
This is a repository copy of Modeling and identification of a small scale 
magnetorheological damper.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/96082/

Version: Accepted Version

Proceedings Paper:
Aguirre, N., Ikhouane, F., Rodellar, J. et al. (2 more authors) (2010) Modeling and 
identification of a small scale magnetorheological damper. In: Kayacan, E., (ed.) 
Proceedinsgs of ALCOSP 2010 Adaptation and Learning in Control and Signal Processing.
10th IFAC International Workshop on the Adaptation and Learning in Control and Signal 
Processing, 2010, Bogazici University, Turkey. IFAC , pp. 19-24. 

https://doi.org/10.3182/20100826-3-TR-4015.00007

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Modeling and identification of a small scale

magnetorheological damper ∗

N. Aguirre†, F. Ikhouane† & J. Rodellar†

D. Wagg‡ & S. Neild‡

†Department of Applied Mathematic III, Technical University of
Catalunya. Barcelona, Spain. E-mail: naile.aguirre@upc.edu,

faycal.ikhouane@upc.edu, jose.rodellar@upc.edu

‡Department of Mechanical Engineering University of Bristol Queen’s
Building, University Walk, Bristol, BS8 1TR, UK. E-mail:

david.wagg@bristol.ac.uk,simon.neild@bristol.ac.uk

Abstract: Magnetorheological (MR) dampers are promising vibration control devices widely
used for vibration mitigation applications as they combine reliability and stability of passive
systems while maintaining versatility of active devices without large power requirements. These
dampers are intrinsically nonlinear, so one of the challenging aspects of applying this technology
is the development of accurate models to describe their behaviour for control design and
evaluation purposes. This paper deals with the parametric identification of a small scale MR
damper which is modelled using the viscous + Dahl model. Experimental results show reasonably
good agreement with the forces predicted by the identified model.
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1. INTRODUCTION

Currently, MR dampers are successfully used to improve
the performance of suspension systems without the large
power requirements and maintenance costs associated to
active devices commonly used for similar applications.
These devices have small and large scale applications
depending on their dimensions. Typically, Small MR
damper forces range around 1000N and have been used,
among others, as shock absorbers for vehicle’s and
motorcycle’s suspension Poynor (2001); Gravatt (2003),
cars seat suspension Choi et al. (2000), vibration control in
helicopters rotors F. Gandhi and Xia (2001) and prosthetic
limbs J.D. Carlson and Toscano (2001). On the other hand
large scale MR dampers can provide forces around 200kN
which are suitable for civil engineering applications, among
others, based isolated buildings Yoshioka et al. (2002) and
bridges Chen et al. (2003).

These devices have a controllable fluid composed of
suspensions of micron-sized, magnetizable particles dis-
persed in an appropriate carrier liquid. In the presence
of a magnetic field, the iron particles form linear chains
parallel to the field. These chains make it difficult for
the fluid carrier to flow so that it becomes semisolid
exhibiting a viscoplastic behavior Ashour et al. (1996).
This transformation, illustrated in Figure 1, happens in
a few milliseconds which means that MR dampers can

⋆ The first author acknowledges the support of the Spanish Ministry
of Science and Education through FPI program and the diligent
efforts of the staff at the University of Bristol at BLADE laboratory
in helping to setup and conduct these experiments.

provide the civil engineering structures with controllable
damping forces driven from an input voltage.

Zero magnetic field High magnetic field

Fig. 1. MR fluid when subject to zero magnetic field and
high magnetic field.

The precise modelling of these devices using the laws of
physics is an arduous task and leads to complex models of
limited usefulness in control applications. For this reason,
alternative models have been developed by combining a
physical insight with a black-box approach Savaresi et al.
(2005).

One of these models that has been used to describe
MR dampers is the Dahl model Dahl (1968) which
consists of a first-order nonlinear differential equations
that approximates experimentally observed hysteresis
loops. It has been used in references Zhou et al. (2006,
2008); Şahin et al. (2010); Ikhouane and Rodellar (2007);
Ikhouane and Dyke (2007); Rodriguez et al. (2009a,b)
to describe the MR dampers behaviour (small and large
scale).

The objective of this work is to identify a small scale
MR damper which is described by the viscous + Dahl



model. The identification methodology invoked herein is
based on the input/output information once the MR
damper reaches an induced limit cycle. The obtained
model is validated experimentally using constant and
varying voltage.

2. EXPERIMENTAL SETUP

An schematic of a typical small scale magnetorheological
damper is shown in Figure 2. MR dampers typically
consist of a hydraulic cylinder containing a moving piston
submerged in a MR fluid. The magnetic field, which
is perpendicular to the fluid flow, is generated by a
small electromagnet in the piston head. While the fluid is
primarily operating in pressure driven flow (valve) mode,
the relative velocity between the two pole plates leads to a
direct-shear mode as well. Hence, as the fluid flows through
the fluid gap between the damper housing and the coil
assembly, it is activated by the coils which are wound on
the piston. Thus, the resistance to the flow of the MR fluid
through the valve section of the damper provides the force
mechanism.

Piston

Wires to
Electromagnet

Bearing & seal

MR fluid

Coil

Diaphragm

Accumulator

Fig. 2. Schematic of a small scale MR damper.

The MR damper used in this work is the RD-1005-3
damper shown in Figure 3 which is manufactured by Lord
Corporation (http://www.lord.com/). It is 15.5cm long,
has an available stroke of 5.3cm. It can generate damper
forces (peak to peak) of > 2224N (0.05ms−1 at 1 Amp)
and < 667N (0.20 ms−1 at 0Amp) and can operate till
a temperature of 71◦C. The damper’s accumulator can
accommodate a temperature change in the fluid of 27◦C.
The MR damper is tested at the University of Bristol
at BLADE laboratory. Figure 3 shows a picture of the
damper installed for testing.

3. MODELING AND IDENTIFICATION OF THE MR
DAMPER

3.1 Modeling of MR dampers

The Dahl model has been proposed independently by Dahl
Dahl (1968, 1976) to describe frictional behaviour and by
Bouc Bouc (1971) to represent hysteresis phenomena. It
has been used in references Zhou et al. (2006); Ikhouane

Fig. 3. Experimental set-up
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Fig. 4. Input signal x.

and Dyke (2007); Rodriguez et al. (2009a) to describe the
MR dampers behaviour.

The model is formulated as

F (t) = κx [v(t)] ẋ(t) + κw [v(t)] w(t) (1)

ẇ(t) = ρ [v(t)] (ẋ(t) − |ẋ(t)|w(t)) (2)

where ẋ(t) denotes the damper piston velocity, v the
voltage input command of the amplifier, F is the damping
force, w describes the nonlinear behaviour of the damper,
and t refers to time. The viscous friction coefficient κx,
the dry friction coefficient κw and the parameter ρ may be
voltage dependent.

3.2 Analytic description of the forced limit cycle for the
Viscous + Dahl model

This section gives an analytical description of the hysteresis
loop for the model (1)-(2). The mathematical details are
given in Ikhouane and Rodellar (2005) so that this section
presents only the main result. To describe analytically the
hysteresis loop, the following wave T -periodic input signal
is considered (see Figure 4). The following instrumental
functions are used:

ϕ−(α) =

α
∫

0

du

1 + u
= ln(1 + α) (3)

ϕ+(α) =

α
∫

0

du

1 − u
= − ln(1 − α) (4)

ϕ(α) = ϕ−(α) + ϕ+(α) = ln

(

1 + α

1 − α

)

(5)



where α ∈ (−1, 1).

The functions ϕ−(·), ϕ+(·), and ϕ(·) are invertible with
inverses ψ−(·), ψ+(·), and ψ(·) respectively.

ψ−(µ) = eµ − 1 (6)

ψ+(µ) =
eµ − 1

eµ
(7)

ψ(µ) =
eµ − 1

eµ + 1
(8)

where µ ∈ (−∞,∞).

Now, the hysteresis loop for model (1)-(2) is described by
the following theorem, (Ikhouane and Rodellar, 2007, p.
47), Ikhouane and Rodellar (2005).

Theorem 1. Let x(t) be a wave T-periodic input signal as
depicted in Figure 4. Define the functions ωm and fm for
any non-negative integer m as follows

ωm(τ) = w(mT + τ) τ ∈ [0, T ] (9)

fm(τ) = κxẋ(τ) + κwωm(τ) τ ∈ [0, T ] (10)

(a) The sequence of functions {fm}m≥0 (resp. {ωm}m≥0)
converges uniformly on the interval [0, T ] to a continuous
function F̄ (resp. w̄) defined as

F̄ (τ) = κxẋ(τ) + κww̄(τ) τ ∈ [0, T ] (11)

w̄(τ) = ψ+
(

ϕ+ [−ψ (ρ (Ia))] + ρ (x(τ) − Xmin)
)

(12)

τ ∈ [0, T+]

w̄(τ) = −ψ+
(

ϕ+ [−ψ (ρ (Ia))] − ρ (x(τ) − Xmax)
)

(13)

τ ∈ [T +, T ]

where Ia = Xmax − Xmin

(b) For all τ ∈ [0, T ], we have

−1 < −ψ1,1 (ρ (Xmax − Xmin)) ≤ w̄(τ) (14)

w̄(τ) ≤ ψ1,1 (ρ (Xmax − Xmin)) < 1, (15)

the lower and upper bounds of w̄(τ) being attained at
τ = 0 and τ = T + respectively.

(See (Ikhouane and Rodellar, 2007, Sections 3.5.1 - 3.5.2),
Ikhouane and Rodellar (2005) for a proof).

This result means that the output force goes asymptotically
to a periodic function. The transient behavior is captured
by equations (9) and (10) while the steady-state is
captured by equations (11) - (13). Loading is described by
equations (11) and (12) while unloading is described by
equations (11) and (13). Broadly speaking, the functions
F̄ and w̄ denote the steady-state responses of the functions
F and w respectively.

3.3 Identification methodology of Dahl model

In what follows, parameters κx, κw and ρ are determined
considering a given constant voltage. Later, this procedure

is repeated for different values of the voltage to get the
functions κx(v), κw(v) and ρ(v) referred to in Equations
(1)-(2).

The identification methodology used in this paper is based
on the results of Ikhouane and Rodellar (2007); Ikhouane
and Dyke (2007) so that only the main steps are presented
in this section. The procedure assumes the knowledge of
the hysteresis loop (F̄ (τ), x(τ)) parameterized with the
variable τ ∈ [0, T ] which has been addressed in Theorem 1.

To compute parameter κx let us consider the lower and
upper bounds on w̄ (Equations (14)-(15)) to compute
the values of the force at instants τ = 0 and τ = T +

respectively.
From equation 11 we have:

F̄ (0) = κxẋ(0) − ψ1,1 (ρ (Xmax − Xmin))

F̄ (T +) = κxẋ(T +) + ψ1,1 (ρ (Xmax − Xmin)) .

Thus parameter κx can be determined as

κx =
F̄ (0) + F̄ (T +)

ẋ(0) + ẋ(T +)
(16)

As explained in Ikhouane and Rodellar (2007); Ikhouane
and Dyke (2007), the variable τ can be eliminated so that
the functions F̄ and w̄ can be given as functions of x.

Since κx has been computed, κww̄(x) can be determined
from Equation (1) as:

κww̄(x) = F (x) − κxẋ ∆ θ(x) (17)

Let x
∗

be the value of the input such that θ(x
∗
) = 0.

Define

a =

(

dθ(x)

dx

)

x=x∗

(18)

choose a design value x
∗1 > x

∗
, then the parameter ρ can

be calculated as

ρ =

a −
(

dθ(x)
dx

)

x=x
∗1

θ(x
∗1)

(19)

Finally, κw is obtained as

κw =
a

ρ
(20)

To carry out the identification, 30 tests have been
considered for each damper using different displacement
input signals as detailed in Table 1 where A = Xmax cm
and f = 1/T Hz are the amplitude and frequency of the
signal respectively. These inputs have been considered for
constant input voltage from 0V to 1.8V.

3.4 Sensitivity of the parameter κx

Figure 5 gives the response of the MR damper to a wave
T -periodic input signal with f = 0.6Hz, A = 0.8cm
and a constant input voltage of v = 1.8V. In the Force-
velocity plot it can be observed that the term of the force
associated to the viscous friction κxẋ(t) is smaller than the
one associated to the dry friction κww̄(t)



Table 1. Experiments

A(cm)\f (Hz) 0.3 0.5 0.6 1.0 1.3 1.5 2.0 2.4

0.25 x x x x x

0.3 x x

0.5 x x x x x x

0.8 x

1.0 x x x x x
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Fig. 5. (a) Input signal x as a function of time. (b) Force-
velocity plot for 9.6 ≤ t ≤ 10.4s (see dashed box on
the Force-time plot). (c) Force-time plot response.

max (κxẋ(t))
t∈[9.6,10.4s]

= 175N

max (κww̄(t))
t∈[9.6,10.4s]

= 680N

The consequence of this observation on the identification
method is now analyzed. In equation (16), let ∆h be the
absolute value of the highest uncertainty on h. Then we
have

∆κx

κx

=
∆(F̄ (0) + F̄ (T+))
∣

∣F̄ (0) + F̄ (T+)
∣

∣

+
∆(ẋ(0) + ẋ(T+))

|ẋ(0) + ẋ(T+)|

=
∆(F̄ (0)) + ∆(F̄ (T+))

∣

∣F̄ (0) + F̄ (T+)
∣

∣

+
∆(x(0)) + ∆(ẋ(T+))

|ẋ(0) + ẋ(T+)|
(21)

Let us consider that in equation (1) the viscous friction
term κxẋ(t) is very small with respect to the dry friction
term κww(t). In this case, the restoring force of the damper
is given by F (t) ≃ κww(t). By Theorem 3 (Ikhouane
and Rodellar, 2007, p. 47),Ikhouane and Rodellar (2005))
we have F̄ (0) = −ψ1,1 (ρ (Xmax − Xmin)) and F̄ (T+) =

ψ1,1 (ρ (Xmax − Xmin)), so that F̄ (0)+F (T+) ≃ 0. This equality
along with equation (21) shows that the relative error on
the parameter κx is high if the viscous friction is much
smaller than the dry friction. In our case, experimental
values F̄ (0) = −615N and F̄ (T+) = 561N show that F̄ (0) +

F̄ (T+) = 54N is very small.

Then, equation (16) may lead to a large relative error
to determine the parameter κx. In next section, it is
proposed an alternative method for the determination of
this parameter.

3.5 Modified identification methodology

In (Ikhouane and Rodellar, 2007, Eq. 4.93) , Ikhouane and
Dyke (2007) it is shown that the hysteresis loop has a
plastic region when the displacement is large enough. This
region is characterized by w̄(τ) ≃ 1. In this case, equation
(1) becomes

F (x) = κx[v(t)]ẋ(t) + κw[v(t)] (22)

This equation is linear in ẋ(t) so that the constants κx

and κw can be determined by a linear regression for
each constant voltage and not by equations (16) and
(20). Indeed, in Figure 5 (top right), it is observed that
the force versus velocity plot presents a linear part for
velocities 1.50 ≤ ẋ(t) ≤ 2.93(cms−1) which means that
our assumption has thus been validated experimentally so
that equation (22) can be used to identify parameters κx

and κw.
Finally, the parameter ρ is computed from equation (20)
as:

ρ =
a

κw

(23)

3.6 Experimental results for experiment with input signal
displacement of f = 0.6Hz and A = 0.8cm and constant
voltage v = 1.8V

In this section we are computing the parameters κx,
κw, ρ, based on the experimental data obtained for the
experiment referred to in Figure 5. For identification
purpose, only the loading part of one cycle in the steady
state is needed (see Figure 5b).

The first step of the identification process of Section 3.5
is the linear regression of Equation (22). This is done in
the force velocity plot of Figure 5b for velocities 1.50 ≤
ẋ(t) ≤ 2.93(cms−1). It is found that κx = 67.4(Nscm−1)
and κw = 644N which lead to the linear approximation
shown in Figure 6a.
Then, function θ(x) is obtained from Equation (17), it is
found that x

∗
= −0.81cm (see Figure 6b) and Equation

(18) gives a = 1.227 × 104 (Ncm−1). Finally, the value
ρ = 19(cm−1) is obtained from Equation (23).
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Fig. 6. (a) (solid) force-velocity plot, (dashed) linear
regression of Equation (22). (b) function θ(x), x

∗

verifies θ(x∗) = 0.

3.7 Identification results

Table 2 shows some results of the identification methodol-
ogy detailed in the previous section along with the signal



input parameters.

Table 2. Identification results

κx κw ρ A f v

(Nscm−1) (N) (cm−1) (cm) (Hz) (V)
6.47 68.8 75.3 0.25 1.5 0.0
13 71.9 63.8 0.50 0.5 0.0

10.3 43.1 108 0.25 0.5 0.0
8.54 37.7 90.6 0.30 1.3 0.0
7.55 64.4 29.7 0.50 1.5 0.0
177 642 26.1 0.50 0.3 1.8
94.9 668 18.2 0.50 0.5 1.8
30.3 748 14.7 0.50 1.0 1.8
67.4 644 19 0.80 0.6 1.8
45.8 701 15.3 1.00 0.5 1.8

4. VALIDATION RESULTS

From the identification results of the tests referred to
in Table 1, it is found that ρ is a voltage–independent
parameter so that it is taken as the mean value ρ̄ =
47.95(cm−1). Parameters κx, and κw are voltage dependent
parameters in the form

κx(v) = κxa
+ κxb

v (24)

κw(v) = κwa
+ κwb

v (25)

where κxa
= 9.78(Nscm−1), κxb

= 40.75(Nscm−1V−1),
κwa

= 60.11N and κwb
= 344.78(NV−1).

Then, the MR damper model is obtained as:

F (t) = [κxa
+ κxb

v(t)] ẋ(t) + [κwa
+ κwb

v(t)] w(t) (26)

ẇ(t) = ρ̄ (ẋ(t) − |ẋ(t)|w(t)) (27)

w(0) =
F (0) − [κxa

+ κxb
v(0)] ẋ(0)

κwa
+ κwb

v(0)
(28)

The experimental force is denoted Fe and the force
calculated by model (26) is denoted F . The discrepancy
between Fe and F is measured by the L1 norm as

ε =
‖Fe − F‖1

‖Fe‖1

where

‖f‖1 =

Te
∫

0

|f(t)| dt.

Te and f are the time duration and force time function for
each experiment.

4.1 Validation results with constant voltage

The validation of the model was done using the same
inputs referred to in Table 1. Figure 7 shows the
comparison between predicted and experimental data for
the experiments with f = 1.5Hz, A = 0.5cm and v = 0V
and f = 1Hz, A = 0.25cm and v = 1.8V. The relative
errors are ε = 18.3% and ε = 12.1% respectively.
Validation of the all tests leads to the average relative

error of 22%.
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Fig. 7. Comparison between predicted (dashed line)
and experimental force (solid line). (a) f = 1.5Hz,
A = 0.5cm and v = 0V. (b) f = 1Hz, A = 0.25cm
and v = 1.8V.

4.2 Validation results with varying voltage

In control applications, voltage (or current) is the control
variable Yoshioka et al. (2002); Dyke et al. (1996);
Sahasrabudhe and Nagarajaiah (2005); Casciati et al.
(2006); Jansen and Dyke (2000). This is why it is
important to validate the model with a varying voltage
input along with a varying displacement. We choose
random signals for both inputs with a low frequency
content as happens in civil engineering applications. Figure
8 shows the comparison between the experimental and
predicted forces. The relative error is of 22% which is
reasonable for control applications.
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5. CONCLUSION

This paper has dealt with the modeling and identification
of a small scale MR damper. The model that has been
chosen is simpler than the Bouc-Wen hysteresis model
commonly used for the description of these devices. The
MR damper parameters have been computed from an
identification methodology and the obtained model has
been validated experimentally for constant and varying
voltage cases. It has been observed that the model
describes very well the behaviour of the MR damper.
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