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The level of agreement between climate model simulations and observed1

surface temperature change is a topic of scientific and policy concern. While2

the Earth system continues to accumulate energy due to anthropogenic and3

other radiative forcings, estimates of recent surface temperature evolution4

fall at the lower end of climate model projections. Global mean temperatures5

from climate model simulations are typically calculated using surface air tem-6

peratures, while the corresponding observations are based on a blend of air7

and sea surface temperatures. This work quantifies a systematic bias in model-8

observation comparisons arising from differential warming rates between sea9

surface temperatures and surface air temperatures over oceans. A further bias10

arises from the treatment of temperatures in regions where the sea ice bound-11

ary has changed. Applying the methodology of the HadCRUT4 record to cli-12

mate model temperature fields accounts for 38% of the discrepancy in trend13

between models and observations over the period 1975-2014.14

York, Heslington, York, YO10 5DD, United
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1. Introduction

Climate model projections of the global mean temperature response to future greenhouse15

gas emissions provide an important basis for decision making concerning mitigation and16

adaptation to climate change. However model projections are subject to uncertainty17

in the size of the temperature response, which arises primarily from the scale of the18

amplifying effect of the cloud feedback and the temporal evolution of climate forcings19

[Flato et al., 2013; Andrews et al., 2012; Sherwood et al., 2014]. Comparison of model20

projections against the observed rate of warming over recent decades can provide a test21

of the ability of models to simulate the transient evolution of climate. The comparison is22

complicated by the need to accurately simulate changes in atmospheric composition and23

solar radiation, as well as accounting for the unforced variability of the climate system24

[Schmidt et al., 2014]. The fact that the observations fall at the lower end of the envelope of25

model simulations over the last decade has led to suggestions that climate model forecasts26

may overestimate the potential future warming resulting from increasing greenhouse gas27

concentrations [Fyfe et al., 2013].28

Observational records of global mean surface temperature are typically determined from29

air temperature measurements on land, blended with sea surface temperature (SST) ob-30

servations measured in the top few metres of the ocean [Morice et al., 2012; Kennedy31

et al., 2011a]. Temperature records may be based on spatially incomplete data [Morice32

et al., 2012; Vose et al., 2012], or on data that have been infilled to provide an estimate of33

the global mean temperature [Hansen et al., 2010; Rohde et al., 2013; Cowtan and Way ,34

Kingdom.

D R A F T July 20, 2015, 10:05am D R A F T



X - 4 COWTAN ET AL.: ROBUST COMPARISON OF CLIMATE MODELS

2014]. Observations of temperature are typically converted into anomalies (i.e. changes35

with respect to some baseline period) to allow observations from different environments36

to be meaningfully combined.37

A homogenous global temperature record would ideally be based on a property which38

is independent of the surface type (land, ocean or ice), such as air temperatures at a39

uniform height above the surface. However sea surface temperature observations have40

historically been used in preference to marine air temperatures due to inhomogeneities41

in older marine air temperature datasets [Kent et al., 2013]. Infilled temperature records42

typically extrapolate air temperatures over sea ice, because the insulating effect of ice and43

snow isolates the air from the water [Kurtz et al., 2011], an approach which is supported44

by observations [Rigor et al., 2000], atmospheric reanalyses [Simmons and Poli , 2014] and45

satellite data [Comiso and Hall , 2014].46

Global averages of the observational temperature records are typically compared to47

near surface air temperature from an ensemble of climate model simulations (e.g. IPCC48

AR5 WG1 Figure 9.8 [Flato et al., 2013]). When comparing against spatially incomplete49

records the model temperature fields may be masked to reduce coverage to match the50

observations, or make the assumption that the observed regions are representative of the51

unobserved regions. This assumption may not hold for the last two decades of accelerated52

Arctic warming [Simmons and Poli , 2014; Saffioti et al., 2015]. Although in some cases53

the model simulations were masked for coverage, most studies have used the surface54

2Energy and Resources Group, University
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air temperature field from models rather than blended land-ocean temperatures, with55

the notable exception of Marotzke and Forster [2015] and some attribution studies, e.g.56

Knutson et al. [2013].57

A true like-with-like comparison would involve blending the air and sea surface temper-58

ature fields from the models in a manner consistent with the observational records. The59

purpose of this work is to evaluate the impact of comparing air temperatures from models60

with the blended observational data, and to establish guidelines for the determination of61

blended temperature comparisons. These require changes both in the way global mean62

temperature from models is evaluated, and ideally also in the preparation of blended63

observational datasets.64

2. Data and Methods

The impact of using blended temperatures was evaluated for climate model simulations65

from the Coupled Model Intercomparison Project phase 5 (CMIP5) archive [Taylor et al.,66

2012] using a combination of the historical and Representative Concentration Pathway67

8.5 (RCP8.5) emissions scenarios. The calculation of a gridded blended temperature68

record requires the surface air temperature (‘tas’ in CMIP5 nomenclature), sea surface69

temperature (‘tos’), sea ice concentration (‘sic’), and the proportion of ocean in each70

grid cell (‘sftotf’). After eliminating incompatible datasets (Figure S1) there were 8471

useable model runs from 36 models. The Climate Data Operators software package [CDO ,72

2015] was used to convert all fields onto a standard 1x1◦ grid, using distance weighted73

interpolation to avoid the loss of coverage when interpolating fields containing missing74

of California Berkeley, Berkeley CA 94720.
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values (however similar results were obtained using nearest neighbour interpolation or the75

native ocean grids).76

For each model simulation, a global mean temperature series is calculated from the77

unblended surface air temperature field for comparison. A blended temperature field is78

then calculated using the air and sea surface temperature fields, using the land mask and79

sea ice concentration. In the blended temperature field, the air temperature for the whole80

grid cell is used as an estimate of the air temperature over land and sea ice, while the sea81

surface temperature is used for the proportion of the cell occupied by open water. Ideally,82

there would be separate simulated estimates for air temperature over land and ocean in83

fractional grid boxes, but these are not standard diagnostics in the CMIP5 models. The84

blended temperature field, Tblend, therefore takes the following form:85

wair = (1 − focean) + foceanfice

Tblend = wairTair + (1 − wair)Tocean (1)

where Tair, Tocean, fice and focean correspond to the CMIP5 ‘tas’, ‘tos’, ‘sic’ and ‘sftof’86

fields respectively, and wair is the land and sea ice fraction in a grid cell.87

If a sea surface temperature or sea ice concentration cell is missing (e.g. for the CSIRO88

model sea surface temperatures are missing for ice cells), wair is set to 1.0, ensuring that the89

blended temperature matches the air temperature. The difference between the latitude90

weighted global mean of the blended temperature and the unblended air temperature91

provides a measure of the bias in the model-observation comparison.92

3National Centre for Atmospheric Science,
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Implicit assumptions in the implementation of the blending calculation may influence93

the results, therefore three possible variants of the calculation were investigated:94
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1. The calculation may be performed over the whole globe, or alternatively the fields95

may be masked to reduce coverage to that of the observational data. The full coverage96

calculation provides a measure of the bias in a comparison with an infilled record, while97

the masked calculation provides a measure of the bias in a comparison with an incomplete98

coverage dataset such as HadCRUT4 [Morice et al., 2012].99

2. The calculation may be performed using absolute temperatures, which are output100

by the climate model runs, or using temperature anomalies which are conventionally used101

for blending in the case of the observational record. In the latter case, anomalies are102

calculated with respect to the period 1961-1990 for consistency with HadCRUT4.103

3. The blending calculation can be performed using the monthly varying sea ice cover,104

or a fixed sea ice coverage in order to isolate any confounding effects due to the change of105

a grid cell from ice to open water. For the fixed sea ice case, sea surface temperatures are106

only used for grid cells for which the sea ice concentration is zero for the corresponding107

month of every year from 1961 onwards. In this case the remaining grid cells are considered108

100% sea ice and thus take the same value as in the unblended case.109

These three options can be employed in any combination. The differences between the110

air-temperature-only calculation and two variants of the blended calculation (absolute111

versus anomaly based) are illustrated in Figure 1.112

One further method was implemented with the aim of providing a better comparison to113

the HadCRUT4 temperature data. This requires reproducing the HadCRUT4 algorithm,114

the coarse HadCRUT4 grid, and the coverage of observations within each large grid cell.115

The steps are as follows:116
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1. The air and sea surface temperatures are converted to anomalies using the Had-117

CRUT4 baseline period (1961-1990).118

2. The air temperatures are masked to include only grid cells containing a non-zero119

land fraction.120

3. Sea surface temperatures are masked to include only cells with no more than 5%121

sea ice. While the HadCRUT4 calculation does not explicitly take sea ice into account,122

observations from ships and buoys are confined to open water.123

4. The remaining air and sea temperatures in each cell of the coarse 5x5◦ grid used by124

HadCRUT4 are averaged, omitting any values excluded by the previous steps.125

5. The air and sea temperatures are masked to match the coverage of the air and sea126

temperatures in the HadCRUT4 data respectively.127

6. The temperatures are then blended: cells containing only an air or sea temperature128

take that value, otherwise the air and sea temperatures are blended according to the129

land fraction for the grid cell. (As with HadCRUT4, the land fraction is bounded by130

a minimum value of 0.25 for coastal cells so that air temperature observations on small131

islands are not eliminated.)132

7. Following the HadCRUT4 convention, the global mean temperature is calculated133

from the mean of the cosine weighted hemispheric means.134

Improved compatibility between the model derived temperatures and the observational135

data is achieved at a cost of complexity, and of producing a set of model results which136

are only comparable to a specific observational dataset.137
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3. Results

The difference between the global mean blended temperature and global mean air tem-138

perature was determined for 36 CMIP5 models with 84 historical/RCP8.5 simulations,139

using global data (i.e. no coverage mask), and blending absolute temperatures with a140

variable sea ice boundary (Figure 2). The blended temperatures show consistently less141

change than air temperature, with blended temperatures lower than air temperatures over142

recent decades. Over the period 2009-2013 the difference between multi-model global143

mean blended and air temperatures is 0.033 ± 0.010◦C (1σ) relative to 1961-1990, and144

this difference is estimated to increase in magnitude with time to 0.18 ± 0.04◦C by the145

year 2100.146

The effect is broadly similar in magnitude across all the models both during the historical147

period and over the 21st century with the exception of the Beijing Climate Centre model,148

‘bcc-csm’. The different behaviour of the ‘bcc-csm’ model appears to arise from surface air149

temperature being almost equal to the skin temperature (‘ts’ in the CMIP5 nomenclature)150

in that model alone (Figure S2). Pre-industrial control simulations were examined (where151

available) to determine whether model drift due to non-equilibrium initial conditions152

contributes to the difference between air and sea surface temperature. In every case the153

difference between the blended and air temperature trends at the end of the control run154

was at least an order of magnitude smaller than the effect identified here (Figure S3).155

The mean difference across all models between the global mean blended and global156

mean air temperature was compared for the previously described variants of the blending157

calculation, and for the HadCRUT4 method (Figure 3). The difference between the158
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blended and air temperatures is greater when using anomalies (as in the observational159

record) than when using absolute temperatures. The reason arises from changes in the160

ice edge. As ice melts, grid cells switch from taking air temperatures to taking sea surface161

temperatures. When blending anomalies, the temperature anomaly is determined with162

respect to a period in the past when air temperatures over the ice were lower, while the163

sea surface temperatures under the ice (constrained by the freezing point of seawater) are164

unchanged. Thus the transition from air temperature anomaly (which is warmer than the165

baseline period) to sea surface temperature anomaly (which is roughly the same as during166

the baseline period) introduces a cool bias at the point when the ice melts (Figure S4).167

When blending is performed using absolute temperatures, the blended temperature168

change is consistently around 95% of the air temperature change, both for the RCP8.5169

scenario and the RCP4.5 scenario where temperatures have largely stabilised by 2100170

(Figure S5) When blending is performed using temperature anomalies, the blended tem-171

perature change is reduced to about 91% of the air temperature change for the RCP8.5172

scenario. The role of ice melt in the difference between blending absolute temperatures173

and temperature anomalies is confirmed by fixing the sea ice coverage; in this case both174

absolute and anomaly calculations give identical results (although the impact of blending175

is now underestimated due to the omission of large regions of formerly ice covered ocean).176

Masking the model data to match the HadCRUT4 observations reduces the difference177

between the global mean blended and air temperature slightly when using anomalies, and178

increases it slightly when using absolute temperatures. This behaviour arises from the179
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change in sign of the difference between the blended and air temperature in ice melt cells180

between the anomaly and absolute cases (Figure S6).181

When emulating the HadCRUT4 method, the difference between the air and blended182

temperatures is marginally greater than the result from the masked blended anomaly183

calculation. The difference arises primarily from the handling of ice edge cells. The184

coarse 5x5◦ grid of the HadCRUT4 also contributes to spreading the effective area over185

which the ice edge plays a role.186

The differences between the air and sea surface temperature change are small compared187

to the uncertainties and bias corrections in the sea surface temperatures [Kennedy et al.,188

2011b, a], and so observational data are of limited use in detecting this bias. The com-189

parison of daily sea surface temperatures to night-time only marine air temperatures is190

confounded by diurnal range effects as well as inhomogeneities in the observations, with191

the MOHMAT and HadNMAT2 marine air temperature data [Rayner et al., 2003; Kent192

et al., 2013] showing substantial differences to the SSTs not seen in the models (Figure193

S7). Similarly, uncertainties in the assimilated observations limit the utility of atmospheric194

reanalyses for this purpose (Figure S8).195

What are the implications of using blended temperatures on a model-observation com-196

parison for the CMIP5 models? Figure 4 shows a comparison of the 84 RCP8.5 model197

runs against the HadCRUT4 data, using either air or blended temperatures and the198

HadCRUT4 blending algorithm (i.e. with the HadCRUT4 coverage and averaging con-199

ventions). When using air temperatures, the HadCRUT4 data falls below the 90% range200

of climate model simulations for the years 2011-2013. When using the blended temper-201
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atures, the observations are at the lower end of the 90% range for 2011 and 2012 and202

within it for 2013.203

The recent divergence between the models and observations occurs after 1998, the period204

commonly associated with the so-called global warming ‘hiatus’ [Fyfe et al., 2013; Fyfe205

and Gillett , 2014; Tollefson, 2014]. Several contributory factors to the divergence have206

been identified, including an increase in moderate volcanic eruptions [Solomon et al., 2011;207

Ridley et al., 2014; Santer et al., 2014a, b], a reduction in solar activity, a decrease in208

stratospheric water vapor concentration [Solomon et al., 2010], internal variability [Meehl209

et al., 2011, 2013; Trenberth and Fasullo, 2013; Kosaka and Xie, 2013; Mann et al., 2014;210

Steinman et al., 2015; Dai et al., 2015], and a bias due to the omission of the Arctic,211

which is warming more rapidly than projected by the models [Cowtan and Way , 2014;212

Saffioti et al., 2015]. The contribution of internal variability to the remaining discrepancy213

between the models and observations is beyond the scope of this analysis.214

Using an impulse response model Schmidt et al. [2014] estimate the temperature impact215

of the slower than predicted growth in forcing due to volcanoes, solar cycle, and also216

the possible cooling effect of an increase in aerosol emissions over the hiatus period.217

Other studies have found negligible or even a warming contribution of aerosols on hiatus218

temperature trends [Regayre et al., 2014; Gettelman et al., 2015; Thorne et al., 2015],219

although Schmidt et al. [2014] include nitrate aerosols which are omitted from the other220

studies. The model outputs were also adjusted using the estimated impacts from Schmidt221

et al. [2014] due to volcanoes, solar cycle and greenhouse emissions but not aerosols:222

Figure 4(b). When using blended temperatures the observations lie well within the 90%223
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range of RCP8.5 runs for the whole of the last decade. Similar results are obtained224

from adjustments to the model temperatures derived using the Bern2.5D climate model225

of intermediate complexity [Huber and Knutti , 2014]. Notably Thorne et al. [2015] did226

not find a detectable reduction in the recent temperature increase when using updated227

forcings in a large ensemble of NorESM simulations.228

The impact of using blended rather than air temperatures accounts for 27% of the differ-229

ence between the models and the observations over the period 2009-2013. The adjustments230

by Schmidt et al. [2014] due to the overestimated forcings account for another 27% of the231

difference when omitting the tropospheric aerosol term or 41% of the difference when232

including aerosols. Over the period 1975-2014 the use of blended rather than air tempera-233

tures accounts for 38% of the difference in trend between the models and the observations234

(Table S1), or almost all of the difference if the last 5 years are omitted, consistent with235

the results of Marotzke and Forster [2015]. The model simulations suggest that the 40236

year trend in HadCRUT4 is suppressed by 0.017 ± 0.004◦C/decade compared to an air237

temperature record with the same coverage, and 0.030 ± 0.011◦C/decade compared to a238

global air temperature record.239

Comparisons to the infilled reconstructions of Cowtan and Way [2014] and Rohde et al.240

[2013] require different variants of the blending calculation (Supporting text S1), but lead241

to similar conclusions. Comparisons to the other temperature datasets will in turn require242

an appropriate choice of blending method or development of a custom method appropriate243

to that dataset. The comparison will depend on explicit and/or implicit assumptions in244
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the blending and anomaly calculations, and is therefore best addressed by the record245

providers.246

4. Discussion

These results have implications in three areas: firstly in the comparison of climate247

model ensembles to the observational record, secondly in estimating climate sensitivity,248

and thirdly in the preparation of observational temperature records.249

When comparing models to observations, the comparison should be strictly performed250

using blended land/ocean temperatures rather than air temperatures from the models.251

The size of the difference between the blended and air temperatures is sensitive to as-252

sumptions in the blending calculation, and in particular whether blending is performed253

using absolute temperatures or anomalies. The most conservative approach is to blend254

absolute temperatures from the models (i.e. air temperature over land and ice, and sea255

surface temperature for the oceans), in which case the global mean blended temperatures256

will typically show 5% less warming than the air temperatures. However the actual impact257

of the use of blended temperatures on the observational record is nearly twice as great258

owing to the blending of anomalies in the observational data.259

Replication of the HadCRUT4 blending algorithm on the model outputs leads to a260

reduction in the model-observation divergence of 0.056 ± 0.015◦C over the years 2009-261

2013, or about a quarter of the divergence over that period. However the replication is262

not exact: for example the results will depend on the climatology by which anomalies are263

calculated for ocean cells which were sea ice during the baseline period [Rayner et al.,264
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2006]. The comparison would also be further improved by the inclusion of a land-only265

surface air temperature field in future CMIP phases.266

Comparison to other versions of the temperature record should ideally also involve re-267

producing the blending method for that particular observational dataset. However com-268

parison to multiple observational datasets at the same time is then inconvenient, because269

the model ensemble will be different for each observational record. Alternatively, instead270

of modifying the model temperatures to match the methodology of a particular observa-271

tional record, each observational record can be modified to produce an estimate of the272

global mean air temperature. The required correction is determined from the difference273

between the blended and air temperature from the models using the methodology of the274

corresponding observational record. All the observational records may then be compared275

simultaneously.276

Estimates of climate sensitivity, at least over decadal to centennial timescales, will277

be lower for blended temperatures than for air temperatures. Estimates of transient278

climate response (TCR) should therefore be quoted with an indication of whether the279

value was determined using observed air or blended temperatures, and in the case of280

blended temperatures whether blending was performed using absolute temperatures or281

anomalies. In the case of blended absolute temperatures, TCR values are likely to be282

about 95% of those for air temperatures, or 91% for blended anomalies. Estimates of283

TCR from the observational record are based on blended temperatures, and thus are284

expected to underestimate TCR by about 10% in comparison to quoted figures for the285

models.286
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There are two implications for observational records. Firstly, a blended record from air287

temperatures over land and sea ice and sea surface temperatures over open ocean slightly288

underestimates the change in temperature diagnosed using global air temperatures alone.289

Secondly, the blending calculation should ideally be conducted with absolute temperatures290

to avoid introducing a cool bias due to the transformation of cells from sea ice to open291

water, particularly for infilled records. Otherwise, the approach of fixing the sea ice292

extent (Supporting Text S1) mitigates the problem at the cost of introducing a different293

but smaller bias. The new dataset of Karl et al. [2015] incorporates adjustments to294

SSTs to match nighttime marine air temperatures [Huang et al., 2015] and so may be295

more comparable to model air temperatures. The difference between air and sea surface296

temperature trends diagnosed here provides support for an increase in temperature trends297

when using marine air temperatures, as reported in Karl et al. [2015].298

Finally, we emphasise that robust comparisons of observations and models require a like-299

with-like approach and encourage further development of appropriate diagnostics from300

model simulations to facilitate such comparisons.301
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Figure 1. Flowcharts describing the calculation of global mean temperature (T) from the

original CMIP5 fields. Three different methods are illustrated: (a) air temperature only (i.e.

unblended). (b) blended absolute temperatures (no mask, variable ice). (c) blended temperature

anomalies (no mask, variable ice). The use of anomalies in (c) involves reversal of the shaded

steps, it will be shown that this significantly affects the results.
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Figure 2. Difference between the global mean air temperature and blended land-ocean tem-

peratures for 84 CMIP5 model simulations combining the historical and RCP8.5 experiments.

The differences are calculated using global coverage and blending absolute temperatures with

variable sea ice. Temperature anomalies are relative to 1961-1990.
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Figure 3. Difference between global mean blended temperature and air temperature, for

different variants of the blending calculation, averaged over 84 historical + RCP8.5 simulations.

Blended temperatures show less warming than air temperatures; hence the sign of the difference

is negative for recent decades. Results are shown for the four permutations of masked versus

global and absolute temperatures versus anomalies (with variable sea ice in each case). Two

additional series for the absolute and anomaly methods with fixed ice show that fixing the sea

ice boundary eliminates the effect of using anomalies. The final series shows the HadCRUT4

method, which shows similar behaviour to the other anomaly methods.
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Figure 4. Comparison of 84 RCP8.5 simulations against HadCRUT4 observations (black), us-

ing either air temperatures (red line and shading) or blended temperatures using the HadCRUT4

method (blue line and shading). The shaded regions represent the 90% range (i.e. from 5-95%)

of the model simulations, with the corresponding lines representing the multi-model mean. The

upper panel shows anomalies derived from the unmodified RCP8.5 results, the lower shows the

results adjusted to include the effect of updated forcings from Schmidt et al. [2014]. Temperature

anomalies are relative to 1961-1990.
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