibratimgpdiets (25), exclusion of
factors beyond vehicle kinematics and surrounding conditions in the model frameworkd limite
stochasticity, etc. Moreover, the most important setback of these models is that ehdsectoped

for homogeneous lane-based traffic (Figuagdnd cannot be directly applied to heterogeneous traffic
stream where the traffic characteristics are significantly different (Figdre 1b

<Figure 1>

The heterogeneous traffic scenarios have a mix of motorized and non-motorizedswehicte have
wide differences in size, speed and acceleration-deceleration capabilities. Thedrdguing skills
for operating motorized and non-motorized vehicles are very different as wekodor in most
cases, there is an absence of strict lane discipline in such mixed. thaffiresence of weak lane
discipline, a single lane can be occupied by multiple narrow vehicles. Alsojfabene are lane-
markings, in congested conditions, drivers very often position themselves in betiveewehicles in
an attempt to make use of the entire available space and thus occupy multiple lanes.

The research work on modelling such heterogeneous traffic stream is quite limitbe. earlier
models for heterogeneous traffic, the acceleration models for homogenous teaféic been
recalibrated using simulation runs (e.g. 26-28). Mallikarjuna and Rao (29)fbewsed on the
analysis and modelling of heterogeneous traffic observed on mid-block sections oaindbaural
roads in the context of India using a cellular automata approach. Some studies hafiedidenti
significant effects of lead-vehicle size (e.g. 28, 30) and type of vehidte(g@ug. 31) in vehicle-
following behaviour in mixed traffic streams. Lee and Polak (32) have developededdeshdway
based model for motorcycles which are assumed to have the option to eitheratecelerertake a
decelerating front vehicle. But the behaviour of other types of vehicles impeesémotorcycles is
beyond the scope of tinestudy. Gunay (33) has proposed a staggered car-following model which
accounts for lateral discomfort while longitudinal movement is in action. I{@4nhas focused on
development of car-following model for mixed traffic using fuzzy-logic inferesystem and in



addition to vehicle types and composition, traffic factors (e.g. traffic demsity® been identified as a
factor affecting acceleration decisiortdowever, though these models address the issue of lead
vehicle type and/or vehicle pair typadiraffic factors in detail, there has not been much research on
how the models can be extended when there are multiple candidate leaders and the gowdening lea
cannot be determined deterministically. There is a marked research gap regardifigata@mtof
governing leadr vehicle and the existing models are therefore not robust in the context of weak lane
discipline. This has motivated this research where a latent |eacegel has been formulated and
calibrated using detailed trajectory data.

The rest of the paper is organized as follows: the model structure is presesttéadldwed by the
descriptions of the data. The estimation results are presented next. The findingsnaaezedrin the
concluding section with directions of future research.

2. Modd Structure

In the state-of-the-art acceleration models, the observed actions of the lead ireliioht of the
driver have a significant role in predicting the acceleration/decelerakecisions of the subject
driver. However, in traffic streams with weak lane discipline, thereofiem multiple candidate
leaders in front of the subject driver (SD), particularly in congested sigafttienoted by Front Left
(FL), Front Direct (FD) and Front Right (FR) (Figure 2). Therefore, thoughldhgitudinal
acceleration/ deceleration of the subject driver are governed by tbasaofi one of thee vehicles
either consciously or inadvertently, the leader is often not distinctly cabéhence latent) in the
data.

The acceleration decision of the driver is thus modelled using Eetebstructure. The first level is a
dynamic class membership model that predicts the probability of a front vbhiolg the governing
leader of the subject driver at a given time. The second level denotes the dooebtériie subject
driver conditional on the specific leader vehicle (Figure 2).

<Figure 2>

The first level is formulated using a random utility based discrete choice framework where tiee choi
setcan consist of up to three vehicles (denoted by Front Left, Direct Front and kgbitit Rhe
probability of any front vehicle being the governing lead vehicle can be affbgtdhe relative
positions, speeds and types of the vehicles, etc. The second level is fatmalatethe state-of-the-

art, non-linear stimulus-response model, the GM Non-linear Model (proposedsbgrechers at
General Motors (1) and extended by later researd@ers-10). The parameters of the stimulus and
sensitivity functios are allowed to vary depending on the type of the subject and leader vehicle. The
modelling challenge lies in the fact that only the acceleration decisior afritrer is observed and

the choice of the leader and thus the acceleration stimuli is unobserved or latent.

The first level is thus a Latent Class membership model (35, 36). Butabke rlembership is
dynamic (the leader can change over time) and hence similar to Latent Planwiodeleave been
used for modelling lane changing decisions for lane-based traffic (37,38) .ot& components are
further described below.

2.1 Latent Leader Component

As shown in Figure 2, a subject driver (SD) may have multiple vehiclégifrdnt (FL, FD and/or
FR), particularly in a congested traffic stream. The extent of influeficihe leader can vary



depending on the position (i.e. lateral overlap between the subject driver and the caadittte |
headway, etc.), type of the vehicles (e.g. if a front vehicle is a heavy vehiolayibhave a mer
dominating role in the behaviour of the subject driver), speed and acceleratidres adndidate
leaders ( e.g. a decelerating front vehicle may have a more dominating role thaneratageine, a
front vehicle moving much faster may have less impact than a front velitblesimilar relative
speed, etc.). To account for these multiple factors, the probability of a fromievéHieing the
governing leader of the subject driver n at time t can be modelledaasi@m utility based discrete
choice model and expressed as follows:

exp(Bxh(®))

— L'/ eC,=FL FD,FR (@0
P exp([)’l x5 (t)) n

P(ln(®)) =

Where:

XL(t) :Vector of explanatory variables associated with the front vehimlelriver n at time:
B: Vector of estimated parameters associated with front vehicle

Candidate explanatory variables include proportion of lateral overlap between tbet sibvjer and
the front vehicle, headway, type of the front vehicle, type of the subghtle, speed and
acceleration of the front vehicle, etc.

2.2. Acceleration Component

The stimulus-sensitivity framework proposed within thil ®odel is adapted for the acceleration
model component. In the GM Model framework, the acceleration of the subject driver is a response to
the stimulus provided by the leader vehicle in the front. Hence, the acceleration of the sulgeis driv

a direct function of the speed, position and characteristics of the leaderevdfatlbwing the
framework, the acceleration driver n applies at time t is assumed to be a respstiteali from the

leader I:

responsel (t) = sensitivity} (t) x stimulus), (t — 1,,) (2)
Where,t,, is the reaction time of the driver and | denotes the leader.

The stimulus is usually the relative speed of the subject relatitleetteader (defined here as the
speed of the leader less the speed of the subject vehicle). The sensitivimésianfof explanatory
variables like the speed of the subject vehicle, headway, types of leader ant\albe, etc. The
response to positive and negative stimuli may be different because of #rerdiffiature of these
situations: the main consideration in the reaction to a negative leaatererapeed is safety, whereas
the acceleration applied in a positive leader relative speed situation mayebidatby speed
advantage considerations and by herd effect (i.e. human tendency to conform withotine @fct
others). To capture these differences, the explanatory variables and/or cotiregpogtficients may
vary depending on if the stimulus is positive (leading to acceleration) oriveediading to
deceleratioh

Based on relative speed of leader, the acceleration can thus be car-folledelgration or
deceleration:

ay® ) if AVt =Ty =0

l _ n
an(t) = {
" ak®c(t) otherwise

3)

Where,
AVL() = V() =V, ()



VL(t) = speed of leader at time t

1V, (t) =speed of subject driver at time t

The general functional form of acceleration of driver n with respelgaden at time t can therefore
be expressed as follows:

a] () = s XL MY [AVL (£ — 1] + & (O @
Where,

j € acceleration, decleration

XL (t) = explanatory variables related to leader |

sb[.] = sensitivity function for leader |

mY[.] = stimulus function for leader |

e,llj (t) = random error term

Assuming that the random error term is normally distributefi(t)~N (0, o) , the probability
density function of acceleration can be expressed as follows:

(5)

a,l,[ ) -sb[xh@®)]mY[av (t—‘rn)])
Jlj

F(a Oltnema) = 2

In mixed traffic condition, the static and dynamic characteristics of the velickesften quite
different and the type of the subject vehicle and/or the leader vehicle can thffesensitivity
function (either individual effect or pair-effect). Other candidate abdes affecting sensitivity
function include speed of the subject vehicle, spacing with the lead vehadfes, conditions (e.g.
density) and composition, etc.

2.3 Likelihood Function

The trajectory data includes second by second lane changing and acceleration dediseodsiver.
The only information about the driver/vehicle characteristics is the Heaftthe vehicle. The
following are therefore unobserved in the data:

e The leaddrFront Left, Front Direct and Front Right

e Driver/vehicle characteristics (reflected in reaction time and correlatitirei
error terms)

The joint probability density of the observed acceleration for drivertima t, conditional on the
individual specific reaction time is given by:

f(ail(t)lfn) = f(ait(t)llnt' Tn)P(ln(t)) (6)
Where f(af (t)|t,) and P(1,(t)) can be calculated by Equations 1, 3, and 5.

The marginal probability can be written as follows:

Flan (®lt,) = Z F(ak(®O17y), In € FL,FD, FR
T



The behaviour of driver n is observed over a sequen@g @dnsecutive time intervals. The joint
probability of the sequence of observations is the product of the prtikabitif individual
observations:

f@len) = TI2, fan (Dlzn) (7)
Where,ais the sequences of observed accelerations of driver n.

The unconditional individual likelihood function is deduced by integrating the tomali probability
over the distributions of the individual specific variable:

Ly=[ f(a|tdr (8)
Where,f (1) is assumed to follow double truncated normal distribution.

Assuming that the observations of different drivers are independent, the logelddefunction for all
N drivers observed is given by:

L=Yy-1In(Ly) (©)

For determining the maximum likelihood function, the probability density function (PDF) of the given
observations is compared against the PDF of a normal distribution whose mearifissdspgdhe
coefficients (estimated) of the influencing variadad the standard deviation (estimated). The set of
parameters yielding the best goodnesfitofs selected. The correlation in the error terms of the
observations of the same driver is accounted for using a sandwich estimator (39).

It may be noted that it has been assumed that conditional on the driver chasstdresactions ai

driver is independent over time and state-dependence among the consecutive decisions are not
explicitly considered. However, the values of explanatory variables that dveddérom the
positions and speeds of the subject vehicle and surrounding vehicles depend on earlier decisions made
by the driver (e.g. the vehicle speed and position depend on past accelerations) andsiba ioicl

these variables in the model is expected to indirectly capture some of the effects okpterisions.

The model thus assumes partial independence.

3. Data
3.1 Location

The trajectory data used for estimating the model parameters have been extracteddémm
recordings from an elevated pedestrian bridge in Mirpur road of Dhaka, Bang(kigpsk 3a). The
video covered the end of the morning peak (9:30-11:00) when the congestion levels are nibderate.
may be noted that the site and the schedule have been selected based on a reconnaiegaaug su
governed by the following conditions:

o Availability of suitable elevated pedestrian bridges

e Presence of mixed traffic and weak lane discipline

e Smaller share of large commercial vehicles (which can obstruct smalleregehindl cause
problems in the image processing)

e Absence of curves

¢ Minimal side friction and

e Dominance of continuously moving traffic with a reasonable speed (i.e. notdveerfljam
conditions)



<Figure 3>

The video was analysed by amage processing software named ‘TRAZER’ (40) and smoothed using
Locally Weighted Regression Technique (41) using MATLAB. Some data had to be discarded due to
high congestion levels (where the image processing software failedeugeasonable resylisnd

in total about 45 minutes of usable data has been retained.

3.2. Traffic Characteristics

The cleaned and smoothed trajectory data consists of 895 vehicles. The composition is shown in
Figure 4.

As evident in Figure 4a, the traffic stream mostly consists of private(48r45%) followed by
motorcycle (12.20%). CNG auto-rickshaw also has a fairly good percentage. The peroébiage
microbus and SUVs are close and considerable. Non-motorized vehicles have a small share (non-
motorized vehicles are banned in most of the major roads of the cityfuakd have negligible share
(trucks are not allowed in the city between 6am to 10pm).

<Figure 4>

The vehicles are grouped into the following 3 groups depending on size and dynamic chasacteristi
as well as statistical tests of model parameters during the model estimation

e LMV : Private car, Microbus, Human Hauler, CNG Auto-rickshaw
e HMV :SUV, Bus, Truck
o 2W : Motorcycle, Bicycle, Cycle Rickshaw

This infers that it is theoretically possible to have 9 types of vepails (e.g. LMV-LMV, LMV-
HMV, HMV-LMV, etc.)

The cleaned data has 5507 observations. The average speed is 12.49 km/hr and the average
acceleration and deceleration are 1.18mwsl 1.63m/fsrespectively.

Analysis of lateral overlap of vehicles (Figure 4b) indicated that foonitajof the vehicles, there is
only a single front vehicle but a substantial portion (937 observations) has more thamnbwueHicle
and multiple candidate leaders.

4. Results

The parameters of the model presented in Section 2, have been estimated using the- Broyden
FletcherGoldfarb-Shanno (BFGS) algorithm using the software Oxmetrics 6 (42). Different model
formulations hae been tested using the candidate variables listed in Table 1.

<Table 1>

1 Out of the 895 vehicles in the dataset, there were 74 buses (8%) ands§@6a&R6). Such proportions are
largely representative of the traffic patterns in the Dhaka city (the heavystoack only enter the city
between 10pm-6am). Due to the small proportions, these have beemebuiogether with SUVs in a
common class Heavy Vehicles during model estimation purposes.



The best model selected based on the coefficient values, robust t-statidtiggsodness-of-fit values
is presented in Table 2.

<Table2>
4.1 Latent Leader

This component predicts the probability of a front vehicle for being the govereaater of the
subject driver. The choice set includes the front vehicles that have overlagrah ¢atordinates and
can consist up to three front vehicles: Front Left (FL), Front Direct (F®)Faont Right (FR) (Figure
2).

As presented in Table 2, all else being equal, the probability of a fetitle being the governing
leader is higher if it is a FD vehicle. The constants are however stafysiitsignificant. The
probability also increases with the lateral overlap between the vehicle pair éexpessa percentage
of shared lateral coordinates between the subject vehicle and the fronevéltiel type of the front
vehicle also has a significant effect on the probability of it being the giogeleader. Estimation
results indicate that the subject driver is more likely to be governed bstithelus from a front
vehicle if it is a heavy vehicle. The effect of the type of the subjectlechés also been tested using
a similarity dummy (which is 1 if the front vehicle and the subject vehyple are the same), but the
coefficient is non-intuitive and statistically insignificant. Therefore vidngable has not been included
in the final model.

The estimated utilities associated with the candidate front vehicles can be exprésitedss
UFL(t) = —1.623 + 2.091wfE(t) + 0.2956FL(t) + 5L (t)

UFP(t) = 2.091wEP(t) + 0.29565P(t) + £EP(t) (10)
UEFR(t) = —1.451 + 2.091wER(t) + 0.2956ER(t) + e£R(t)

Where,

w} (t)= Percentage of lateral overlap of the front vehigléth the subject driver n at time t

5L (t)= Heavy front vehicle dummy, 1 if the front vehicle | of subject driver tina¢ t is a heavy
vehicle, 0 otherwise.

The corresponding probabilities can be calculated using Equation 1.
4.2 Acceleration

As presented in Section 3.2, an extended version of the non-linear GM car following model is used in
this component. The stimulus function of Equation 4 can be expressed as:follows

. Ui
mY [AV;LI (t—1)] = |A‘/;1l(t - Tn)l

Where AY = parameter corresponding to relative speed of leader I.

A positive correlation between the relative leader speed and the acceleration the dxpvectesde
a-priori. The parametei¥/is therefore, expected to be positive for both acceleration and



deceleration. Estimation results indicate ttatis indeed positive and significantly different for
acceleration and deceleration. The stimulus can also have a different effect depending on th
of the front vehicle. This however is not supported in the estimation results and thenddfer

AY among different types of lead vehicles is found to be statistically insignificastirfipiies that
for a given magnitude of the relative speed, all types of lead vehicles (LMV, HMV and 2W)
provide the same magnitude of stimulus to the subject driver. The effects okrsfaed on the
mean car following acceleration and deceleration are shown in Figures 5a and 6a respective

<Figure 5>

The constant terms of the sensitivity functions are positive and negative fol@aing acceleration
and car following deceleration, respectively. The magnitude of senstovéyegative relative leader
speed is found to be larger than the sensitivity to a positive one. This is expected sEgative
relative speed stimulus may have safety implications whereas a positive relativesesmtestimulus
only suggests a possible speed advantage to the driver. The sensitivity functides arpected to
vary depending on the type of the subject vehicle/ leader vehicle/ vehicl&qaithe deceleration
function, the constant terms of the sensitivity functions vary significdepending on the type of the
subject vehicle. All else being equal, the magnitude of deceleration is lEmg2%¥¢ and smallest for
HMV (Figure 63.

Candidate variables affecting the sensitivity function include the spetiak afubject driver, the
space headway, density, types of the subject driver and the leader, etc. Howevepegtsats
indicate that only the effect of space headway is statistically sigrifipath for acceleration an
deceleration), the estimated coefficients being negative. This is in agreevith findings of
previous researches (e.g. 43-44). For deceleration, this is expected since thgngndafety
concern increases when the spacing is reduced. In the case of accelératiynbe related to
reduced perception of the leader as a stimulus the driver needs to react totymadpecific anc
vehicle pair specific headway coefficients have been tested both for atiorlenad declaratior
functions and found to have a statistically significant difference in case oét¢lk&tation functior
only where the coefficients of space headway differs significantly depgmdi the type of the
leader vehicle. This indicates that for a particular subjecedriyiven the headway and relati
speed differences are same, the magnitude of deceleration varies significantiglirtpma the
leader type. Except for small headways, the magnitude of deceleration is highedeé#der is ai
HMV and smallest if it is a 2W (Figure 6a).

<Figure 6>

The estimated acceleration function can be expressed as follows:

akoee () = 0.051[HL(£)]" 498 [AVL (¢ — 1|7

ehac€~N(0,0.2422)

The estimated deceleratifumctions are presented in Table 3.
<Table 3>

4.3 Model Comparison

The latent leader specification was statistically compared with a redoreefldr naive model where
acceleration is assumed to be influenced only by the vehicle with the highesit datiap. The
goodness-of-fit of both models have been compared and presented in Table 4.



<Table4>

As seen in the table, the latent leader model, in spite of having more pasamaten statistically
significant improvement compared to the reduced form model.

5. Conclusions

The paper presents a novel model structure for predicting acceleration beirapi@sence of weak
lane discipline where the subject driver may have multiple vehiclesfioritisand there may not be a
distinctleader vehicle. The estimated model parameters are intuitive and in agreerhemtewibus
studies. For instance, similar to acceleration models developed for homogenoustiesfits, the
space headway is found to be a critical variable, especially in the context of declaration.

Though there are some similarities in the model parameters, there are substaetiadcdiff as well.
For instance, the vehicle pair specific coefficients capture the unique accelerapentips of the
mixed traffic streams. Moreover, the flexibility offered by the latent le&denework as opposed to
rule based identification of the governing leader makes the models widelgadpmplin different
traffic scenarios of varying congestion levels including, but not limitedafic streams with weak
lane discipline. The improvements due to this additional flexibility aresalpported by a significant
improvement in the goodness-of-fit. When implemented in microscopic traffidation tools, the
proposed model is expected to result more realistic representation of traffinssirepresence of
weak lane discipline.

However, the research has some limitations as well. For example, in this reseafdiiowing
acceleration has been investigated in isolation. Whereas, in reality taar be significant
interdependency between the longitudinal movement and lateral movement decisiorsaciibe

time and desired headways can also be a function of the lead vehicle types and need to bénexplored
further detail. Further, as mentioned in Seciton 2.3, the model assumes partial indepémdenc
calculation of the Maximum Likelihood Functions. Research on state-dependence in e obnt
lane-changing (45) has demonstrated that if there are significant correlationg &he unobserved
variables, the assumption of partial independence can result over estimatiercoéfficients of the

serial correlation term. In Choudhury 2007 4&nd later in Toledo and Katz 2009 (46)), a Hidden-
Markov Framework has been used to explicitly capture the state-dependence among-the lane
changing decisions of merging vehicles. Similar formulations in the contettieofatent leader
acceleration model that allow efficient integration of Markovian procdssése context of leader
choice may lead to further improvements in the results.

Moreover, there may be large heterogeneity among the drivers in terms of rdmetpmesired
headway, comfortable acceleration/deceleration levels, etc. However, as thaheideo trajectory
based datasets, no driver specific information is available in the collected daetfethef driver
heterogeneity in this research is partially captured in this study by meatatistical distribution of
the reaction time but better capturing the driver characteristics andaedduiiman factors holds the
promise to further enhance the models. It may be noted that in the context of lagieghalterna
ways of data collection (e.g. focus group studies (e.g. 47,“48-vehicle experiments” (e.g. 48-50),
driving simulator studies (e.g. 51) have been successfully used in capturingeitis eff driver
characteristics in detail. Deploying similar techniques in the contexicefexation behaviour can be
a very interesting direction of future research.



Moreover, the estimated models are based on data from a single site widd liraifation in
congestion level. Transferability of the model parameters to other sites angetimeés can be an
interesting direction of future research.
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