
This is a repository copy of The coupling between inner and outer scales in a zero 
pressure boundary layer evaluated using a Hölder exponent framework.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/95858/

Version: Accepted Version

Article:

Keylock, C.J., Ganapathasubramani, B., Monty, J. et al. (2 more authors) (2016) The 
coupling between inner and outer scales in a zero pressure boundary layer evaluated 
using a Hölder exponent framework. Fluid Dynamics Research, 48 (2). 021405. ISSN 
0169-5983 

https://doi.org/10.1088/0169-5983/48/2/021405

This is an author-created, un-copyedited version of an article published in Fluid Dynamics 
Research. IOP Publishing Ltd is not responsible for any errors or omissions in this version 
of the manuscript or any version derived from it. The Version of Record is available online 
at http://dx.doi.org/10.1088/0169-5983/48/2/021405

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


The coupling between inner and outer scales in a zero pressure1

boundary layer evaluated using a Hölder exponent framework2
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Abstract12

This work considers the connectivity between large and small scales in boundary-layer turbu-13

lence by formalising the modulation effect of the small scales by the large in terms of the pointwise14

Hölder condition for the small scales. We re-investigate a previously published dataset from this15

perspective and are able to characterise the coupling effectively using the (cross-)correlative rela-16

tions between the large scale velocity and the small scale Hölder exponents. The nature of this17

coupling varies as a function of dimensionless distance from the wall based on inner-scaling, y+,18

as well as on the boundary-layer height, δ. In terms of the fundamental change in the sign of the19

coupling between large and small scales, the critical height appears to be y+ ∼ 1000. Below this20

height, small scale structures are associated with (and occur earlier than) maxima in the large scale21

velocity. Above this height, while the lag is similar in magnitude, the small scale structures are22

associated with minima in the large scale velocity. To consider these results further, we introduce23

a modified quadrant analysis and show that it is the coupling to the large scale low velocity state24

that is critical for the dynamics.25

a Corresponding author: c.keylock@sheffield.ac.uk
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I. INTRODUCTION26

An improved understanding of high Reynolds number, boundary-layer turbulence is es-27

sential for both control purposes and developing enhanced numerical modelling methods28

for near-wall regions. Recent work in this field has focused on three inter-related areas: the29

formation of near-wall coherent flow structures [5, 30]; the nature of very large scale motions30

(VLSMs) in the outer part of the boundary-layer [1, 17, 51]; and, the coupling between these31

[11, 18]. See Jiménez [21] for a recent review of relevant work in these areas. The idea that32

the effect of large scale structures extends to the wall goes back at least as far as Townsend33

[52]. More recent work has shown that an important means by which coupling takes place is34

in the amplitude modulation of the small scales by the large [12, 18], and this has resulted35

in models for near-wall behavior based on knowledge of the VLSMs in the outer region [37].36

In this study, rather than examining two-point statistics (near and far from the wall),37

we focus on the relation between large and small scales at a given height from the wall, y,38

and how this relation varies with y. The primary novelty in this work is an analysis of the39

amplitude modulation in terms of Hölder exponents. This means that we can move away40

from analyses predicated on discretised variables for the modulation such as the windowed41

variance of the small scale velocity to consider a continuous measure of the small scale42

modulation- its Hölder condition. Hence, with this change, it becomes straightforward to43

use standard techniques to examine the relation between the large-scale velocity and the44

small-scale modulation. We then study this as a function of distance from the wall, leading45

to a characterization of the phase relations between the large scale velocity and the Hölder46

exponents for the small scale intermittency. This permits an analysis of boundary-layer47

structure in terms of quadrants defined by the fluctuating velocity at large scales, and the48

Hölder exponents at small scales.49

Hence, the plan for this paper is to review definitional information on Hölder exponents50

in section 2, describe the experimental facility and the data employed in this study, which51

have been published previously [12, 19], and to then give details of the signal pre-processing52

methods and the metrics used to characterize the relations between small and large scales53

in section 3. The results are then presented in section 4 and it is shown that the Hölder54

exponent approach is a natural way to elucidate the characteristics of boundary-layer velocity55

time series as a function of vertical coordinate, y.56
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II. POINTWISE HÖLDER EXPONENTS AND THEIR ESTIMATION57

Landau’s objection to Kolmogorov’s original scaling ‘law’ for the moments of the velocity58

increments, or structure functions, in turbulence [9, 31] resulted in modified scalings that59

permitted intermittent behavior within the formulation [32, 49]. This intermittency was60

subsequently interpreted as a consequence of the presence of vortical structures in the flow61

[10]. A formal means of characterizing intermittency in turbulence was then introduced in62

terms of the multifractality of the flow field, or the sets of Hölder exponents present in the63

measured field [38, 39]. More correctly, we are interested in pointwise Hölder exponents,64

αu of velocity time series data, rather than examining oscillating singularities [43], which65

requires the use of local Hölder exponents [2, 15, 33].66

The general definition of αu proceeds from consideration of the differentiability of a67

function relative to polynomial approximations about a location of interest, t0. However,68

for turbulence in the inertial regime, where the mean, ⟨αu⟩ =
1
3
[31], then 0 < αu(t) < 1 and69

one may consider, more simply, that70

αu(t) = sup

{

β, lim sup
∆t→0

|u(t0 +∆t)− u(t0)|

|∆t|β
= 0

}

(1)71

where ∆t is some interval about t0. A rapid method for evaluating αu is based on a log-log72

regression of the signal oscillations, Ot0±∆t
against ∆t [33]:73

Ot0±∆t
= max (ut∈(t0−∆t,...,t0+∆t))−min (ut∈(t0−∆t,...,t0+∆t)) (2)74

and in the evaluation of the αu, ∆t is distributed logarithmically (over limits from close75

to the Kolmogorov scale to inertial scales in this study to separate small and large scale76

behaviors). As explained by Peltier and Levy Véhel [45], our approach can be linked to the77

study of windowed variance (σ2
u) approaches because78

ut+∆t
− ut

∆αu

t

→
∆t→0

N(0, σ2
u) (3)79

where N(. . .) is the normal distribution. The left-hand side of eq. (3) then shows why80

eq. (2) is an appropriate means to estimate the Hölder exponent: the log-log regression81

probes the ∆t → 0 limit that gives αu. This approach has been shown to be at least as82

precise as alternative, wavelet-based methods [26], and has been used to infer the existence of83

“active periods” of shear stress exertion and sediment mobility from single-point time series84
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in environmental/geophysical fluid mechanics studies [24, 25]. Because we are interested85

in deriving pointwise Hölder exponents, αu(t) for 400 time series, each consisting of N =86

1.8 × 106 values, a rapid approach to Hölder exponent evaluation is of significant benefit,87

meaning that eq. (2) is adopted in this study.88

A. Pointwise Hölder Exponents, Multifractality and Structure Functions89

There has been a long history in turbulence of studying the moments of velocity incre-90

ments, u∆x = u(x+∆x)−u(x), [31, 55]. Given a power-law scaling between the nth moment91

un
∆x and ∆x with exponent ξn, a monofractal signal will exhibit a linear scaling between the92

moment order, n, and ξn [31], while a multifractal turbulence signal will exhibit a convex93

structure function relation [9]. Multifractality may also be considered directly from an anal-94

ysis of αu(x). For each possible αu(t), we define the singularity spectrum, D(αu) as the set95

of values for αu for which the set Sαu
is not empty. The Frisch-Parisi conjecture states that96

D(αu) = min
n

(αun− ξn + 1) (4)97

Following Jaffard [20], in a window, |∆x| about a singularity of order αu, one finds that98

|u(x+∆x)− ux|
n ≈ |∆x|

αun (5)99

Hence, for the second moment, n = 2, and assuming αu = ⟨αu⟩ everywhere, the Kolmogorov100

2/3 law is recovered exactly when ⟨αu⟩ = 1/3 as stated above.101

With a dimension to these singularities of D(αu) it follows that there are approximately102

|∆x|
−D(αu) boxes with a volume |∆x|

m where m is the dimension of the space over which103

the function is defined. Hence, the contribution of this singularity to the integral used104

to evaluate the structure function ⟨|u∆x|
n⟩ is approximately |∆x|

αun+m−D(αu). The largest105

contributor to the integral will be given by the smallest exponent. Thus,106

⟨|u∆x|
n⟩ ∝ |∆x|

ξn (6)107

ξn = min
n

(αun−D(αu) +m) (7)108

That is, the structure function scaling exponent, ξn and the pointwise Hölder exponents,109

αu, are related via the Legendre transform. More typically, we know ξn and are trying to110

estimate D(αu). Thus, we need to take the inverse Legendre transform, which for a m = 1111
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dimensional signal yields eq. (4). While the velocity increments are defined over ∆x, such112

quantities are not readily accessible using traditional instrumentation such as hot wires.113

Hence, spatial derivatives are usually obtained from time series using Taylor’s hypothesis.114

While modified variants of this hypothesis have been formulated for flows where the action115

of large scale structures and, hence, local accelerations may be significant [22, 48], in this116

study we prefer to avoid any ambiguity that may result from the choice of transformation117

and work with time series (hence, ut and αu(t)).118

III. METHODS119

A. Experimental Details120

The data for this study came from an experiment at the high Reynolds number boundary121

layer wind tunnel at the University of Melbourne, Australia. The working section is 27 m122

long, with a 2 × 1 m cross-section. Additional details on this facility may be found in123

Nickels et al. [41] and Nickels et al. [42]. A summary of the experimental conditions is given124

in Table I and the basic unconditional statistics (e.g. mean and r.m.s. velocity profiles)125

are shown in Hutchins et al. [19]. The shear velocity is denoted by Uτ and use of the (+)126

superscript indicates a viscous, wall-unit scaling such that t+ = tU2
τ /ν and y+ = yUt/ν. The127

two Reynolds numbers quoted are the Kárman number, Reτ = δUτ/ν and the momentum128

thickness number, Reθ = θU∞/ν. To give a sense of the behaviour of the Taylor Reynolds129

numbers, values at y+ ∼ {30, 200, 400}, i.e. top of the buffer layer, top of the inner layer130

and halfway into the outer layer, were Reλ ∼ 200, 280 and 380, respectively.131

Data were acquired at 60 kHz, twenty one meters into the working section. For the inflow132

condition used here (U∞ = 20.33 ms−1) the variation in the pressure coefficient along the133

working section was ±0.007. Data were obtained from a hot-wire probe with an etched134

sensor length of 0.5 mm and wire diameter of 2.5 µm to give a length to diameter ratio135

of 200 [35]. The hot wire operated in constant temperature mode and was mounted 220136

mm upstream of a traversable mount with an aerofoil profile to minimize flow disturbance137

[12]. The vertical traverse was precise to 0.1 µm and 40 logarithmically distributed vertical138

traverse positions were adopted in the range 0.24 < y < 450 mm, with a boundary-layer139

thickness of 0.326 m (y+ = 14500). The sampling period at each position was 30 s and ten140
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TABLE I. The experimental conditions for this study.

U∞ Uτ δ Reτ Reθ t+ min. y, (y+) max. y, (y/δ)

ms−1 ms−1 m (-) (-) (-) mm, (-) mm, (-)

20.33 0.665 0.326 14200 36980 0.47 0.2 (10.67) 450 (1.38)

replicates were obtained at each sampling position.141

B. Signal preprocessing142

To study the interaction between small and large scales in these data Ganapathisubramani143

et al. [12] made use of a spectral filter so that the scale separation was precise in frequency.144

Previous studies using a box filter [6, 14] result in a separation that is precise in time/space145

rather than frequency. To avoid these two extreme cases, here we filter with a Daubechies146

least asymmetric wavelet filter with L = 8 non-vanishing moments [8], implemented within147

a maximal overlap discrete wavelet framework (MODWT) [23, 46]. We reconstruct the high148

frequency variability from wavelet scales, j = 1, . . . , 6, and the large scales from 8 ≤ j ≤ J ,149

j ∈ Ú. As the equivalent filter width at scale j is given by Lj = (2j − 1)× (L− 1)+1, j = 6,150

7, and 8 are equivalent to t+ = 208, 418 and 839, respectively, where t+ = tU2
τ /ν, ν is the151

kinematic viscosity, and Uτ is obtained from a Clauser fit with κ = 0.41 and intercept A = 5.0152

[7]. In terms of outer scaling, tU∞/δ = 0.46, 0.93, and 1.86 for j = 6, 7, and 8, respectively,153

where U∞ is the free stream velocity and δ is the boundary layer thickness. Based on the154

vertical structure of the energy spectra for u shown in Fig. 1 of Ganapathisubramani et al.155

[12], tU∞/δ = 1.86 is close to an optimal separation of large and small scales for these data,156

while the j ≤ 6 criterion for the small scales ensures a clear scale separation. Reconstruction157

from the wavelet coefficients by setting scales j ≥ 8 to zero for the small scales, and j ≤ 6 to158

zero for the large scales, and performing the inverse MODWT leads to the small and large159

scale velocity signals, uδ<(t), and uδ>(t), respectively. The pointwise Hölder exponents of160

the former are then denoted by αδ<(t).161

An example short segment of uδ>(t) (black line), uδ<(t) (gray line in the upper panel)162

and αδ<(u) (gray line in the lower panel) is given in Fig. 1. Each is expressed in terms163

of a z-score, e.g. z(uδ>) = (uδ> − ⟨uδ>⟩)/σ(uδ>), where the braces indicate a temporal164

mean value and σ(. . .) is the standard deviation. It is clear that the larger scale behavior is165
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FIG. 1. Time series of uδ>(t
+) (black), and uδ<(t

+) (gray) in panel (a), and uδ>(t
+) (black), and

α̃δ<(t
+) (gray) in panel (b) for data from y+ = 10.64. Values are expressed as normalized z-scores

with data for the fine scales displaced by -5 for clarity. The origin for the timescale is arbitrary

and the vertical dotted line at t+ ∼ −2000 highlights a feature identified in the text.

modulating the amplitude of uδ<(t) in the top panel as highlighted by the vertical dotted line166

at t+ ∼ −2000 where the low values for uδ> result in a reduced local variance for uδ<. This167

modulation is clearly captured by the dramatic increase in values for αδ<(t) in the lower168

panel at this point in time. The increase in uδ> towards t+ = 0 results in an increasing169

amplitude of the uδ< signal and a concomitant decrease in αδ<.170

C. Analysis of filtered and unfiltered αδ<(t) values171

Given αδ<(t), one can either consider its relation directly to uδ>(t), or acknowledge that172

the impact of the difference in intrinsic timescales will introduce a decorrelation bias that will173

have a deleterious impact on the results. This then implies that αδ<(t) is low-pass filtered to174

the same cut-off frequency as uδ>(t) before analysis. In the rest of this paper, we denote this175

filtered α series by aδ<(t). Such a filtering removes the decorrelation bias, but also removes176

the noise associated with attempting to evaluate pointwise Hölder exponents for a discretely177
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sampled dataset. Our approach is to primarily work with aδ<(t), but to demonstrate at the178

start of the paper that the use of αδ<(t) gives qualitatively similar results, although with a179

reduced magnitude for the associated metric owing to both the decorrelation from timescale180

differences, and greater noise in the unfiltered data.181

D. Metrics for large and small scale coupling182

Given αδ< or aδ< contains the information on the amplitude modulation, a simple metric183

for the coupling between large and small scales is the linear correlation between uδ> and184

αδ<, or aδ<, termed, for example, R(uδ>, αδ<). The linear correlation is the covariance185

of the two variables normalized by the product of their standard deviations. To detect186

a time-lagged coupling, we apply the Hilbert transform to uδ> and the Hölder series to187

evaluate the instantaneous phase of each signal and, thus, the phase difference. We define188

the analytical signal of a time varying, mean-subtracted, generic flow variable, w
′

(t), as189

w
′

(t) + iŵ′(t) = Aeiφw , where ŵ′(t) is the Hilbert transform of w
′

:190

ŵ′ =
1

π
p.v.

∫ +∞

−∞

w
′

(t̆)

t− t̆
dt̆, (8)191

p.v. is the Cauchy principal value and t̆ is the dummy integration variable. The phase is192

given by ϕw(t) ≡ ϕw
′ (t) = tan−1 ŵ

′

w′ , where we drop the prime for a fluctuating quantity for193

notational simplicity. It then follows that R(ϕu>, ϕα<) is the linear correlation between the194

phases for u
′

δ> and α
′

δ<. The phase difference is then given by ∆ϕu,α(t) = ϕu>(t) − ϕα<(t).195

Because the phase is defined on the unit circle, its mean value cannot be found using standard196

arithmetic averaging. Therefore, the mean phase coherence is found by averaging the angular197

distribution of phases on the unit circle in the complex plane [34]:198

γ(α) =

∣

∣

∣

∣

∣

1

N

N
∑

∆t=1

ei∆φu,α(t)

∣

∣

∣

∣

∣

. (9)199

where N is the number of samples in the time series, and ∆t is the discrete time index for200

each sample. The distribution of γ is not uniform and to check that the value obtained201

is statistically meaningful we adopt a simple surrogate data approach. Such a process202

is implemented by phase-shuffling one of the time series before the phase differences are203

calculated. The mean value of γ for each of the surrogate series, γS, is denoted by ⟨γS⟩, and204

is used to normalize the value of γ from the data, where we obtain ⟨γS⟩ over ten surrogate205
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series:206

γ∗(α) =

{

0 if γ < ⟨γS⟩

γ−⟨γS⟩
1−⟨γS⟩

if γ ≥ ⟨γS⟩
(10)207

An alternative way to explore properties of ∆ϕu,α(t) is to calculate its relative entropy,208

Er. We divide the interval from −2π to +2π into b = . . . , 200 equal interval bins and obtain209

the empirical probabilities from p∆φ(b) = n(b)/N , where n(b) is the number of values for210

∆ϕu,α in a given interval. The relative entropy is then given by211

Er(∆ϕu,α) =

∑b
i=1 p∆φ log p∆φ

log 1
b

(11)212

Hence, Er(∆ϕu,α) > 1 indicates greater order than for an equivalent uniform distribution213

and, thus, a tendency for preferential values for the phase difference between the large scale214

velocity and small scale Hölder exponents to arise. Thus, overall, we have four metrics for215

both αδ< and aδ<, e.g.: R(uδ>, αδ<), R(ϕu>, ϕα<), γ
∗(α), and, Er(∆ϕu,α).216

E. Velocity-Intermittency Quadrant Analysis217

We also make use of a velocity-intermittency quadrant analysis to gain a greater insight218

into this coupled behavior, although it is applied in a different fashion to the original formu-219

lation in Keylock et al. [27]. In that work, the intention was to examine any dependence in220

the intermittency time series on the velocity, where it is classically assumed, e.g. [32], that221

no such dependence exists (although, see Hosokawa [16] and Stresing and Peinke [50]). A222

simple method was developed to examine this dependence based on renormalized quantities223

and the well-known quadrant method in boundary-layer fluid mechanics [3, 36]. Hence, the224

joint distribution function for z(u) and z(αu) was examined as a function of a threshold ‘hole225

size’, with a significant event for a given H one where |z(u)z(αu)| ≥ H. By increasing H226

from 0 to a maximum given by associated sampling theory for the Gaussian distribution for227

a given N and counting the proportion of events in each quadrant, pQ(H), different type of228

flow (jets, wakes, boundary layers near and far from the wall) could be discriminated read-229

ily. Further work highlighted that the flow over bed roughness elements (mobile and fixed)230

generated a velocity-intermittency structure different to that for any of the more idealized231

flow types [28, 29].232

In this study, we modify this technique to determine the relation between uδ>(t) and233

aδ<(t), i.e. the coupled behavior of large scale velocity and filtered small scale intermittency.234
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TABLE II. The definition of velocity-intermittency quadrants in terms of the signs of u
′

δ> and a
′

δ<.

Quadrant number (Q) sgn(u
′

δ>) sgn(α
′

δ<)

1 + +

2 - +

3 - -

4 + -

TABLE III. The proportion of the data exceeding the thresholds shown in Fig. 2 for each quadrant.

Results are re-normalized such that the total proportion always sums to 1.0.

Quadrant number (Q) H = 0 H = 1 H = 2 H = 3

1 0.157 0.052 0.012 0.002

2 0.314 0.456 0.538 0.575

3 0.207 0.073 0.017 0.004

4 0.322 0.419 0.433 0.420

The four quadrants are defined according to Table II, with an example diagram shown in235

Fig. 2. This makes use of the data in Fig. 1 and, consequently, is based on αδ<(t) rather236

than aδ<(t). It is clear that in this case, as H increases, Q = 2 and Q = 4 are increasingly237

dominant, with this being particularly the case for the former quadrant. This is made238

explicit in Table III, which gives the proportion of data exceeding the H thresholds shown239

in Fig. 2. Hence, for these data near the wall (y+ = 10.67) there is a negative correlation240

between uδ>(t) and αδ<(t), meaning that for H >
∼ 2 there are essentially two states that241

arise 97% of the time: a slower than average large scale velocity coupled to a smoother than242

average small scale velocity signal (Q = 2), and a faster than average large scale velocity243

coupled to a rougher than average small scale velocity signal (Q = 4).244

It was found previously that because of the approximate linear variation of pQ with H for245

a given quadrant, dpQ/dH could be used as a summary measure for the behavior of the flow246

in each quadrant [29]. This approximation is used here to show how velocity-intermittency247

response varies as a function of y+.248
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FIG. 2. An example velocity-intermittency quadrant diagram for uδ> and αδ< using the data from

Fig. 1. Contours for H ∈ {1, 2, 3} are shown as gray lines.

IV. RESULTS249

A. Summary Measures of Large and Small Scale Coupling250

Figure 3 shows the average over the ten replicates (indicated by angle braces) of the251

coupling metrics defined in section 3 as a function of y+, using the unfiltered Hölder expo-252

nents. The two synchronization methods are shown in panels (b) and (d), and both show a253

strongly expressed peak in the coupling at y+ ∼ 104. However, while ⟨Er⟩α is approximately254

constant for 10 < y+ < 3000, ⟨γ∗⟩α halves in value over the same range. The results for255

the two correlation metrics are entirely consistent, with a move from negative to positive256

correlations as y+ increases until a maximum is reached just before y/δ = 1. In both cases,257

the zero-crossing for the correlation coefficient takes place close to y+ = 300, values increase258

to y+ ∼ 104 and then, outside the boundary layer, the correlation drops to zero. Thus, near259

the wall, high values for uδ> result in high local variation for uδ< (low αδ< and negative260

correlation), with the opposite the case for y+ >
∼ 300.261

Replacing αδ<(t) by aδ<(t) gives the results shown in Fig. 4, which are generally consistent262

with those in Fig. 3. The magnitude of the negative correlations at y+ ∼ 10 is three times263

greater than for αδ<(t), while the peak positive correlations at y+ = 10000 are approximately264

twice as large, indicating the degree of decorrelation that results from the analysis of time265

series with different intrinsic time scales. The zero-crossing of these correlation coefficients is266
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FIG. 3. Mean over ten replicates of four different metrics of the coupling between uδ>(t) and αδ<(t)

as a function of y+. The zero-crossing of the two correlation metrics is shown with dotted lines,

while the vertical dashed line is at y/δ = 1.

displaced to y+ ∼ 500 and a similar, rapid decay to zero correlation for y/δ > 1 is observed.267

Similarly to Fig. 3b, ⟨γ∗⟩a halves in value over 10 < y+ < 3000, attaining a minimum at268

the same position as before, before rapidly increasing to a peak close to y/δ = 1. The major269

difference in the results is the inversion of the peak in ⟨Er⟩a at a similar y+. It should be270

noted that the value for ⟨Er⟩a in this trough is still greater than that for the peak in Fig. 3d.271

However, this clear contrast to the result in Fig. 4b indicates a different development in the272

shape of the PDF for ∆ϕu,a at y+ ∼ 10000 relative to the phase synchronization between273

uδ>(t) and αδ<(t), which is explored further in section 4.3. Thus, for 10 < y+ < 3000,274

⟨Er⟩a ≡ ⟨Er(∆ϕu,a)⟩ is approximately constant but the phase synchronization decreases.275

This can be contrasted to Fig. 3b,d where the decrease in ⟨γ∗⟩α with y+ in this range is276

accompanied by an increase in ⟨Er⟩α, with both attaining a local maximum at y+ ∼ 10000.277

B. Extending the Correlative Measures to Cross-Correlations278

The assumption of zero lag in the correlations in Fig. 3a and 4a is a strong one and279

there is some visual evidence for a lagged response in Fig. 1. To investigate this further,280

the R(uδ>, αδ<) values were generalized to a cross-correlation function, R(uδ>, αδ<,∆
+
t ) over281

all 2N − 1 lags, ∆t, expressed in wall units as ∆+
t = ∆tU

2
τ /ν. Figure 5 shows the mean282

over the ten replicates of the signed maximum absolute cross correlation and the lag to this283
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FIG. 4. Mean over ten replicates of four different metrics of the coupling between uδ>(t) and aδ<(t)

as a function of y+. The zero-crossing of the two correlation metrics is shown with dotted lines,

while the vertical dashed line is at y/δ = 1.

correlation. By way of example, for the unfiltered Hölder series, this is given by284

sgn(Rmax)× |R|max = sgn(max |R(uδ>, αδ<,∆t+)|)285

× max |R(uδ>, αδ<,∆
+
t )| (12)286

as well as the associated lag:287

∆t+max = argmax
t

R(uδ>, αδ<,∆
+
t ) (13)288

where a positive lag indicates that a change in αδ< leads uδ>. Confidence limits at the 95%289

level are placed on these results using the bootstrap procedure outlined in the appendix.290

Insignificant values for ∆t+max based on the results in panel (a) are highlighted by solid291

symbols in Fig. 5(b).292

As in Fig. 3 and 4, the correlations reported in Fig. 5a change from negative to positive293

with increasing y+, although the point of transition is now higher into the flow than was294

the case in Fig. 3. It also occurs at a similar value of y+ for both the filtered and unfiltered295

Hölder series. That this transition is very similar to that seen in Fig. 4 suggests that296

filtering the Hölder series yields more physically interpretable results as there is a greatly297

reduced dependence on ∆t+. This is borne out directly in Fig. 5b, which shows ∆t+max ∼ 0298

for all y+ where the results are significant except for the data adjoining the region of no299

significance, where the magnitude of the peak correlations is much reduced. The results300
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lag to this maximum, ∆t+max (b). Results shown with a diamond are for R(uδ>, αδ<,∆t+), while

those with a circle are for R(uδ>, aδ<,∆t+). The vertical, dashed line shows y/δ = 1 and the

approximately horizontal lines in (a) are 95% confidence intervals based on a bootstrapping of the

R(uδ>, αδ<) results. Results that are insignificant in (b) based on those in (a) are highlighted by

solid symbols.

in Fig. 5a highlight a break in slope of the variation of the cross-correlation at y+ ∼ 100,301

followed by a rapid decrease in correlation magnitude with height until y+ ∼ 1000, which302

was also evident in Fig. 4a,b,c. A major difference between the results for R(uδ>, aδ<,∆t+)303

and R(uδ>, αδ<,∆t+) in Fig. 5 is that for the former, significant positive correlations are304

associated with negative lags and vice versa (although the magnitudes of the lags are small),305

while lags remain positive for R(uδ>, αδ<,∆t+).306

What is of further note is that while the positive correlations in Fig. 3a, 4a, and 5a attain a307

magnitude at high y+ that is not dissimilar to those near the wall, the phase synchronizations308

in Fig. 3c and 4c exhibits a decrease with height (rather than a global minimum close to309

the height of zero correlation). Hence, while linear measures of association imply that the310

boundary-layer is as structured close to y/δ = 1 as it is at the wall, γ∗
a indicates that near-311

wall structure is more strongly expressed. We examine this qualitative difference further by312

explicitly referring to the phase differences.313
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between uδ> and aδ<.

C. Distribution functions of the phase difference314

The histograms for ∆ϕu,a are shown in Fig. 6 for five choices of y+ that exhibit differences315

in their values for ⟨γ∗⟩a according to the results in Fig. 4. The results at y+ ∼ 3000316

correspond to the minimum for ⟨γ∗⟩a and Fig. 6d shows that the distribution for ∆ϕu,a is317

unimodal, centered close to zero phase difference and that the central peak does not contain318

a particularly high proportion of the distribution’s mass. Hence, this is the result closest to319

that obtained from random surrogate data, explaining the low value for ⟨γ∗⟩a. In contrast,320

at y+ ∼ 10000 the greater kurtosis of the central mode is less attainable by random processes321

and both ⟨γ∗⟩a and R(uδ>, aδ<,∆t+) are greater. Nearer the wall, the bimodal nature of the322

histogram for ∆ϕu,a explains the decline in ⟨γ∗⟩a with y+ despite similar magnitude values323

for sgnRmax × |R|max existing at y+ ∼ 10000 and y+ ∼ 100. For y+ > 100 the right mode324

moves towards ∆ϕu,a = 0 and the left mode diminishes. Higher values for ⟨γ∗⟩a for y
+ < 100325

are a consequence of a more defined mode in the left tail that could not be mimicked by326

random surrogates. Hence, the change from negative to positive correlations does not arise327

independently of the shape of the PDF for ∆ϕu,a meaning that the physical explanation of328

the amplitude modulation of small scales by the large must also account for a transition329

from a bimodal to an unimodal response.330
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δ<, (c) and (d). The y-axis is expressed in terms of the full PDF for ∆φu,a.

The asymmetry in the near-wall peaks can be analysed further by conditioning p(∆ϕu,a)331

on the sign of a
′

δ< or u
′

δ>. For example, at y+ = 12.6, 55% of the distribution’s mass is in332

the upper part (∆ϕu,a > 0), but there is a clear difference between p(∆ϕu,a|sgn(a
′

δ<) > 0)333

and p(∆ϕu,a|sgn(a
′

δ<) ≤ 0), with 59.5% of the mass of the former in the positive phase334

difference region (Fig. 7d), compared to 51.2% for the latter (Fig. 7c). Interestingly, given335

the negative correlations near the wall seen in Fig. 4 and 5, it is p(∆ϕu,a|sgn(u
′

δ>) > 0)336

that also preferentially contains the positive phase differences (58.9% in Fig. 7b compared337

to 51.1% for p(∆ϕu,a|sgn(u
′

δ>) ≤ 0) in Fig. 7a). Hence, there is a joint control on the phase338

differences from the two variables that does not reflect their negative correlation at this339

height. This demonstrates the relevance of velocity-intermittency quadrants for analysing340

this phenomenon and the suitably conditioned variables over the signs of both quantities,341

p[∆ϕu,a|sgn(u
′

δ>), sgn(a
′

δ<)], are shown in Fig. 8. The normalization of the ordinate is ac-342

cording to the proportion of the unconditioned p(∆ϕu,a) so that it is clear that the quadrants343

occupied the most are Quadrant 2 (u
′

δ> < 0, a
′

δ< > 0) and 4 (u
′

δ> > 0, a
′

δ< < 0), which is344

consistent with Fig. 2. This figure clarifies the potential confusion that results from com-345

paring the correlation and the conditioning on single variables: quadrants 2 and 4 have a346

similar bimodal response and although they are frequented less often, it is quadrants 1 and 3347

that explain the differences seen in Fig. 7. During periods of relatively fast, smooth flow at348

large scales (quadrant 1, Fig. 8b) a positive phase difference is twice as likely as a negative,349
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with all differences existing over a relatively narrow range of phases (−π < p(∆ϕu,a) < π).350

Quadrant 3 exhibits an opposite response with both larger magnitude phase differences and351

a peak negative phase difference twice as great as the peak positive response. It was pro-352

posed by Marusic et al. [37] that the following model formulation could be used to predict353

near-wall flow based on the large scale fluctuations354

u+
P (y) = u+

BL(y)(1 + k1u
+
δ>(y)) + k2u

+
δ>(y), (14)355

where all quantities are written in terms of wall units (+ superscript), the left hand term356

is the predicted velocity, uBL is the “universal” signal at that height derived from the357

law-of-the-wall or similar, and the k are coefficients representing the modulation effect, k1,358

and the superposition of the large scale influences, k2. The results presented here suggest359

that a more advanced variant of this model would consider the joint velocity-intermittency360

behavior of the larger scales and constrain the modulation coefficient vector (for the various361

sgn(uδ>), sgn(aδ>) combinations) with respect to each case.362

D. Velocity-intermittency quadrants363

Given the relevance of the velocity-intermittency quadrants for examining the phase dif-364

ference responses, we look more carefully at the quadrant occupany in this section by ex-365

amining the gradient of the proportional occupany, pQ, versus hole size, H, introduced by366
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shows the behavior for quadrant 2, while the black line with triangles is quadrant 4. The gray line

is quadrant 3 and the gray line with triangles is quadrant 1. The inset shows more clearly where

the slopes of ⟨dpQ/dH⟩ change sign. The horizontal dotted line is at ⟨dpQ/dH⟩ = 0, while the

vertical dashed and dash-dotted lines are at y/δ = 1 and y+ = 190, respectively.

Keylock et al. [29]. The means over ten replicates for dpQ/dH as a function of y+ are shown367

in Fig. 9. Quadrants Q1 and Q3 exhibit almost identical behavior, with a linear increase368

(on a semi-log axis) in the strength of the negative slope for y+ less than 190 (indicated by369

a vertical, dash-dotted line), i.e. in the inner wall region. This is also the value at which370

the sign for Q4 changes to positive. This quadrant has a stronger negative slope than Q1371

and Q3 until y+ ∼ 80. For y+ > 190 the Q2 contribution decays towards a zero-crossing at372

y+ ∼ 450 and then is approximately constant at ⟨dpQ/dH⟩ ∼ −0.04, until y+ ∼ 6000. In373

general, for 250 < y+ < 5000 there are no strong variations in the quadrant occupancy with374

H, indicating a relatively stable velocity-intermittency relation at these heights.375

Figure 10 shows the results at four elevations in greater detail to the dpQ/dH summary376

measure in Fig. 9. The general patterns are in agreement with the above interpretation,377

with the situation at y+ = 174 similar to that at y+ = 21, but with less extreme slopes.378

In the former, at large H, the limiting state is ∼ 70% occupancy in Q2 and ∼ 30% in Q4,379

while the latter is close to 100% in Q2. In the mid-range of elevations, it is Q1 and Q3 that380

dominate in this limit with about 35% occupancy, and Q2 and Q4 contributing 15% each.381
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However, at y+ = 9034 s one approaches 100% occupancy in Q3 at large H. Hence, the382

manner in which the extreme flow states modulate the small scales changes with elevation:383

• Near the wall, the key control is u
′

δ> < 0, which exerts a strong control on the a
′

δ< > 0,384

i.e. smooth regions of the flow where strain rates or vorticity are low;385

• At y+ = 174 this control is present, as well as the consistent, but opposite, control of386

u
′

δ> > 0 on a
′

δ< < 0;387

• Further from the wall, where Reynolds stresses are lower and structures developed388

autogenically at the wall rarely penetrate, the control is inverted from that at y+ = 174389

with u
′

δ> > 0 affecting a
′

δ< > 0 and the lower velocity regions, u
′

δ> < 0, producing the390

regions of large fluctuations, a
′

δ< < 0; and,391

• Nearer the boundary-layer height, the velocity control is again dominated by u
′

δ> < 0,392

but it controls a
′

δ< < 0 this time.393

This result may be summarized as a negative velocity-intermittency correlation existing for394

y+ < 190, and a positive one at higher elevations, with the refinement that very close to, or395

very far from the wall, it is one quadrant that dominates this relation.396

V. DISCUSSION397

That the Q2 dominance near the wall decays markedly from y+ > 190 is coincident398

with the observation that attached hairpin vortices rarely penetrate beyond this height [13].399
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This implies that positive Q2 is related to these near-wall vortical processes, i.e. regions400

of reduced variance below the inertial scale are coupled to slower than average large-scale401

velocities, and this result dominates in the limit of large H. Single quadrant dominance in402

the results both near the wall (Q2) and near the top of the boundary-layer (Q3) implies403

that a correlation-based analysis is not sufficient: there is a sign change in the correlation404

between u
′

δ> and a
′

δ< > 0 with height, but it is the u
′

δ> < 0 states that drive this relation.405

It is clear from the phase analysis that the nature of the coupling near and far from the406

wall is very different, with a marked bimodality to the phase relations near the wall and407

a unimodal, zero phase lag response as one approaches z/δ = 1. Figure 8 shows how the408

bimodality is linked to the quadrants with the positive lags associated with Q1, and the409

negative with Q3. Hence, although Q2 dominates near-wall response, other quadrants play410

an important part in shaping the detail of the coupling between large-scale velocity and411

small scale intermittency.412

Assuming that, following Frisch et al. [10] regions with αδ< < 0 indicate the passage413

of flow structure with a high vorticity, then near the bed, regions of limited vorticity at414

the small scales are coupled to a subsequent large scale velocity minimum that induces a415

large-scale strain. Hence, regions with weak vorticity are not passive in turbulence [53]416

and there is a suggestion here that the change from Q2 to Q3 dominance reflects a shift417

from small-scale energy dissipation driven by strain production near the wall to enstrophy418

production higher into the flow. This postulated behavior may be interpreted with respect419

to the geometric properties of the velocity gradient tensor, [44, 47, 54]:420

Aij =

(

∂u1/∂x1 ∂u1/∂x2 ∂u1/∂x3

∂u2/∂x1 ∂u2/∂x2 ∂u2/∂x3

∂u3/∂x1 ∂u3/∂x2 ∂u3/∂x3

)

(15)421

The characteristic equation for the velocity gradient tensor is Aij = e3i+Pe2i+Qei+R = 0,422

where ei are the eigenvalues of A. While incompressibility means that P = 0, Q and R and423

their associated evolution equations are often studied:424

Q =
∑

δijeiej ≡
1

4
(ω2 − 2S2) (16)425

R =
∏

ei ≡ −
1

3
SijSjkSik −

1

4
ωiωjSij (17)426

where ω2 = ωiωi and the strain, Sij, rotation, Ωij and vorticity, ωij are given by427

Sij = Aij + AT
ij (18)428
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Ωij = Aij − AT
ij (19)429

ωi = ϵijkΩjk (20)430

where ϵijk is the Levi-Civita symbol. It was shown by Naso et al. [40] using a DNS of431

a shear flow, the Vieillefosse tail [54] (i.e. the R > 0, Q < 0 flow state with high strain432

production and low vorticity) grew proportionally more than other regions of the Q−R plane433

as dimensionless shear rate increased, i.e. the extreme cases of very high strain production434

and low vorticity became more likely. Given the high shear rates near the wall in a boundary435

layer, this is entirely consistent with our postulated predominance of a R > 0, Q < 0 flow436

state for y+ < 190 that is coupled to velocity minima at large scales. As this region of the437

Q−R plane is associated with small scale energy dissipation [4], we may link the Reynolds438

stress profile in a boundary layer with our Q2 dominance and the R > 0, Q < 0 flow state.439

Hence, the velocity-intermittency quadrant method, although based on pointwise velocity440

time series, permits interpretation of the results that are consistent with numerical results441

where Aij has been resolved.442

VI. CONCLUSION443

Using a time series of pointwise Hölder exponents to characterize small scale turbulence444

provides an alternative means of studying the coupling between large and small scales in445

a zero-pressure turbulent boundary layer. Because this is a continuous measure with close446

theoretical links to structure function analysis and studies of turbulence multifractality, it447

has a logical basis for application in turbulence research. We have then applied correlative448

and phase-based metrics to characterise the relation between the large and small scale flow449

behavior. By modifying a recently developed velocity-intermittency quadrant analysis [27]450

such that the velocity axis is the low-pass filtered velocity and the intermittency is that451

detected at small scales, it has been shown that the crucial changes to the large and small452

scale coupling are driven by the times when the velocity at large scales is less than average.453

The reason that the correlation between large and small scales changes sign at y+ ∼ 300454

is because of a change from an association between low velocities at large scales and less455

intermittent conditions at small scales, to one where the large scale, low velocities are linked456

to more intermittent conditions. Hence, it is the low velocity states both near and far from457

the wall that drive the relation between large and small scales, and the change in sign of the458
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correlation as a consequence. The nature of the phase relations underpinning the correlation459

is also complicated, with bimodality in the phase differences near the wall and unimodality460

closer to the top of the boundary-layer. These results suggest modifications to the equation461

proposed by Marusic et al. [37] for characterizing near wall flow by modifying the boundary-462

layer profile to account for the modulation of the small scales by the large. Conditioning463

of such a model based on the velocity-intermittency quadrants has the potential to lead to464

more accurate results and this dimension of the present study will be explored further in465

future work.466

Assuming that low values for the pointwise Hölder exponents relate to the presence of467

vortical flow structures [10, 24], we have detected a shift from large scale strain being coupled468

to low enstrophy production at small scales near the wall, to large scale strain relating to the469

presence of vortical flow structures (and high enstrophy production) at small scales further470

from the wall. Thus, although this work has been based purely on the analysis of velocity471

time series at a point, the changing nature of the coupling between scales as a function of472

height appears to be consistent with numerical analyses of enstrophy and strain production473

in a boundary-layer. That the joint analysis of large scale velocity and small scale Hölder474

exponents can provide similar insights provides an encouraging basis for further work using475

these tools.476

Appendix A: Bootstrapped confidence intervals for cross-correlation analysis477

An approach to bootstrapping confidence intervals on the maximum absolute cross-478

correlation between uδ> and αδ< is useful because conventional hypothesis testing for cross-479

correlation assumes, as a null hypothesis, no autocorrelation in the underlying time series,480

giving a confidence interval proportional to the square root of the sample size, N and, thus,481

rapidly tending to zero. The approach followed here is to form the bounds from the cross-482

correlation of phase-randomized surrogate data that preserve the autocorrelative structure483

of each series, according to:484

1. Take the Fourier transform of uδ>(t)−⟨uδ>⟩ and αδ<(t)−⟨αδ<⟩ and store the respective485

amplitudes, Au(ω) and Aα(ω);486

2. Choose a significance level, s, such that the exceedance probability for the maxima487
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will be ρ = 1− s/2;488

3. For each of S surrogate series:489

(a) Randomly shuffle uδ> and αδ<, take the Fourier transform of each series and store490

the random phases, ϕ̃u(ω), and ϕ̃α(ω), where the tilde indicates these are random491

quantities;492

(b) Take the inverse Fourier transform of Au exp iϕ̃u and Aα exp iϕ̃α to yield phase-493

randomized data, ũδ>(t), and α̃δ<(t);494

(c) Find the maximum and minimum of the cross-correlation, R(ũδ>, α̃δ<), as a func-495

tion of lag, ∆t and add them to the vectors X and N, containing the maxima496

and minima, respectively.497

4. Fit a Generalized Extreme Value distribution to the S-element vectors X and −N and498

for the given fits, evaluate the distribution functions for P (X) and P (−N) at ρ. The499

bounds are then given by R(uδ>, αδ<)
ρ = P (X|ρ) and R(uδ>, αδ<)

1−ρ = −P (−N|ρ).500

The use of a distribution function removes the explicit dependence on S, although clearly the501

estimation improves as S → ∞. The results of a simulation study for a dataset at y+ = 690502

for S ∈ {25, 50, 75, 100} are shown in Fig. 11, where twenty estimates for R(uδ>, αδ<)
ρ and503

R(uδ>, αδ<)
1−ρ are produced for each choice of S, with ρ = 0.975. Given that in this study,504

ten replicates were obtained at each value for y, a mean confidence limit can be obtained505

and the relatively constant standard error here indicates that S = 25 for each data series is506

sufficient.507
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